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ABSTRACT

We study the Casimir force between a nanoparticle and a substrate using a spectral rep-
resentation formalism. We consider the interaction of metal nanoparticles with different
substrates within the dipolar approximation. The force is calculated as a function of the dis-
tance between the particles and the substrate. The particles are made of gold or potassium
spheres, and the substrate is titanium dioxide, sapphire or a perfect conductor.

INTRODUCTION

Recent advances in micro and nano devices have opened the possibility of studying quantum
phenomena that occurs at these length scales. Such is the case of Casimir forces [1] predicted
by the theory of quantum electrodynamics. The textbook example [2] consist of two parallel
neutral conducting plates separated by a fixed distance. The plates will attract each other
with a force per unit area of roughly one atmosphere when the plates are 35 nm apart.
This force has been measured accurately in different ways. However, a truly parallel plate
configuration has been measured only by Bressi et al. [3]. The difficulty of keeping the two
plates parallel at separations of few nanometers makes it easier to measure the Casimir force
between a large conducting sphere and a plane using microtorsional balances [4] or atomic
force microscopes [5,6]. In this cases, comparison with the theoretical results obtained for
the parallel plates is done using the proximity theorem [7]. The proximity theorem is a
geometrical approximation that states that if the free energy per unit area E at a given
distance between two parallel plates is known, the force between a sphere and a plane
is 2πER, where R is the radius of the sphere. This approximation is valid provided the
minimum separation between the sphere and the plane is much smaller than R. The theorem
does not quantify or gives bounds for the ratio between R and the separation with the
plane. Thus, the question improving the theoretical description of the proximity theorem is
important from the theoretical and experimental point of view.

In this work we present a calculation of the Casimir force between a sphere and a conducting
plane using a spectral representation approach [8]. The Casimir force is calculated as a
function of z, the minimum separation between the sphere and the plane. The force is
studied as a function of the sphere’s radius, and the dielectric functions of the sphere and
the substrate.

THEORY

Consider a homogeneous sphere of radius R, electrically neutral and with a local dielectric
function εs(ω). The sphere is suspended over a substrate which is also electrically neutral
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and with a local dielectric function εp(ω). The space above the substrate, where the sphere
is immersed, is also electrically neutral and characterized by a dielectric function εa(ω). The
quantum fluctuations of the electromagnetic field in vacuum induce a dipole moment ps

on the sphere. If the sphere is close to a substrate, the charge distribution on the sphere
generates a field which also induces a charge distribution on the substrate, given by a image-
dipole moment pp. The latter also alters the charge distribution on the sphere through the
so-called local-field. The dipole moment of the sphere is affected by the presence of the
substrate through the local-field such that

ps = α [Vvac + A · pp] , (1)

where α is the polarizability of the sphere, α = R3[(εs− 1)/(εs + 2)], Vvac is the electromag-
netic field in vacuum, and A is the dipole-dipole interaction matrix given by

Am′

m =
4π(−1)m

(d/R)3

2

3

[
1

(1 + m)!(1−m)!(1 + m′)!(1−m′)!

]1/2

, (2)

where d is the distance from the center of the sphere to the substrate, and m and m′ indicate
the cartesian component of the dipole of the sphere and substrate, respectively. Given the
symmetry of the system m and m′ only have two independent components: one perpendicular
(m = 0) and one parallel (m = ±1) to the surface of the substrate. Finally, using the method
of images we can calculate the dipole moment on the substrate, as

pm′

p = (−1)m′
fcp

m′

s . (3)

Here fc is a dielectric contrast factor relating the dielectric properties of the ambient and
the substrate. This is,

fc =
εa − εp

εa + εp

. (4)

For example, if the substrate is a perfect conductor (εp(ω) → ∞), then fc = −1. Let us
define a variable which relates the dielectric properties of the sphere and the ambient as
u = [1 − εs/εa]

−1. Also, we define xm = pm′
s /R3/2 and gm = −R3/2V vac

m /4π. Now, we can
rewrite each component m of Eq. (1) as

[−uδmm′ + Hm′

m ]xm′ = gm, (5)

where

Hm′

m = n0δmm′ + fc
R3

4π
(−1)mAm′

m , (6)

with n0 = 1/3.

We observe that Hm′
m is a hermitian matrix if fc is real. In this case, we can find a unitary

matrix U, such that, U−1HU = 4πns, and using the Green’s function, we can obtain a
density of states of the variable u for a given direction m, as

ρm(u) =
−1

π
Im

[∑
s

(U1sU
−1
s1 )m

u− ns

]
. (7)
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Then, the total density of states is given by ρ(u) =
∑

m ρm(u) = ρ0(u) + 2ρ1(u).

The energy difference U between the sphere and substrate system and an isolated sphere
gives rise to the Casimir energy. This is,

U =

∫ ∞

0

~ω

2
[ρsp(ω)− ρs(ω)]dω, (8)

where ρsp(ω) is the density of the states of the system sphere-substrate, while ρs(ω) is the
density of the states of the isolated sphere (fc = 0 or εp = εa).

The Casimir force is given by F = −dU/dz, where z is the distance of separation between
the sphere and the substrate (i.e.z = d−R). Notice that for a given model of the dielectric
function of the sphere and the ambient, we can find a relation between ρ(ω) and ρ(u), as we
will show in the next section.

RESULTS AND DISCUSSION

In this section we present the results for the Casimir force for metal spheres of radius 10 nm,
100 nm and 1000 nm. The dielectric function of the sphere is given by a Drude model,

εs(ω) = 1−
ω2

p

ω(ω + i/τ)
, (9)

where ωp is the plasma frequency and τ is the relaxation time of a given material. Then, the
density of states as a function of frequency is derived from Eq. 7, and is given by

ρm(ω) =
2ω2

p

π

∑
s

√
ns

(
U1sU

−1
s1

)
m

[
ω/τ

(ω2 − nsω2
p)

2 + (ω/τ)2

]
. (10)

The parameters used in our calculations are for spheres made of potassium (K), ~ωp =
3.8 eV and 1/τ = 0.105ωp, and for gold (Au) with ~ωp = 8.55 eV and 1/τ = 0.0126ωp.
To achieve the condition of fc to be real, we have considered substrates whose dielectric
function is real and constant in a wide range of the electromagnetic spectrum such as TiO2

(titanium dioxide), Al3O2 (sapphire), and a perfect conductor (fc = −0.773, −0.516, and −
1.0 respectively). If εp > 1 then fc < 0 always. In this work, we only consider the case where
the sphere is in vacuum, εa = 1. Our theory does not consider retardation effects, therefore
we have to work in the limit when R and z are smaller than c/ωp, being c the speed of light.

In Fig. 1, we present the energy calculated from Eq. 8 as a function of the separation in units
of the radius of the sphere, z/R. The left panel shows the results for spheres of potassium
(K) over different substrates, while the right panel are the results for spheres of gold (Au)
over the same substrates. In general, we observe that the energy is negative in both cases,
and its absolute value is two times larger for gold particles than for potassium particles. We
also observe that as the absolute value of fc is larger, then the absolute value of energy is
also larger.

In Fig. 2 we show the force for gold and potassium nanoparticles over a perfect conductor
for spheres of radius of 101 nm, 102 nm and 103 nm. The force is attractive in both cases
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Figure 1: Energy as a function of the separation in units of radius (z/R) for K and Au spheres
over substrates of Al2O3, TiO2, and a perfect conductor (Inf).

and is smaller as the radius of the sphere becomes larger at small separations. In particular,
at z = 0 nm the force on a sphere with R = 10 nm is ten times larger than the one with
R = 102 nm, and it is two orders of magnitude larger than the force of the sphere with
R = 103 nm. We also observe that as the radius of the sphere increases the force decreases
slowly as function of z. Thus, the force for the larger sphere with R = 103 nm is almost
flat as the separation increases from 0 to 40 nm. On the other hand, for a sphere of radius
R = 10 nm the force decreases very fast as a function of z, in this case the force decreases
about three orders of magnitude as the separation of the sphere goes from 0 to 40 nm.

Figure 2: Casimir force as a function of the separation for K and Au spheres over a perfect
conductor (Inf) substrate and spheres of different radius.

In Fig. 3 we compare the force between nanoparticles of radius R = 10 nm and made of
different materials (potassium and gold), over a substrate. The left panel shows the results
for a sapphire substrate, while on the right the substrate is a perfect conductor. As before,
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the force is larger for the perfect conductor substrate than for sapphire. On the other hand,
for both substrates, we observe that the force between gold particles and the substrate is
larger than the force with potassium particles. This is consistent with the fact that the gold
particles have a plasma frequency more than two times larger than the plasma frequency of
potassium particles.

The magnitude of the forces calculated here are within the resolution of current measuring
systems such as atomic force microscopes. Measurements with different size of spheres can
provide bounds for the validity of the proximity thorem.

Figure 3: Casimir force as a function of the separation for K and Au spheres over Al2O3 (left)
and perfect conductor (right) substrates. Spheres with radii of R = 10 nm.

Finally, in Fig. 4, we show as a function of energy (eV), the difference of the density of states
between the sphere near a substrate and the isolated sphere, ρ(ω) = ρ(ω)sp−ρ(ω)s. We show
results for potassium (upper plots) and gold nanoparticles (lower plots) over a substrate of
sapphire (left) and a perfect conductor (right). Different curves correspond to different
separations of the sphere and the substrate on units of the radius of the nanoparticle (z/R).
We found that for gold particles over a perfect conductor, ρ shows three different peaks, two
positive and one negative, when the sphere is touching the substrate (z/R = 0). At z/R = 0,
the positive peak at lower energies (at about 4.25 eV) corresponds to electromagnetic modes
(EM) on the sphere which are perpendicular to the substrate plane, while the positive peak
at about 4.6 eV corresponds to EM modes on the sphere which are parallel to the substrate
plane. The latter peak is about two times larger than the one corresponding to perpendicular
modes. At larger energies we found a negative peak that corresponds to the EM modes of
the isolated sphere. As the separation z/R increases, the strength of all the peaks decreases
and the positive peaks are blue-shifted and overlap, while the negative peak does not shift
its position. For large separations, the density of states is almost null. The same is observed
for Au/Al2O3, however the positive peaks are at higher energies. On the other hand, we
found that K particles show a smaller density of states than Au particles, and ρ only has two
peaks, one negative and one positive. The positive peak corresponds to all the EM modes
(perpendicular and parallel to the substrate plane) which have the same energy, while the
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negative peak also corresponds to the EM modes of the isolated sphere. Notice that these
peaks are wider than those show for Au particles, this fact is due to the difference in τ of K
and Au.

Figure 4: Density of states ρ for Au and K nanoparticles over a substrate of sapphire (left panel)
and a substrate made of a perfect conductor (right panel).
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