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Abstract
Early stages of the theory of radiative corrections to weak interaction
processes such as muon decay and π − e decay are described based on
my personal recollection. The discovery of an error in our initial paper
on the muon decay played a crucial role in the realization of remarkable
cancelation of mass singularities in integrated observable quantities. General
formulation developed to deal with mass singularity turned out to be very
handy for numerical evaluation of high-order radiative corrections to the lepton
anomalous magnetic moment. This has led to the most stringent test of QED
available at present. New developments of last two years are described briefly
in ‘Note added in proof’.

1. Introduction

This talk is dedicated to Alberto Sirlin in celebration of his seventieth birthday. I wish to
convey my deep appreciation of his many important contributions to particle physics over 40
years and look forward to many more years of productive research.

Alberto arrived at Cornell as a graduate student in September 1955. I had come to Cornell
as a research associate a few months earlier. Thus I have been acquainted with him for
45 years.

It was the time when experimental observations of some weak interaction processes, the
so-called θ–τ puzzle in particular, began to expose the internal inconsistency in the theory of
the weak interaction. Analysing this problem in great depth, Lee and Yang concluded that
parity conservation, assumed to be valid in previous theories of the weak interaction, was the
most likely culprit. They suggested that parity symmetry is not valid in the weak interaction
and proposed ways to test it experimentally [1]. The experimental verification followed soon
afterwards [2, 3]. The two-component neutrino theory (discarded previously by Pauli) became
the favoured theory [4–6].

2. Radiative correction to muon decay

A detailed comparison of the two-component theory with experiment would require accounting
for radiative corrections. This is because they might be as large as αω2 � 28.4/137, where
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ω = ln(mµ/me) = 5.3316, according to [7] on radiative corrections to the parity-conserving
muon decay, on which Alberto worked before he came to Cornell. Its extension to the parity-
non-conserving case is not difficult. Thus Alberto’s experience enabled us to jump-start the
calculation of the parity-non-conserving muon decay and finish it on a very short notice. The
radiatively corrected muon decay spectrum we obtained in the two-component neutrino theory
is [8]

dNr(x, θ) = 1

2
A

[
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2π
f (x) + 6ζ
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6
. (4)

The radiative correction to the decay lifetime is large, being proportional to ω2:
τ − τ0

τ0
= − α

2π
(ω2 + · · ·) � −0.029 73. (5)

We presented our result at the Rochester conference in the spring of 1957. Then, one day
in 1958, lightening struck us. We received a preprint from Berman stating that he disagreed
with our result. In particular, he mentioned that the radiative correction to the muon lifetime
is linear, not quadratic, in ω, contrary to our result. When we read his preprint, however, we
suspected immediately that his result, which contains a term linear in ω, must also be wrong.
Alberto and I worked hard for a week or two and found that our intuition was in fact correct.

In the new result [9], spectral functions f (x) and h(x) have the same form as in (2), but
u(x) is replaced by

R(x) = ω[1.5 + 2 ln(1 − x) − 2 ln x] − 2L(x) + 2L(1) − 2 − ln x(2 ln x − 1)

+

(
3 ln x − 1 − 1

x

)
ln(1 − x). (6)

The decay spectrum still contains terms linear in ω(≡ ln(mµ/me)). However, the muon decay
lifetime now has no dependence at all on ω and the net radiative correction is very small:

τ − τ0

τ0
= − α

2π

(
25

4
− π2

)
� 4.17 × 10−3. (7)

To discuss our mistake in [8] that Berman pointed out, let me focus on the inner
bremsstrahlung contribution to the muon decay, which contains the factor∑
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, (8)
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where p1, p2 and κ are the 4-momenta of the muon, electron and photon, and ei are the
polarization vectors of the photon.

Recall that, in a covariant calculation, the virtual photon is often treated as a vector meson
of mass λ with the understanding that λ → 0 in the physical limit. To be consistent with
this, the real photon must also be regarded as a vector meson of mass λ. This means, in
particular, that the sum in (8) must be carried out over four polarizations including time-like
and longitudinal polarizations. Our mistake was that we had summed only over transverse
polarizations. Furthermore, even in the limit λ → 0, the contribution of non-transverse
polarizations does not vanish if the photon has infrared divergence. As a matter of fact, this
extra contribution has an ω dependence that cancels the leading ω dependence from transverse
photons.

This was supposed to be well known: it is related to Feynman’s famous error in
matching non-relativistic and relativistic calculations of the Lamb shift that was discovered
by French and mentioned in footnote 13 of Feynman’s paper [10]. Unfortunately, many
people, including us, had forgotten or failed to appreciate the significance of his footnote
and made the same mistake again and again. (It is true that the connection with our mistake
is somewhat obscure since Feynman’s footnote does not deal directly with scattering states
or decaying states.) In the end Berman agreed with us and revised his paper accordingly
[11].

The lessons we learned from this episode are:

• Although the differential spectrum of µ–e decay diverges logarithmically as me/mµ → 0,
the total decay rate is finite in this limit.

• Cancellation of infrared divergences is a necessary but not a sufficient guarantee for
the computation to be correct. (Many people were unaware of this and made the same
mistake, even after our paper was published.)

We obtained a similar result for nuclear β decay under some simplifying assumptions.
The radiative correction to the β-ray spectrum in the V-A theory (for me � E) is found to
be [9]
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where x = E/Em,� = ln(2Em/me), Em is the maximum total energy of the electron and
mp is the proton mass. The spectrum diverges logarithmically for me → 0. However, the
correction to the lifetime has no ln me dependence:

τ
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2π

[
6 ln

(
�

mp

)
+ 3 ln

(
mp

2Em

)
− 2.85

]
. (10)

Thus β and µ decays share the same ln me dependence, suggesting that it is more general and
not limited to these decays. (See also appendix A.1.)

Feynman came to Cornell in the fall of 1958 for three months. He explained to me how
he and Berman made exactly the same mistake. Feynman had asked Berman to check our
calculation for his thesis work. But, actually, Feynman himself was doing this calculation
independently of Berman. At the end they compared notes and were satisfied that their results
agreed. When confronted with our new result which differed from theirs, they checked the
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notes once again and found that they made the same mistake in copying the bottom equation
of a page to the top of the next page. Feynman was so disturbed by this mistake that he told
me how sorry he was more than a few times while at Cornell.

3. Radiative correction to π–e decay

Feynman brought with him a new preprint of Berman on the radiative correction to π–e decay.
As is well known, in the V-A theory, the ratio of π–e and π–µ decay rates is

R0 =
(

me

mµ

)2
(

m2
π − m2

e

m2
π − m2

µ

)2

� 1.28 × 10−4 (11)

if the radiative correction is not included. Berman’s result, including one-loop radiative
correction, was of the form

R = R0

(
1 − 3α

π
ln(mµ/me) + · · ·

)
. (12)

This R has a rather large correction (∼3%) and looked strange since R/R0 diverged for
me/mµ → 0. Feynman and I were so puzzled by this result, which seemed to contradict what
was discovered in µ and β decays, that we decided to check it with a fresh calculation. For the
next two months we worked hard, totally independently of each other, except that we agreed
to start from the same effective Lagrangian

gmlψ̄laψνφπ , (13)

where l represents either a muon or an electron and a = (1 + iγ5)/2.
The radiative correction due to the virtual photon is straightforward [12]:
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,

where P0 is the uncorrected π–e decay rate, r = me/mπ , λmin is the infrared cut-off mass and
� is the ultraviolet cut-off mass.

The total probability of the inner bremsstrahlung correction is [12]
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It follows from (14) and (15) that, to order α, the rate of π–e decay is

P = P0(1 + ηe), (16)

where
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Infrared divergences have cancelled out as expected.
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When we finished the calculation, we compared the results and found that we agreed with
each other. Unfortunately, we did not agree with Berman. In particular, our result did not
have the ln(mµ/me) term. We thought for a while that Berman’s calculation was wrong. But,
after scrutinizing our calculation very closely, I realized that it was we who were wrong. We
committed a very subtle mistake: it was in our choice of the starting Lagrangian.

Berman started from an effective Lagrangian with the derivative coupling:

gψ̄lγµaψν

(
i
∂φπ

∂xµ

− eAµφπ

)
. (18)

To simplify the algebra this is often turned into a non-derivative form

g(ml − mν)ψ̄laψνφπ (19)

by integration by parts and use of the equation of motion

i
∂

∂xµ

ψ̄lγµ + eAµψ̄l + mlψ̄l = 0. (20)

Our Lagrangian (13) was obtained from the equivalent Lagrangian (19) assuming that
mν = 0 and ml is the physical mass. Unfortunately, we did not realize initially that this
equation is not valid to order e2 if ml is the physical mass. The correct equation requires the
self-mass term δmlψ̄l on the right-hand side of (20). Or, equivalently, we may rewrite the
corrected equation as

i
∂

∂xµ

ψ̄lγµ + eAµψ̄l + m0
l ψ̄l = 0, (21)

where m0
l is the bare mass. Berman’s Lagrangian (18) may thus be replaced by

gm0
l ψ̄laψνφπ. (22)

This means that we can turn our incorrect result into a correct one by simply replacing the
renormalized mass with the bare mass. The appearance of bare mass in this context had been
noticed by Ruderman [13, 14].

The radiatively corrected decay ratio R can thus be written as [12]

R = R0((1 + ηe)/(1 + ηµ))(1 + δ), (23)

where ηe and ηµ are defined by (17) and

δ = (
m0

e

/
me

)2 / (
m0

µ

/
mµ

)2 − 1

= −(3α/π) ln(mµ/me)

� −15.995 (α/π). (24)

This R is in exact agreement with Berman’s result [15].
Measurement of the (π–e)/(π–µ) decay ratio had just started at the time of this calculation.

The experimental uncertainty was still so large that the presence or absence of the (1+δ) factor
could not be tested experimentally. Later more accurate measurements confirmed this large
effect [16, 17]

R = 1.2265 (34) (44)× 10−4, R = 1.2346 (35) (36)× 10−4. (25)

Our calculation of R relied on an implicit untested assumption that the UV cut-off � is
common to both π–e and π–µ decays. A justification of this assumption had to wait for the
emergence of the standard model [18]. The hadronic effect was also taken into account [19].
This leads to the latest value

R = 1.2352 (5) × 10−4. (26)
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Working with Feynman was a very interesting and instructive experience. Let me share
one episode with you.

As is well known, the integration over three-body final states is quite non-trivial. I spent
most of the two months checking my calculation of the inner bremsstrahlung term PIB again
and again. In the end more than 30 pages of equations were needed to carry my conventional
approach to the end. It also took about two months for Feynman to evaluate this integral.

Actually, I am not sure that he was working on this problem all the time. His office was
next to mine so that I could hear that he was constantly practising bongo drums using the
cover of the heating system as a drum. When we finally finished the work and compared
notes, however, I was astounded to find that his whole calculation was written on just two
sheets of paper. What he was doing during the two months was not only playing bongo but
also looking for new ways of doing the integration. And he actually found a very simple and
elegant method!

Since this does not seem to be widely known, let me describe it here. The decay process
π → e + ν̄ + γ has 4-momentum conservation:

pπ = pe + pν + k. (27)

• Step 1. Take any final-state pe and go to the reference frame in which the space components
of pπ and pe satisfy the relation

�pπ = �pe. (28)

Then �pν and �k are exactly back to back. Thus the angular integration becomes trivial. The
result is a function of the fourth component Ee of pe only, which can be easily converted
to a covariant form.

• Step 2. Go to the pion rest frame by an Ee-dependent Lorentz transformation. Then the
remaining integration over Ee is almost trivial. That is all.

Before we finished our work, Feynman went back to Caltech. After some exchange of
letters discussing fine details of the calculation and the drafting of a report, Feynman told me
to publish the paper by myself, which I did reluctantly [12]. He did not explain why he did not
want to put his name on it. I can only guess some reasons. One is that he was not comfortable
with the appearance of unphysical mass in observable quantities. Since the Lagrangians used
in these days were just effective Lagrangians and not renormalized ones, they did not provide
a proper framework to deal with such a problem. Only within the context of renormalizable
theories, such as the standard model, can one treat it properly in terms of the renormalization
group.

Although the presence of the ln(mπ/me) term in the π–e decay rate seemed strange at
first sight, it was actually not so strange. This is because the π–e decay amplitude in the V-A
theory is proportional to me, which multiplies ln(mµ/me) and makes the whole amplitude
vanish for me → 0. Note also that the ηe part of the radiative correction to the π–e decay
behaves in the same manner as those of µ and β decays, namely, it has no ln me term.

4. Mass singularity

These examples convinced me that the striking cancellation of ln me terms in the total
probability is a very general feature of quantum field theory. It seemed that the structure
of general Feynman amplitudes in the massless limit deserved some attention. I spent the next
few years trying to understand this problem.

The basic tool of analysis was the power counting rule to examine the behaviour of
Feynman integrals in the zero-mass limit. As a function of (various) masses, the Feynman
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amplitude has a very complicated structure at zero-mass points. In general, its value depends on
the order and direction in which the zero-mass points are approached. It is found, nevertheless,
that m → 0 in a propagator of mass m does not cause divergence unless it is enhanced by
putting vertex-sharing propagators (including external lines) on the mass shell. The result was
reported in [20]. Alberto used it in his derivation of differential equations for propagators and
vertex functions in QED, and obtained results which are equivalent to the Callan–Symanzik
equation [21]. (See appendix A.3.)

5. Lepton anomalous magnetic moments

It turned out that the analysis of the mass singularity was very useful in studying the mµ/me

dependence of the muon anomalous magnetic moment [22]. This was in fact the beginning
of my active involvement in the g − 2 problem, from which I have not yet managed to extract
myself. The paper [22] was extended to the study of higher-order muon anomalous moment
based on the renormalization group technique [23, 24].

The analytic tool developed in [20] to deal with general Feynman-parametric integrals
also turned out to be very handy as the starting point of my work on the sixth- and eighth-order
radiative corrections to the lepton g − 2 by a numerical method [25, 26]. After converting
momentum space Feynman integrals into Feynman-parametric integrals analytically, we
evaluated them numerically using the iterative-adaptive Monte Carlo integration routine
VEGAS [27].

In the case of the electron g − 2, the best value of the coefficient of (α/π)3, obtained by
VEGAS, is [28]

A
(num)

6 = 1.181 259 (40). (29)

This is in good agreement with the analytic result obtained by Laporta and Remiddi several
months later, after many years of hard work [29]:

A
(anal)
6 = 1.181 241 456 · · · . (30)

At present A8, the coefficient of (α/π)4, is known only by the VEGAS integration. The
most recent reported value of A8 is [30]

A
(num)
8 = −1.5098 (384). (31)

The project to reduce the uncertainty of A8 by a factor of 3 or more by means of massively-
parallel computers is approaching the final stage.

At present the best theoretical value of ae, including small electroweak and hadronic
terms, is

ae(th) = 1159 652 153.5 (1.2) (28.0)× 10−12 (32)

evaluated using the α obtained from the quantum Hall effect [31, 32]:

α−1(qH) = 137.036 0037 (33). (33)

The value ±1.2 in (32) is the remaining uncertainty in theory. The result (32) is to be compared
with the measured values of ae obtained in Penning trap experiments [33]:

ae− = 1159 652 188.4 (4.3)× 10−12, ae+ = 1159 652 187.9 (4.3)× 10−12, (34)

or their weighted average [32]

ae = 1159 652 188.3 (4.2)× 10−12. (35)

Theory is −1.3 standard deviations away from experiment.
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The QED contribution to aµ has been computed through five loops [34, 35]

aµ(QED) = 0.5
(α

π

)
+ 0.765 857 376 (27)

(α

π

)2
+ 24.050 508 98 (44)

(α

π

)3

+ 126.07 (41)
(α

π

)4
+ 930 (170)

(α

π

)5

= 116 584 705.7 (2.9)× 10−11. (36)

The coefficients of (α/π)n are mass dependent. Many ln(mµ/me) terms as well as some mass-
independent terms can be determined analytically by renormalization group considerations
[22–24]. Coefficients of α2 and α3 can be evaluated to any precision by expansion in mass
ratios [35]. The errors in the α2 and α3 terms come only from measurement uncertainties of
me/mµ and/or me/mτ . The coefficient of α4 is known by numerical integration only. The
coefficient of α5 is only a rough estimate at present [34, 36]. The electroweak contribution
has been evaluated to two-loop order [35]

aµ(EW) = 152 (4) × 10−11. (37)

The current best estimate of the hadronic contribution is [35]

aµ(had) = 6739 (67) × 10−11. (38)

The sum of (36), (37) and (38) gives the prediction of the standard model

aµ(theory) = 116 591 597 (67)× 10−11. (39)

This is in good agreement with the value

aµ(exp) = 116 592 050 (460)× 10−11 (40)

obtained by combining the CERN result and the data taken through 1998 at Brookhaven
National Laboratory [35, 37].

6. Fine structure constant as test of quantum mechanics

As is seen from (32), the uncertainty in ae(th) is dominated by that of α given in (33). This
means that this α is not accurate enough to test QED to the extent allowed by the precision of
the measurement and theory of ae. The situation is no better for other high precision values
of α determined from the ac Josephson effect [32], measurement of h/mn (mn is the neutron
mass) [38], muonium hyperfine structure [39] and caesium D1 line1 [40, 41]:

α−1(acJ, γp′) = 137.035 9880 (51) [3.7 × 10−8], (41)

α−1(mn) = 137.036 0119 (51) [3.7 × 10−8], (42)

α−1(µhf s) = 137.035 9932 (83) [6.0 × 10−8], (43)

α−1(CsD1) = 137.035 9924 (41) [3.0 × 10−8]. (44)

Atom beam interferometry, single electron tunnelling, fine structure of the helium atom and
bound electron g − 2, may also produce very precise values of α.

This means, however, that it is the electron g − 2 that can provide the most precise value
of α at present. From the Seattle experiment and QED one obtains

α−1(ae) = 137.035 999 58(14) (50)

= 137.035 999 58 (52) [3.8 × 10−9]. (45)

Errors on the first line are due to the α4 term and measurement of ae.
1 This value will be improved very soon.
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When new experiments are completed, the measurement uncertainty of ae may be reduced
by an order of magnitude [42, 43]. Further improvement in theory will enable us to determine
α with an uncertainty of less than 10−9.

Comparison of α cited above shows that they are in agreement with each other at the level
of 10−7. However, these comparisons must be regarded as testing theories underlying these
measurements, rather than testing QED. Since all these determinations of α are ultimately
based on quantum mechanics, they may be regarded as testing of the internal consistency of
quantum mechanics itself. It will be of great interest to see whether the good agreement still
holds at the level of 10−8 or beyond.

7. Concluding remark

Although the first paper Alberto and I wrote together [8] had an embarrassing error, it turned
out to be a very productive error. If this paper did not have the mistake discussed in section 2,
we would not have noticed the striking cancellation of mass singularities in integrated
quantities, which we emphasized in our subsequent work [9]. I must also point out that
we were very lucky to stumble upon this phenomenon. This was because we were studying
the decay process rather than the scattering process. Decay processes have several mass scales
(for instance me and mµ) and it is thus easy to examine the limit me → 0 while keeping mµ

finite. The same cancellation mechanism is also present in scattering processes. However, it
was not noticed previously because, in a system with just one mass scale, the mass singularity
is not clearly separated from singularities associated with threshold behaviour or high energy
limits.

Although Alberto and I collaborated only for a couple of years and pursued separate
routes afterwards, you will see that much of what we have done since then have roots in our
early collaboration.

Note added in proof. Since this talk was given in the fall of year 2000, there has been new developments which
render the contents of Sections 5 and 6 out-of-date unless corrected and updated. Instead of making changes in
the text, however, I include them here as ‘Note added in proof’. This will enable us to compare the text and Note
side-by-side. It provides (hopefully) a useful example of physics as a self-correcting discipline, in which resolution
of earlier mistakes serves as a stepping stone for subsequent development. After all this is in accord with the intention
of this paper.

(a) New measurements of muon g − 2 and hadronic corrections

The muon g −2 experiment at the Brookhaven National Laboratory, after many years of hard work, published a result
based on the year 1999 data which disagreed by about 2.6 standard deviations from the prediction of the standard
model. This caused a lot of excitement since it might possibly be the first concrete indication of new physics beyond
the standard model. As a consequence a large number of papers have been written to explain the discrepancy. Since
then the excitement has cooled down considerably by the discovery of an error in previous calculations of the hadronic
light-by-light scattering contribution, reducing the discrepancy to about 1.6 standard deviations. Currently, the most
accurate value, based on the analysis including the year 2000 data, is

aµ(exp) = 116 592 030 (80) × 10−11.

This disagrees with theory, too. Unfortunately, the prediction of the standard model is not unique at this moment.
It deviates from aµ(exp) by 3.0 s. d. or 1.6 s. d. depending on whether it is based on (i) the measurement of the total
cross section for the e+e− annihilation process (e+e− → hadrons) or (ii) the analysis of hadronic τ -decay. Until this
discrepancy is resolved, it may not be possible to confirm the existence of new physics beyond the standard model.

(b) Error in the α4 QED term of lepton g − 2

New measurements of the muon g − 2 prompted reexamination not only of hadronic but also of QED contributions.
While checking the previous calculation once again, we found that the α4 contribution to the lepton g − 2 from
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a gauge-invariant set of 18 Feynman diagrams containing a light-by-light scattering subdiagram internally suffered
from a programming error. Correction of this error changes the coefficient of (α/π)4 in equation (36) from 126.07
(41) to about 132.23 (which is not yet final). Similarly, the value of A

(num)
8 of equation (31) changes from −1.5098

(384) to about −1.7363 (which is not yet final). This also affects the value of ae(th) given in equation (32). This
correction has a negligible effect on the comparison of experiment and theory of muon g − 2 but affects the α4 term
of the electron g − 2 by about 16%. As a consequence it changes the value of the fine structure constant (45) obtained
from theory and measurement of the electron g − 2 to

α−1(ae) = 137.035 998 80 (2) (50)

= 137.035 998 80 (50) [3.7 × 10−9]. (46)

Errors on the first line are due to the new α4 term and measurement of ae, respectively.
The value of α in (46) is still being improved and not final.

(c) New measurement of α by atom interferometry

The atom beam interferometry, in which the de Broglie wavelength of the cesium atom is measured, has now succeeded
in providing a very precise value of the fine structure constant

α−1(h/M) = 137.036 000 3 (10) [7.4 × 10−9], (47)

where M is the mass of a cesium atom.
This is almost as good as α(ae) and provides the most serious test of QED and the standard model thus far at

the level exceeding relative precision of 10−8.
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Appendix A. Communications with Sirlin

A.1. Sirlin to Kinoshita, 10 November 2000

Dear Tom,

I would like to thank you very much for coming to the symposium and for your interesting
talk. It was also very nice to meet your wife and you after some time! (Although I saw you at
the Yang Symposium last year).

Concerning your talk, Massimo Porrati gave me your transparencies and I noted some
discrepancies in the citations to our papers. The problem is that we wrote a number of papers
and letters and it is easy to confuse one with the other. Here are my observations:

(i), (ii) (Errors in the transparencies corrected here.)
(iii) At the time we corrected our results, I did another check on the cancellation of

mass singularities. I took the corrections for muon decay for scalar, pseudoscalar and tensor
interactions (which we had from the earlier paper [7]), and checked that, once the real photon
contribution was corrected, the mass singularity cancels in the integrated spectrum, as well as
the integrated asymmetry. So, from the fact that the cancellation occurs for the five interactions
in muon decay and for the V-A interaction in beta decay, we had at the time a very strong
indication that this was associated with a powerful theorem, although the proof in the general
case had to wait for your subsequent analysis in [20].

(iv) Although it is true that we failed to appreciate the significance of Feynman’s footnote
13, I think that on the particular issue of summing over polarizations and matching the infrared
divergences Feynman was peculiarly unclear. For example, there is a short book by him,
called ‘Quantum Electrodynamics’ (Benjamin/Cummings, 1961), which essentially contains
the material of his 1953 Caltech lectures. On pages 150-151, he discusses the cancellation of
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infrared divergences between virtual and real soft photons in the case of electron scattering by
an external potential, and he only includes the ln(Km/λmin) term from the inner bremsstrahlung.
It seems clear that he only considered the two transverse directions of polarization in this case
and made the same type of incorrect approximations in the bremsstrahlung integrals as we did
in [8].

Incidentally, in 1952 Daniel Amati and I were students in a memorable course in quantum
mechanics that Feynman gave in Brazil. At the end of the course, we asked his guidance about
QED and he sent several copies of his Caltech lectures. While I waited in Argentina to go to
UCLA, I read those notes. It is rather strange that he did not correct his notes or discuss this
issue in greater detail.

(v) While I was a post-doc at Columbia, I received a letter from Feynman, dated 7 March
1958, which I have kept. The letter was about two issues.

(a) It turns out that we had briefly met at some conference and found out that we were
worried about the same problem, namely the fact that experimentalists had failed to find the
decay π → e + ν̄, and that the upper bound in the branching ratio was <1/105, i.e. a factor
12 lower than the theoretical prediction of the V-A theory! I told him that I was considering
a modification of the theory with the e and ν coming out at different spacetime points, which
would occur, for instance, if there were a heavy intermediate particle propagating between the
two. In the modern context, this will be the case if leptoquarks actually exist. But of course
the concept of quark and leptoquark had not been proposed at the time. Feynman told me that
he had a different idea: assuming that the self-energy of the electron is purely electromagnetic,
he claimed that the most natural result for the branching ratio was about 3.5 × 10−5. This
still disagreed with experiment, but there was a factor 4 decrease in the predicted branching
ratio. I thought that my approach was extremely speculative, but I did not see any way out
(assuming, of course, that the experiments were correct). I wrote to T D Lee, who was on
leave at Princeton, and he advised me to write a short paper, which I published in Phys. Rev.
1958 111 337. I sent a copy to Feynman, who replied in the letter of 7 March 1958. He
thanked me for the paper and again mentioned his approach leading to the 3 × 10−5 branching
ratio. He also added ‘Maybe experiment is wrong’.

(b) In the second paragraph he wrote that his student Sam Berman had found an error
in the correction to the ρ-value that Behrends, Finkelstein and I had published. He added
that the correction of this error raises ρ by about 0.01 (this is consistent with the conclusions
in our paper [9], and the new Rosenson’s value became 0.68 ± 0.05. He also added that he
had not seen Crowe’s data. If my memory is right, after the Berman correction, Crowe’s
value was 0.68 ± 0.02. In any case, it is clear that at the moment Feynman was focusing,
like us, on the corrections to the spectrum. In some sense, we were fortunate because the
corrections to the lifetime became important soon afterwards (after the implications of the
conserved-vector-current paper of Feynman and Gell-Mann became clear), and roughly by
that time our results were corrected.

(vi) After we received the Berman paper and corrected our results, I wrote back to
Feynman (on 29 April) that Berman’s point concerning the need to include all degrees of
polarization associated with a ‘massive photon’ was correct, but we did not agree with
the second error he had mentioned, since it violated the theorem on cancellation of mass
singularities. Of course, at the time we had only a heuristic argument for such cancellation,
rather than your general argument, but the cancellations were so striking that, I think, both of
us were convinced that there was an underlying theorem. I did not keep a copy of my letter
to Feynman (in those days there were mimeographs rather than Xerox machines), but I do
have a copy of a letter that Berman sent to me, dated 6 May 1958. In the letter he said that,
after reading my letter of 29 April to Feynman, he rechecked his results and found complete
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agreement. He also said that, in preparing the preprint, a copying error was made, resulting
in the spurious term with the mass singularity. Then he thanked me for informing him of
this error, ‘which otherwise might have gone unnoticed’. Some time later, Berman passed
through New York and asked me: what is this theorem you are talking about? If I remember
correctly, I told him that at the time we did not have a general proof, but surely it was a
theorem! In 1961, Berman and I overlapped at CERN, became good friends, and wrote a
nice paper on a number of subtle points concerning the radiative corrections to muon and beta
decays.

(vii) Sometimes I wonder what would have happened if we had not made the error.
Would we have noticed the cancellation of mass singularities in integrated quantities, and
consequently convinced ourselves of the existence of an underlying theorem, or would we
have missed this most interesting point? Because the cancellations are so striking, I think
that we would have found it, but I am not certain. Feynman, with all his genius, missed it,
perhaps because of the copying error! In any case, I often mention this famous error to my
students, and tell them: ‘If you are going to make a mistake, make a good one and discover a
theorem!’

Please, give my best regards to your wife and to Professor Salpeter.
All the best,
Alberto

A.2. Kinoshita to Sirlin, 13 November 2000

Dear Alberto,

Thanks for your informative e-mail. As you might imagine, I put together the material
of my talk in a hurry and failed to detect errors in citing our papers. If there is going to be a
proceeding of the symposium (which I strongly hope is the case), these errors will certainly
be corrected. As a matter of fact, your e-mail contains information which will be of interest to
readers and historians. If you are not going to write it by yourself, do you think it a good idea
to attach it to my article as an appendix? By the way, I remember vaguely that you referred
to my mass singularity paper in your paper on the renormalization group equation, but I have
not found the reference. Could you give me the proper reference ? I could then include it in
the proceedings.

I am impressed that you keep some letters in your file. I am rather bad in keeping letters.
I have one letter from Feynman written on a scratch paper, suggesting that I should write
the paper by myself. It is somewhere in my file, but I have not yet located it. I also have
Feynman’s original two sheet calculation in my cabinet, but do not know exactly where it
actually is.

Please send my best regard to your wife.
Tom

A.3. Sirlin to Kinoshita, 20 November 2000

Dear Tom,

Thank you very much for your message. Sorry for my delay in answering: I have
been sort of ‘swamped’ by urgent departmental matters and classes. My paper on the
renormalization group equation, which is rather pedagogical and is based on considerations
of mass singularities, is ‘Mass divergences and Callan-Symanzik equations in quantum
electrodynamics’ [21].

(Several sentences are omitted here.)
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The idea of appending some of the information in my e-mail as an appendix to your article
is fine with me and may be of some historical interest. As I mentioned, in case anybody is
interested, I kept the Feynman and Berman letters I referred to. What I did not keep, and this
is a pity, is a copy of my reply to Feynman, in which I stated that Berman’s additional term
had to be wrong since it violated the cancellation of mass singularities in the corrections to
the lifetime, although, of course, the understanding of this, in the general case, had to wait for
your later work!

All the best,
Alberto
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[38] Krüger E et al 1999 Metrologia 36 147
[39] Liu W et al 1999 Phys. Rev. Lett. 82 711
[40] Udem Th et al 1999 Phys. Rev. Lett. 82 3568
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