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Prediction of transport properties for Lennard-Jones fluids and their 
binary mixtures using the effective-diameter hard-sphere kinetic theory 

By R. CASTILLO, A. VILLAVERDE and J. OROZCO 

Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P.O. Box 20-364, 
01000 Mexico, DF. Mexico 

(Received 8 May 1991; accepted 12 June 1991) 

We present a critical appraisal of the ability of effective diameter hard sphere 
theory to predict thermal conductivities and shear and bulk viscosities of fluids 
interacting through the Lennard-Jones potential. This method relies on the use 
of the kinetic theory of hard spheres and on state dependent effective diameters 
given by the equilibrium liquid state theory. Predictions using this method are 
compared with molecular dynamics data given by several authors for pure fluids 
in many states (65 states for the thermal conductivity, 105 for the shear viscosity, 
and 45 for the bulk viscosity). In the dense regime, this procedure makes pre- 
dictions with an average global deviation of 37% for the shear viscosity, 32% for 
the bulk viscosity, and 10% for the thermal conductivity when a variational 
scheme is used to give the effective hard sphere diameters. In specific regions of 
the phase diagram, however, the predictions are much better. All other schemes 
give worse results, although shear viscosity in certain regions of the phase 
diagram (for this case we include the low density regions), is better predicted by 
one of the perturbative methods. For mixtures, we extend the effective diameter 
hard sphere theory to binary systems with the standard hard sphere cross 
interaction. In addition, we calculate the transport properties of mixtures using 
the equivalent one-fluid approximation. Comparisons are also made with mol- 
ecular dynamics calculations previously reported in 10 states for mixtures. Our 
results are satisfactory, mainly when the one-fluid approximation is used. 

1. Introduction 
The Lennard-Jones (L J) fluid has been studied by several authors, most of them 

quite recently, in order to obtain accurate estimates of transport properties (TPs) 
using molecular dynamics (MD) calculations [1-18]. Although the LJ model is known 
to be inaccurate as a representation of the actual intermolecular potential for inert 
gases, it is sufficiently close to reality to provide a convenient starting point for dealing 
with actual fluids. In contrast, the problem of developing a kinetic theory for LJ fluids 
and their mixtures has not been solved, in particular for the dense regime, although 
several approximate approaches have been developed with some success [19-30]. Here 
we will show how a procedure relying on the kinetic theory of hard spheres, combined 
with a prescription to obtain effective state-dependent hard-sphere diameters given in 
terms of the parameters associated with the LJ potential, can give good estimates both 
for shear and bulk viscosities as well as for thermal conductivities of LJ fluids and 
their mixtures over wide ranges of density and temperature. This approach has been 
used successfully to predict TPs of actual pure fluids [19, 24, 27, 29, 30] and their 
mixtures [25-30]. The diffusion coefficient is not discussed in this paper since kinetic 
theory for LJ mixtures has fundamental problems not yet solved, but we will discuss 
this issue in a forthcoming paper. 
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1316 R. Castillo et al. 

The approach, which is not really new, has been suggested by other researchers in 
order to model actual fluids. Examples include the work of Enskog through the so 
called modified Enskog theory [31] quite recently generalized to mixtures [32], the 
semiempirical curve fitting approach of Dymond for pure fluids [33, 34] and the 
procedure based on prescriptions coming from the equilibrium liquid state theory to 
obtain state dependent effective diameters [19, 24-30]. The underlying assumptions in 
all these procedures are quite similar. (1) The particles in the fluid can be modelled 
by the LJ potential. (2) In the high density regime, the dynamics of the fluid is mainly 
determined by the repulsive part of the interaction potential. Hard sphere expressions 
for TPs can thus give confident results if some way to obtain state dependent effective 
diameters is used in order to reflect the somewhat soft repulsive part of the model 
potential. Although much work has been done to determine if this type of procedure 
is appropriate, it has not been subjected to a stringent test. Such tests can now be 
performed since enough MD data have appeared recently [8-18]. 

The main purpose of this paper is to show the usefulness of the procedure just 
mentioned to predict TPs of LJ fluids and their binary mixtures. The principal 
questions are: Which of the prescriptions to obtain state dependent diameters is best 
suited to predict TPs of LJ fluids? In what region of the phase diagram of the pure 
fluid does our procedure give better results? Can we extend this procedure to mixtures 
with some confidence, and is it better to handle these as mixtures or as equivalent 
one-fluid systems? 

The paper is organized as follows. In section 2 we review the procedure to obtain 
transport coefficients through hard sphere kinetic theory where the diameters are 
evaluated according to some prescription. In section 3 we comment on the MD data 
used, and in section 4 the numerical results are presented and compared with the MD 
data. Here a critical discussion is also presented. Finally, in section 5 we make some 
concluding remarks. 

2. Theory 

2.1. Introductory remarks 

Until now, there has been no formal kinetic theory to handle TPs of LJ fluids and 
their mixtures, and the few attempts to predict thermal conductivities (2), shear (q) 
and bulk (•) viscosities of these systems from rigorous, fundamental molecular 
theories have proven that the problem is very difficult [19-23, 35]. One line of 
approach, albeit approximate, to treat pure fluids has employed kinetic variational 
theories (KVTs) and kinetic reference theories (KRTs), both of which use model 
potentials given by a hard sphere core and a soft attractive tail. For the TPs, KVT 
(hard core plus an attractive tail [19, 20]) and KVTI (hard core plus an attractive tail 
in the Kac limit [35]) give the same results as Enskog theory [31]. KVTII and KVTIII 
also can generate the same expressions as Enskog theory, with the provision, however, 
that the reference hard sphere structure be replaced by the structure of the real system 
[20-22, 24], except for the case of bulk viscosity [36]. The transport coefficients of 
KRT versions are the same as in the Enskog equations, but corrected by density 
dependence factors obtained from MD [37-39] (for details see [19-24]). 

For mixtures, the problem of obtaining TPs is not as developed as for pure fluids. 
On the one hand, KVTII presents several unsolved problems [23, 26] and KVTIII has 
not even been explored; on the other hand, KVTI does give TPs of interest here, as 
does the revised Enskog theory (RET). There is no analogue of Dymond's correction 
in mixtures, however, and hence there are no KRT versions for mixtures. 
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Transport properties for LJ fluids and their binary mixtures 1317 

2.2. Explicit formulae for the TPs 
We will frame the discussion in terms of  the most simplified theory, since for the 

TPs of interest here the more sophisticated of the above-mentioned theories will make 
little difference. Our starting point will be the set of coupled nonlinear integro- 
differential equations for the hard sphere single particle distribution function given in 
RET, first derived by van Beijeren and Ernst [40]. Here the two hard sphere radial 
distribution functions are the same functionals of the number densities as the radial 
distribution function of a mixture in nonuniform equilibrium. The RET equations can 
be solved by use of the Chapman-Enskog method. The molecular fluxes and the 
transport coefficients for dense hard-sphere mixtures, up to the Navier-Stokes level, 
can be directly obtained on the basis of  the procedure used in [41]. Here we only 
present the final expressions to obtain the TPs. The expressions for pure fluids are: 

1 
~/ = ~ [1 + 4(2/~no'3)~ e) q- 0.7615(]~na3x~)2]~/0, (1 a) 

ir = l.O02(~rcna3)~r162 , (1 b) 

2 = 1 [1 + 6(~nna~(~) + 0.7575(~n~r3~(~)~]~0, (1 e) 

where 

5k 
q0 - 16~a2 (nmkT) j/2, (1 d) 

2 o -  75k /~kT\\/[s~-z-} 1/~. (le) 
6 4 ~  z 

In these expressions, n is the number density, o- the hard sphere diameter, m the mass 
of the particle, X c the pair distribution at contact, T the absolute temperature, and k 
Boltzmann's constant. The expressions for binary mixtures are: 

rl = ~ 1 + pbijMjiz - kTb~o ~ 
i = l  "= n 

4 ~, ~ (21tmimjkT~ 1/2 
+ 1-5 ~=1 j=l \ ~ ~ ~j. / n~nja~Z~, (2a) 

-~4 ~ ~ (27tm'mjkT'] m \  -~ -~ -~j / ( ) = n~nja4X~ + 2kT ~ n~ ~ pbijMjiz ~ h~O, (2b) 
i = l j = l  i=1  n j = l  

- 4n ni 1 + T PbijMijMi'z~ a~ 0 - ,td(k~i.l -- di!~))d~ h 
i=1  "= k = l  

( "] ninjaiJZ~ (2c) 4 ' ~  

+ k \ ,, m, + m /  i=1  j = l  

Here pb U = 2/3nnjcr~, M~j = m~/(m~ + ms), where m; is the mass of the hard sphere 
of diameter a~, ni the number density of component i, and X~ the pair distribution 
function at contact, a] ~ b(j ), d~] ~ and h~ ~) are the coefficients that appear in the Sonine 
polynomial expansion of the one-particle distribution function, in the so called Nth 
Enskog approximation, i.e., when the first N - 1 Sonine polynomials are taken into 
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1318 R. Castillo et al. 

account in the expansion. The al i~, t,(;) ,r and hl ~ are determined from a set of linear u 0  ~ t~i ,  1 

equations (for details see [41]). Here we have used up to the 10th Enskog approximation. 
Evaluation of (1) and (2) requires knowledge of  X c. We use the approximate 

expression of Carnahan and Starling for pure fluids and its generalization for the 
binary mixture [42], since it appears to be quite accurate when compared to molecular 
dynamics data. 

MD calculations have proven that Enskog's expressions for a pure fluid are not 
exact, since these do not take into account velocity correlations in the dense regime. 
Multiplicative correction factors to the Enskog expressions have been given by 
Dymond [37] (Dymond's correction) for shear viscosity and thermal conductivity, 
although for the case of  shear viscosity, van der Gulik and Trappeniers [38] have 
further modified these expressions on the basis of computations reported by Michels 
and Trappeniers [43]. For  bulk viscosity we use the correction given by Heyes [39]. 
The correction factors are 

C, = 1"02 + 10"61 (n* - 0.495) 3 

+247.49 (n* - 0.813) 3, n* > 0.813, 

= 1.02 + 10.61 (n* - 0.495) 3 , 0.593 > n* > 0.813, 

= 1-02, 0.593 > n*, (3a) 

C~ = 0.9881 + 0.2710n* - 1.8394n .2 

+ 4"1881n .3 - 2.5960n .4, 0.8839 > n* 

= 1.0982 - 8.4584 (n* - 0.8839), n* > 0.8839, (3b) 

(7;. = 0.99 + 0.1597n* - 0.7464n .2 + 1.2115n .3 - 0.5583n .4. (3c) 

In all the above equations n* = n o  3 . 

2.3. Effective diameters 

To obtain the molecular and collisional contribution for the TPs given in (1) - (3 ) ,  
we need a prescription for a state dependent hard sphere diameter in terms of  the 
parameters associated with the LJ potential. 

Effective diameters can be obtained by several schemes well established in equilib- 
rium liquid state theory for the case of pure fluids. Here expansions of the properties 
of the system around some reference system are made, and after truncation to the first 
few terms (given by some appropriate mathematical technique), expressions i~ terms 
of  a hard sphere fluid of  effective diameter a (na 3, kT/eo) are obtained, cr 0 and % are 
the LJ parameters. The most widely used schemes coming from a first order per- 
turbation theory are those given by Barker and Henderson [44] (BH), by Weeks, 
Chandler and Andersen [45] (WCA), and by Verlet and Weiss [46] (VW). The latter 
is a corrected version of the WCA scheme. Quite recently, a new algorithm for 
calculating the effective hard sphere diameter in the WCA scheme was given by Song 
and Mason [47] (SM). Of the schemes coming from a variational theory, we have 
those by Mansoori  and Canfield [48], and Rasaiah and Stell [49] (MC/RS). All these 
techniques give a hard sphere diameter that depends on both temperature and density, 
except that the method given by BH is temperature dependent only. For  our cal- 
culations in pure fluids, we follow the explicit procedures given in [46] and [49]. 
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Transport properties for LJ  fluids and their binary mixtures 1319 

While successful attempts to predict equilibrium thermodynamic properties for 
pure fluids have been made by methods using hard sphere diameters, the theory for 
mixtures needs improvement. One difficulty has been the lack of a satisfactory way 
to define mixture rules for the cross interaction in the model potential (L J). Hence we 
implement here two approaches in order to deal with TPs of binary mixtures. In the 
first, we calculate the TPs of the binary mixture by defining an equivalent one-fluid 
system with the following mixture rule for the equivalent one-fluid interaction 
parameters: 

2 2 
3 3 3 ax = Y. a~x~xj, Sxax = 2 au~ux~xj. (4) 

i , j  i , j  

We, therefore, assume that the TPs of the binary mixture can be equated to those of 
the equivalent one-fluid, and the equivalent one-fluid TPs can be evaluated as in the 
pure fluid case, just described above. 

In the second approach to binary mixtures, the diameter of each component a, in 
the mixture is calculated independently, that is, by considering each component in the 
mixture as a pure fluid at the temperature T, the temperature of the mixture, and at 
the number density n~, the number density of component i in the mixture. This 
corresponds to the simplest approximation in the first order perturbation theory of 
mixtures [50]. Explicit calculations are done according to [46] and [49]. For the cross 
interaction, we assume it to be that of a hard sphere mixture in order to be consistent 
with this approach, namely, 

~2  = �89 + ~22) (5) 

3. The molecular dynamics sources 

3.1. Pure fluids 

As a source of MD data, we use the TPs given in [I-18], which were obtained from 
computer simulation experiments. In these references we can see that earlier works 
were devoted to the study of the states in the immediate neighbourhood of the triple 
point, through the use of the Green-Kubo formalism. After this period, the non- 
equilibrium molecular dynamical (NEMD) method was developed, and around the 
mid-eighties we can see MD data using both techniques in several regions of the LJ 
phase diagram. Only in the last two years, though, have consistent sets of MD data 
appeared, mainly those given by Hoheisel and his collaborators. 

One problem with using MD data to test theory is the reliability of the exper- 
imental data. In most cases the authors estimate their error at around 5-10%, 
although in a few instances they do not give this information. There are substantial 
differences, however. In particular, results coming from the NEMD method devised 
by Heyes lie systematically below the Green-Kubo MD data, probably because this 
method does not correctly account for the fluxes. For this reason we include only few 
points from this author. In addition, several sources of systematic error have not been 
properly evaluated, although there is some consensus that they affect the MD values 
by only a few per cent, as is the case for contributions due to the truncated LJ and 
to the long tails. A discussion related to these points can be found for the case of shear 
viscosity in [14]. 

In order to make our comparisons for the thermal conductivity, we use 65 states, 
coming mainly from [15] and [16], all of these in the dense regime. For the case of 
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1320 R. Castillo et al. 

shear viscosity we use 105 states, 36 in the dilute regime, i.e. below the critical density, 
and the remainder states are in the dense regime; the data are mainly from [9] and [16]. 
For the bulk viscosity we use 45 states, all in the dense regime, from [16]. 

3.2. Binary mixtures  

A natural extension of the present investigation to binary fluids is quite difficult 
because of  the scarce MD data for TPs in binary LJ fluids. The first extensive MD 
work, as far as we know, addressing this problem has been done by Vogelsang and 
Hoheisel [17] using the Green-Kubo method. MacGowan and Evans [18] used 
nonequilibrium molecular dynamics to evaluate TPs, but in one thermodynamic state 
only. We will compare our calculation with the former. In that work the authors argue 
that their MD results have an estimated error of the order of 5% for q and x, and 1% 
for 2. 

Here we must comment on the thermal conductivity. Diffusion and heat con- 
duction in a fluid mixture become inextricably coupled. In a uniform mixture, as time 
progress over the course of an experimental determination, concentration gradients 
appear in the mixture and they themselves provide driving forces for opposing fluxes. 
Eventually, in a steady state, thermal diffusive flux is exactly balanced by this back 
diffusive flux, so that there is no net molecular flow. To stress this fact, experimentalists 
define two 2 coefficients. The first one, 20, is the thermal conductivity of a uniform 
mixture (no concentration gradients), while the second, 2| is the thermal conduc- 
tivity corresponding to a fluid in the steady state (no mass fluxes). The work of 
Vogelsang and Hoheisel [17] does not mention what kind of 2 was obtained within 
their MD experiments. Hence since many accurate experiments actually measure 2o0, 
we decided to calculate this quality. The formal definition of 2o0 for a binary mixture 
is given by 

= 2o0aT/Or Jl = 0, (6) 

where j,. is the mass flux of component i, and 2~o is given by expression (2 c) In any case, 
if in [17] they do not evaluate this coefficient the error would amount only to a few 
percent. 

4. Results and discussion 

4.1. Pure fluids 

The different prescriptions for obtaining effective diameters and the procedure for 
calculating TPs, given in section 2, enable us to evaluate the coefficients under 
discussion, and several comparisons between our results and the MD data have been 
made. Our results using the variational method (MC/RS) to obtain the effective 
diameters, using the heading EDHST, the thermodynamic states, the MD results of 
several authors, and the percent deviations between our calculations and MD data 
(63 = [(~EHST _ ~DM)/~OM] • 100) appear in tables 1 to 4. There, too, the percent 
deviations of our calculations using only one of the perturbative methods (VW) are 
tabulated. 

In table 5, the root mean square of the percent deviations (6RMS = [(l/N) Z 6~211/2) for 
the schemes studied in this work are presented. This table gives a global idea about 
the capability of the EDHST for predicting TPs of pure fluids. In addition, deviations 
between our calculations using the MC/RS and the VW schemes are given in 
figures 1-4. 
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Transport properties for LJ fluids and their binary mixtures 1321 

Table 1. Comparison between thermal conductivities obtained with MD and with EDHST 

n* T* MD Reference EDHST 6Mc/rts 6vw 

0'650 1'270 3'720 [13] 4'061 9-170 25'610 
0'650 1-588 4.140 [15] 4'288 3'574 20"215 
0"650 1"851 4-460 [15] 4"455 -0 .119 16"525 
0'650 3'564 5'300 [15] 5"346 0.859 19"172 
0'715 0'940 5-010 [13] 4"806 -4"074 11'837 
0"750 1"008 4'720 [15] 5'541 17.402 39"852 
0"750 1"330 5.640 [15] 5-810 3'010 24.557 
0'750 2'017 6"060 [15] 6'292 3-828 27'037 
0'750 2"913 7.020 [15] 6"854 - 2 ' 3 6 7  19"494 
0'781 0'664 5'880 [16] 5"555 - 5'528 16"453 
0'781 0"854 5"460 [16] 6'064 11"060 24-859 
0'781 0'848 5'806 [16] 6'058 4.336 32"979 
0'781 1'038 6'422 [16] 6'237 -2"881 17'907 
0"781 1-098 5.753 [16] 6"289 9"310 33"162 
0'781 1'193 5'992 [16] 6"367 6'260 30-037 
0'781 1'329 6"000 [16] 6'474 7"905 32"711 
0"781 1"515 6-550 [16] 6'614 0"983 24"771 
0'781 1'632 6'507 [16] 6"700 2'964 27-460 
0'781 1"850 6.800 [16] 6-855 0"815 25'055 
0"781 2"130 6'359 [16] 7'050 10"868 37'614 
0'781 2.295 6'130 [16] 7'163 16'847 44"989 
0'781 2"715 6"380 [16] 7"444 16'675 44'452 
0-842 0"674 6'391 [16] 7'233 13"168 42'029 
0'842 0'761 6'917 [16] 7'553 9"198 34"421 
0'842 0"820 6"125 [16] 7"607 24'192 53"952 
0"842 0"839 7-986 [16] 7'623 -4 .540  18'574 
0'842 0'852 7.140 [16] 7'635 6'929 32"996 
0"842 0"997 7"853 [16] 7"755 - 1.242 24'301 
0"842 1"023 6'508 [16] 7'776 19"491 50'643 
0'842 1'172 6.959 [16] 7"895 13.448 44"067 
0'842 1"306 7"374 [16] 8"000 8'491 38'325 
0-842 1-492 7'916 [16] 8"146 2"908 31'571 
0'842 1'697 7'470 [16] 8'308 11.219 42"265 
0"842 1"876 8"230 [16] 8.447 2'641 31-199 
0"842 2"054 7.799 [16] 8'566 9'839 40'500 
0"842 2"218 7'709 [16] 8'672 12"490 43'969 
0'842 2"398 7-895 [16] 8"784 11'256 42'468 
0-842 2"484 7'714 [16] 8'836 14"541 46'715 
0'844 0'715 7'100 [12] 7"513 5'818 30"563 
0'844 0"730 6"760 [13] 7"582 12'165 37-688 
0"844 0'733 7'100 [12] 7'585 6"834 31'199 
0'850 0'745 7'660 [15] 7'774 1'494 25"369 
0"850 0"908 7"180 [15] 7"914 10'218 38'579 
0"850 1'033 7.340 [15] 8'014 9-179 38'494 
0'850 1'318 8'030 [15] 8'238 2'589 31"501 
0"850 1"503 8"190 [15] 8-384 2'374 31'514 
0'850 1'976 8.080 [15] 8'734 8"092 38'991 
0'850 2-905 8'460 [15] 9"295 9'865 41'714 
0-884 0'673 7"156 [16] 8-660 21.012 54'144 
0'884 0'831 6'938 [16] 8'917 28"522 64'590 
0'884 0"879 8'039 [16] 8"951 11'343 43'259 
0"884 0"959 8"000 [16] 9"008 12'602 45'791 
0"884 1 '008 8' 129 [16] 9"044 11'255 44"483 
0"884 1'053 8'969 [16] 9'077 1"207 31'739 
0'884 1"179 8'469 [16] 9'173 8"318 41'629 
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1322 R. Cas t i l lo  et al. 

Table 1 (continued). 

n* T* M D  Reference E D H S T  6MC/RS 6VW 

0.884 1.205 7.847 [16] 9.194 17-163 53.289 
0.884 1'334 8.618 [16] 9-293 7.831 41.405 
0.884 1.376 9.065 [16] 9"323 2.843 34"961 
0.884 1-517 9.123 [16] 9.421 3.268 35.762 
0.884 1.725 9.400 [16] 9.562 1.719 33'925 
0.884 1.821 8.810 [16] 9.625 9.246 34.895 
0.884 1'985 8.746 [16] 9.730 11.246 46.603 
0.884 2.217 9"054 [16] 9"873 9.043 43.776 
0"884 2.537 8.921 [16] 10.061 12.778 48.812 
0.962 2.725 11.800 [12] 12.756 8.105 51.644 

Table 2. Comparison between shear viscosity obtained with M D  and with EDHST,  at low 
densities. 

n* T* M D  Reference E D H S T  3MC/R S 3VW 

0"050 1"300 0'157 [9] 0"231 47'324 32"462 
0"050 1"499 0"185 [9] 0"252 36'199 22-001 
0"050 2"000 0"240 [9] 0"301 25"492 11" 120 
0'050 3"000 0"320 [9] 0"392 22'416 5"517 
0'050 5"000 0"465 [9] 0"560 20"439 - 2"406 
0'050 10"000 0"721 [9] 0'950 31"734 -6"910  
0"100 1"300 0"179 [9] 0'238 33"066 22'213 
0" 100 1 '499 0"208 [9] 0'259 24"451 13"986 
0"100 2'000 0'270 [9] 0'308 14-100 3'467 
0"100 3'000 0'339 [9] 0'399 17"588 3"943 
0"100 5'000 0'485 [9] 0"565 16"487 -2"754  
0"100 10'000 0'746 [9] 0'939 25'868 - 6'871 
0"150 1'300 0'217 [9] 0'250 15'207 8.441 
0" 150 1 '499 0.244 [9] 0'272 11'339 4-299 
0'150 2"000 0'313 [9] 0'322 2'828 -4"612  
0' 150 3"000 0"383 [9] 0"412 7"677 - 2"245 
0'150 5"000 0"534 [9] 0"577 8'010 -6"743  
0" 150 10"000 0"797 [9] 0"937 17"567 - 8"527 
0"200 1'316 0'258 [9] 0'271 4"911 0"950 
0"200 1 '499 0'284 [9] 0'290 2"237 -- 1 '739 
0"200 2'000 0'352 [9] 0'342 - 2"979 - 7'925 
0"200 3'000 0'435 [9] 0'434 - 0'217 - 6'888 
0'200 5"000 0'572 [9] 0'596 4'276 - 6.604 
0'200 10"000 0'854 [9] 0'946 10'757 - 9 ' 1 7 2  
0'250 1'300 0"300 [9] 0"294 - 1"909 - 3" 160 
0'250 1'499 0"317 [9] 0"317 - 0 ' 0 2 2  - 1'506 
0"250 2'000 0-387 [9] 0"370 - 4'372 - 6"548 
0'250 3'000 0"475 [9] 0"464 - 2'404 - 6" 148 
0"250 5"000 0"610 [9] 0"626 2'620 -4"594  
0"250 10'000 0'901 [9] 0-966 7'164 - 7 - 1 5 8  
0-300 1'300 0'351 [9] 0"328 - 6'622 - 5"339 
0'300 1"499 0'383 [9] 0'352 - 7"999 - 7-127 
0'300 2"000 0'447 [9] 0'406 -9"061 -8"551 
0'300 3"000 0'528 [9] 0'502 - 4"930 - 5'588 
0'300 5'000 0"700 [9] 0'664 - 5"090 - 8' 122 
0"300 10'000 0"983 [9] 0'998 1"529 - 7'050 
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Transport properties for LJ fluids and their binary mixtures 1323 

Table 3. Comparison between shear viscosity obtained with M D  and with EDHST,  at high 
densities. 

n* T* M D  Reference EDHST 6MC/RS ~vw 

0'401 2"470 0'500 [8] 0'566 13'189 19-627 
0"500 3"460 0-710 [8] 0"832 17"140 30"736 
0"600 1-280 0-860 [8] 0"835 - 2"948 10-703 
0'625 1-162 0-660 [2] 0'896 35'707 55"731 
0-625 1 '200 0'830 [8] 0"909 8"742 24'970 
0'720 1"000 1.310 [8] 1'291 - 1'425 16"981 
0.720 1'000 1'250 [6] 1'291 3'307 22'596 
0'731 1"005 1.420 [2] 1-358 - 4 ' 3 4 7  14'167 
0.731 1'050 1'340 [6] 1.368 2"098 13"696 
0'731 1-050 1"440 [8] 1'368 - 4 ' 9 9 2  22'181 
0"749 2"560 1'450 [8] 1'687 16"345 44'526 
0"781 0"664 2-037 [16] 1 "547 - 24-049 - 5-259 
0.781 0"848 1'960 [16] 1'689 - 14"129 9"623 
0'781 0"854 1-860 [16] 1'685 - 9 ' 4 0 6  3-879 
0-781 1-038 1'915 [16] 1"725 -9"901 10'694 
0.781 1"098 1'783 [16] 1'737 - 2 . 5 6 8  20"168 
0.781 1"199 1"639 [16] 1'755 7'079 32"769 
0.781 1"329 1'694 [16] 1'780 5"049 31'019 
0'781 1"515 1'771 [16] 1"812 2'316 28'309 
0'781 1'632 1.794 [16] 1'839 2.156 28'360 
0'781 1-850 1-694 [16] 1'869 10'336 39"035 
0.781 2"130 1'583 [16] 1"916 21"057 52"676 
0'781 2-295 1-628 [16] 1'949 19'344 50-552 
0.781 2"715 1'738 [16] 2'012 15'754 45'734 
0'801 0-937 2"030 [2] 1"881 - 7"345 14'371 
0.801 0-940 1"980 [8] 1"882 -4"955 17-329 
0-801 1"900 1'900 [8] 2"059 8'371 37"886 
0'842 0-674 2'845 [16] 2"196 -22"817 - 2 ' 0 7 5  
0.842 0"761 2'812 [16] 2"291 - 18'516 1'322 
0"842 0.820 2.591 [16] 2'304 - 11"072 11"405 
0"842 0"839 2"978 [16] 2'307 - 22'529 - 2"696 
0'842 0-852 2-646 [16] 2'310 - 12-697 9"796 
0'842 0"997 2.701 [16] 2'339 - 13"418 10"302 
0.842 1"029 2'602 [16] 2-344 - 9 ' 9 3 5  14'951 
0"842 1-172 2-469 [16] 2"371 -3 -967  23"605 
0"842 1-306 2.391 [16] 2'397 0'236 29"614 
0"842 1"492 2'502 [16] 2'439 - 2'755 26" 170 
0"842 1-697 2-292 [16] 2"479 7'916 40"193 
0"842 1"876 2.248 [16] 2"510 11"648 44"948 
0.842 2.054 2'203 [16] 2'539 15.269 49.830 
0'842 2-218 2'292 [16] 2"566 11'952 45.642 
0"842 2-398 2'115 [16] 2"594 22"624 59"703 
0'842 2.484 2"314 [16] 2'606 12'632 46-769 
0-844 0-722 3-345 [14] 2"301 -31"205 - 14.545 
0.844 0"730 3"030 [6] 2'310 -23-761 -5"472 
0'844 0-730 3"190 [8] 2'310 - 2 7 ' 5 8 5  - 10"213 
0.844 0"730 3'189 [15] 2'310 -27"562 - 10-185 
0.844 2"370 2"130 [15] 2'615 22.777 60"068 
0"859 0-680 3"650 [8] 2"362 - 3 5 ' 2 8 2  - I7-832 
0'884 0"679 3'532 [16] 2'910 - 17"598 6'017 
0"884 0-831 3"399 [16] 2'985 - 12'179 13-735 
0.884 0"879 3"598 [16] 2"999 - 16'812 8.275 
0'884 0"959 3'078 [16] 3'007 -2"310 28.016 
0"884 1.008 2-845 [16] 3'016 6'002 39-366 
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1324 R. Castillo et al. 

Table 3 (continued). 

n* T* MD Reference EDHST 6MC/RS 6VW 

0.884 1.059 3.609 [16] 3.024 - 16.220 10.449 
0.884 1.179 3.288 [16] 3.048 -7.292 22.844 
0.884 1.205 2.812 [16] 3.059 8.576 43.994 
0-884 1.334 2.768 [16] 3.079 11.226 47.945 
0.884 1.376 3.266 [16] 3.087 - 5.496 25.811 
0-884 1.517 2.558 [16] 3.112 21-666 62.338 
0.884 1.725 2.735 [16] 3.149 15.129 53.960 
0.884 1.821 2.701 [16] 3.165 17-192 56.830 
0.884 1.985 2.690 [16] 3.199 18-696 59.006 
0.884 2.217 2.491 [16] 3-231 29.719 73-952 
0.884 2.537 2.635 [16] 3.281 24-535 67.261 
0-909 4.420 2.690 [8] 4.135 53.712 113.663 
1.000 2.470 4.580 [15] 8.418 83.806 177.319 
1-040 2.510 5.370 [8] 12.529 133.306 256.811 
1.119 2.840 7.970 [8] 26.014 226.399 434.605 

Thermal conductivity, of  all the transport  properties discussed here, is the best 
predicted by EDHST.  Table 5 shows that predictions of  thermal conductivity, using 
the MC/RS scheme in the dense regime, have a 6RMS of 10'4, and table 1 shows that, 
for the most  part  of all deviations, they are in the direction of overestimation. In 
the range of  density and temperature studied (0.650 < n* < 0.962 and 0.664 < 
T* < 3.564), it is not possible to discern any special trend for the behaviour of  the 
2 deviations. I f  there is any trend, it is masked by the statistical error in the M D  
calculations. 

Calculations with the other schemes lie far above the M D  values. Calculations 
using the BH, WCA, and VW schemes behave in the same way, although the best fit 
is obtained with VW. Calculations with the SM scheme are globally better than those 
using the other perturbative methods, but with a very bad trend, i.e. underestimation 
at low temperatures and large overestimation at high temperatures. For the low 
density regime, it is not yet possible to make comparisons, since as far as we know, 
there is not enough M D  information. Some idea, though, can be obtained f rom our 
comparisons made with accurate experimental data of  argon and presented in [30]. 

For the case of shear viscosity in the low density regime, table 5 shows that 
calculations with all prescriptions give a 6RMS around 10%, except when the variation- 
al method is used. In this case the figures are around 17%. A closer view of the data 
(see table 2 and figures 1 to 4) reveals that, in the density range between 
0.2 < n* < 0.3, a better fit is obtained when the variational method is used, since the 
6RMsS are in general less than 10%. In the temperature range 1.3 < T* < 5 these 
deviations are less than 5%. I t  is at around n* = 0.2 that calculations using per- 
turbative schemes give a better fit to M D  data. Calculations using BH, VW and WCA 
prescriptions are closer to the M D  data when n* < 0.2, and with the same order of 
deviation. In general, in the range of  1 < T* < 2, deviations using perturbative 
schemes go from underestimation ( ~ 5 - 8 % )  at densities around 0.3, to over- 
estimation ( ~  20-35%) at densities around 0.05. WCA and VW almost give the same 
numbers, and the SM is the worst for this task. At high temperatures (T* ~> 5), the 
use of  perturbative prescriptions gives good results a few percent below the M D  data 
in all of  the dilute regime, probably reflecting their origin as high temperature 
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Transport properties for LJ fluids and their binary mixtures 1325 

Table  4. Compar i son  between bulk viscosity obta ined  with M D  and  with EDHST.  

n* T* M D  Reference E D H S T  6Mc/rts 3vw 

0'781 0"664 1.207 [16] 0'426 - 64"691 - 60'723 
0"781 0"854 0"985 [16] 0'473 - 51-937 - 4 7 ' 1 6 1  
0"781 0"848 0"974 [16] 0.472 - 51'495 - 46"701 
0"781 1'038 0'753 [16] 0.502 - 3 3 " 3 3 8  -25"898  
0"781 1-098 0"931 [16] 0-510 --45-237 -38"877  
0"781 1"193 0"753 [16] 0'523 - 3 0 " 5 9 3  - 2 2 . 2 3 0  
0'781 1"329 0"711 [16] 0'538 - 24"278 - 14'550 
0-781 1'515 0"689 [16] 0-559 - 18"860 - 7 " 8 6 2  
0'781 1.632 0'771 [16] 0"571 - 2 5 ' 9 5 8  - 15"606 
0'781 1"850 0"603 [16] 0.592 - 1'901 12'440 
0'781 2'130 0-692 [16] 0'616 - 10'962 2"575 
0"781 2'295 0' 531 [16] 0-629 18"444 36"945 
0"781 2'715 0'630 [16] 0-661 4-987 21"874 
0'842 0-674 1"251 [16] 0'500 - 60"032 - 55'825 
0"842 0"761 1'174 [16] 0.527 - 55'147 - 50'746 
0"842 0'820 0"897 [16] 0"538 - 39"979 - 33"747 
0"842 0'839 0-897 [16] 0-542 -- 39"540 - 33" 193 
0-842 0"852 0-930 [16] 0'544 - 4 1 " 4 7 4  - 3 5 . 2 0 3  
0'842 0"997 0"853 [16] 0'571 - 33"075 - 25'275 
0"842 1'023 0'897 [16] 0.575 - 35"919 - 28"295 
0"842 1'172 0"620 [16] 0"598 - 3 " 4 8 0  8"757 
0.842 1"306 0"830 [16] 0"618 - 2 5 ' 5 2 9  - 15"706 
0'842 1'492 0'731 [16] 0.643 - 12'077 0'082 
0'842 1'696 0"720 [16] 0'667 - 7'316 6'008 
0"842 1-876 0'642 [16] 0.688 7"164 22"876 
0"842 2"054 0"686 [16] 0-706 2"873 18"435 
0'842 2"218 0'786 [16] 0'721 - 8'212 5'972 
0'842 2.398 0'642 [16] 0'737 14'829 33'057 
0"842 2"484 0-720 [16] 0"744 3'346 20"002 
0"884 0-673 1-528 [16] 0-545 - 64-314 - 60-592 
0"884 0'831 0'908 [16] 0.586 - 3 5 " 5 0 3  - 2 8 " 3 1 0  
0'884 0'879 1.129 [16] 0'595 - 4 7 " 2 5 7  - 4 1 ' 1 6 3  
0"884 0-959 1'096 [16] 0"611 - 44.232 - 37.479 
0"884 1'008 0"963 [16] 0"621 - 35'507 - 27'583 
0'884 1"053 0"974 [16] 0"629 - 35'427 - 27.298 
0'884 1'179 0 '974 [16] 0'651 - 3 3 " 2 0 4  -24"401  
0'884 1"205 0'930 [16] 0'655 -29"621  - 2 0 ' 2 3 1  
0'884 1"334 0"819 [16] 0-675 - 17"558 - 6.240 
0"884 1'376 0"686 [16] 0"681 - 0 . 7 1 4  13"111 
0"884 1'517 0"742 [16] 0'701 - 5'554 8"035 
0'884 1.725 0'620 [16] 0"727 17.316 34'889 
0-884 1"821 0-720 [16] 0"739 2"663 18-231 
0-884 1"985 0"775 [16] 0-757 - 2-337 12-968 
0'884 2'217 0'554 [16] 0'781 41'064 63'798 
0"884 2"537 0"675 [16] 0"812 20-297 40"427 

p e r t u r b a t i v e  e x p a n s i o n s .  T h i s  d o e s  n o t  occu r ,  h o w e v e r ,  w h e n  t he  v a r i a t i o n a l  s c h e m e  

is used ,  w h e r e  o v e r e s t i m a t i o n  is t he  ru le  a t  dens i t i e s  b e l o w  0.2, b u t  is q u i t e  b e t t e r  a f t e r  

th i s  dens i t y .  T h e  f a i l u r e  o f  E D H S T  a t  l ow  dens i t i e s ,  a n d  in  p a r t i c u l a r  a t  l ow  t e m -  

p e r a t u r e s ,  n o  m a t t e r  w h i c h  p r o c e d u r e  is u s e d  to  o b t a i n  e f fec t ive  d i a m e t e r s ,  o n l y  

ref lects  the  i n a b i l i t y  o f  E D H S T  to  dea l  w i t h  f lu ids  in  t h e r m o d y n a m i c  s t a t e s  w h e r e  
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Table 5. 

R. Castillo et al. 

Global deviation (6RMS) between MD data and EDHST using different effective 
diameters. 

Low density 
MC/RS BH VW WCA SM 

t/ 17.2 9.9 9'8 9'8 12.4 

High density 
MC/RS BH VW WCA SM 

2 10.4 4l "7 37-3 48.6 29.4 
t/ 37.4 84.1 73"8 87'9 97.3 
rc 32-6 31.6 31.4 31.5 36'1 

attractive forces have an important role. The described behaviour agrees with our 
findings when experimental data are used instead of MD results [28-30]. 

For  shear viscosity in the dense regime, table 5 shows that better predictive results 
are obtained when the variational method is used to obtain effective diameters. 
Table 3 represents the deviations between our results and MD data, when MC/RS and 
VW schemes are used. A closer view of the data in this dense regime shows that, as 
the temperature increases in the range 0.8 < T* < 2.7, calculations go progressively 
from underestimating to overestimating the t/s, no matter what scheme is used. This 
is not easy to see in figure 2 for the MC/RS scheme, and in figure 4 for the VW scheme, 
since the low density data are shown there too. Calculations with BH, WCA, and VW 
schemes start from a few percent around zero and go to more than 50% above the 
MD results in this range of temperatures. Calculations with these schemes behave 
almost in the same way, although with WCA there is an additional overestimation of 
around 10% over the other two. Apparently, calculations with the SM scheme are the 
most critically dependent on the temperature, since they go from - 30% to more than 
70% of  deviation. In this range of temperature, the variational scheme is the best 
option, since calculations go from around - 15% to around 25%. In addition, from 
figure 1 it is easy to see that, with the variational scheme, deviations are centred 
around zero, while this is not true when the VW scheme is used (figure 3). Another 
general behaviour of  EDHST is that at very high densities (n* > 0.9), no matter what 
scheme is used to obtain the effective diameters, we have a very significant over- 
estimation (some of  these points are not presented in figures 1 to 4, since they are quite 
out of scale). For  the perturbative schemes, this overestimation trend begins at lesser 
densities. Again, with the variational scheme better results are obtained, although 
with a very important  overestimation (see table 3 and figures 1 to 4), This behaviour 
probably is due to the failure of the Carnahan-Starling approximation to obtain X c. 
At very high densities this quantity is less than the actual MD values, and, through 
(1 a), larger viscosity values are obtained. 

Bulk viscosity results are presented in table 4, where we tabulate the deviations 
when the MC/RS and the VW schemes are used. Table 5 shows that with all schemes 
to obtain the diameter, we have about the same predictive capability. The most 
important feature of  bulk viscosity calculations with EDHST is the failure of this 
procedure to give good results at low temperatures. In figure 5, we give the deviations 
when the variational scheme is used, irrespective of the density. They go progressively 
from an underestimation in the range of - 6 0 %  at temperatures about T* ~- 0.66, 
to an overestimation on the order of 20% at temperatures about T* -~ 2.7. Per- 
turbative schemes also show this behaviour, but they can overestimate by more than 
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30% at high temperatures. As we can see from that figure, E D H S T  using the 
variational method can predict bulk viscosities with a 20% error when the tem- 
perature is above  T* = 1.3. This is not  true for the perturbative schemes; in par- 
ticular, for the better option (i.e. the VW), this percent o f  error occurs in the 
temperature range of  1.2 < T* < 2.2 only. The use o f  the variational scheme is, 
therefore, a better option to predict bulk viscosities, mainly when the temperature is 
above  1-2 or 1.3. 

4.2. Mixtures 

As ment ioned above, TPs of  LJ mixtures were obtained in two different ways. The 
results using the equivalent one-fluid are displayed in table 6. Results where diameters 

Table 6. Deviation between EDHST in the equivalent one-fluid approximation and MD. 

System p T #12 Yl 6•MC/RS 5~vw 5K~Mc/RS 6•VW 5)~MC/RS 62VW 

A1 1.74 128.25 1 0'8 -8"7 9.7 - 3 6 . 7  - 3 1 . 6  8"0 28-2 
A2 1.74 135"38 1 0.9 - 1.2 18.7 31.9 42.6 
A3 1.74 142.50 1 1.0 - 10'7 7.2 68.3 81.9 8"7 28"9 
A4 1.74 149.63 1 1.1 - 7 ' 6  11.0 74 .0  88.0 
A5 1.74 156.75 1 1"2 - 5 . 4  13.6 40.0 51'3 6'7 26.6 

B1 1"92 134'38 0.90 1 -17 '0  -0"3 7"9 16'6 1.6 20.6 
B2 1.79 134.38 0.95 1 -18 .8  - 2 . 4  80.9 95'5 
B3 1.67 134.38 1.00 1 - 15"7 1"3 72.5 86.5 5.4 25-0 
B4 1'55 134.38 1.05 1 - 1 8 . 4  - 2 . 0  34.0 44.8 
B5 1.44 134.38 1.10 1 - 5 . 3  13.7 8.3 17.1 7"0 27-0 
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Table 7. 
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Deviation between EDHST and MD diameters evaluated in an independent way and 
cross interaction given by (5). 

System p T ]212 Vl O?/MC/RS •tlVW OK:MC]RS ~/s ~MC/RS 6'~VW 

A1 1.74 128.25 1 0.8 -16.3 4.9 -46.2 -28.9 8.3 33.8 
A2 1.74 135.38 1 0.9 -10.6 11.9 10.7 45.6 
A3 1.74 142.50 1 1.0 -20.2 -0 .4  38.4 82.6 6.4 31.0 
A4 1.74 149.63 1 1-1 - 18.6 1.8 40.3 85.6 
A5 1.74 156-75 1 1.2 - 17.9 2.8 10.8 47.0 1.6 25.4 

B1 1.92 134.38 0.90 1 18.9 55.7 70.2 130.5 54.6 100.2 
B2 1.79 134.38 0.95 1 -4 .7  21.5 1 2 5 . 7  198.6 
B3 1.67 134.38 1.00 1 - 17.8 2.4 71.4 123.0 11.5 37.1 
B4 1.55 134.38 1.05 1 -32.9 -18.1 6.7 37.2 
B5 1.44 134.38 1.10 1 -33.2 -20.0 -30.2 -11.1 -16.2 -1 .0  

are evaluated in an independent way, and with cross interaction given by (5), are 
presented in table 7. Following Vogelsang and Hoheiset [17], we characterize the LJ 
binary mixture by a vector containing four quantities, 

where p and v are defined by 

0"22 

and #12 and vl2 are defined by 

(#, V, 1~12, V12), 

#0-11 and 522 : •511, 

0-12 = #12(o-It + a22)/2 and 5t2 = Vl2(Sll + 522)/2. 

For table 6, the magnitudes of  511 and 0-11 are unimportant, since reduced units are 
used. For  table 7, we use the parameters given in [17]. In order to compare with the 
MD data of  [1 7], we make the calculation for all the equimolar mixtures with the same 
values for # and v given therein: 

for systems A1-A5 /~ = 1, v = 2 

for systems B1-B5 p = 1.4, v = 1. 

The results using the equivalent one-fluid approximation are quite good when the 
variational scheme is used to obtain the equivalent one-fluid diameter. In particular 
for the thermal conductivity, no matter how the cross interactions are varied, or the 
ratio between the pure component LJ parameters, the deviation from MD calcu- 
lations is less than 10%. In figure 6, we present 2 for systems B1, B3 and B5, and the 
results using the perturbative schemes. As we can see there, better results are obtained 
with the variational scheme. In the case of  the shear viscosity calculations, they reveal 
a very high sensitivity to the cross interactions. If  #12 = 1, i.e. when the cross 
interaction is that of a hard sphere mixture (5), no matter how the energy cross 
interaction changes, the use of the variational scheme gives better results. This is the 
real motivation for the second way to obtain TPs in mixtures to be discussed below. 
On the contrary, if there is no additivity, i.e. #i2 r 1, the use of perturbative schemes 
is a better option than the variational scheme, as can be observed in figure 7. For bulk 
viscosity, from table 6 we see that no matter how the parameters are varied, in general 
the use of  the variational scheme is better although still with a very significant error. 
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cross interaction a12 (A) given by EDHST using different schemes (o MD, + MC/RS, 
O BH, zx VW, • WCA) and in the equivalent one-fluid approximation. Full line is only 
to aid visualization. 
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Figure 7. Shear viscosity (Pas) predictions for LJ mixtures with different cross interaction ax2 (A) 
given by EDHST using different schemes (n MD, + MC/RS, (> BH, a VW, x WCA), 
and in the equivalent one-fluid approximation. Full line is only to aid visualization. 
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Shear viscosity (Pas) predictions for LJ mixtures with different cross interaction a~2 (A) 
given by EDHST using different schemes (D MD, + MC/RS, ~ BH, A VW, x WCA). 
Here, the diameters are evaluated in an independent way, and the cross interaction is 
given by (5). Full line is only to aid visualization. 

It is important to note that all our calculations and all the MD results are for the 
same reduced thermodynamic state through the mixing rules given in (4), i.e. 
T* = 0.95 and n* = 0.75. Although there is no MD data for pure fluids at this 
specific point, the results of  table 7 agree in general with these MD results, except for 
the case of the bulk viscosity. This makes us suspicious about the MD bulk viscosity 
values in mixtures or about some conceptual failure of the equivalent one-fluid 
approach for the bulk viscosity. 

With the second approach to obtain TPs, we need be cautious since it cannot be 
used to obtain definite answers due to the lack of  a correction for velocity correlations, 
i.e. Dymond's  correction. If  this correction is in the direction of  increasing the TPs, 
as it usually is, table 6 shows that this approach to evaluating the diameters can give 
good estimates of shear viscosity and thermal conductivity when the cross interaction 
O'12 is additive and when the variational scheme is used to obtain the independent 
diameters. When the cross interaction 0"52 is not additive, this procedure is not 
appropriate for thermal conductivity calculations. For  bulk viscosity, our calculations 
with the second procedure are quite far from MD data. Use of  the other perturbative 
schemes (BH, WCA and SM) to obtain the hard sphere diameters in the mixture gives 
worse results, and in some cases with a bad trend. As an example, in figure 8 the shear 
viscosity calculations for different cross interaction, 0"52 , are presented, using all 
schemes to obtain the independent diameters. 

D
ow

nl
oa

de
d 

by
 [

U
N

A
M

 C
iu

da
d 

U
ni

ve
rs

ita
ri

a]
 a

t 1
9:

17
 2

3 
A

pr
il 

20
13

 



Transport properties for LJ  fluids and their binary mixtures 1333 

5. Concluding remarks 

The main aim of addressing the usefulness of EDHST for predicting transport 
properties of LJ fluids and their mixtures has been reached, to some extent. Now it 
is clear that although this procedure captures the main qualitative aspects in the dense 
regime, it is quite far from being a quantitative technique. Some lines of research must 
be developed in the near future to obtain more quantitative theories to deal with pure 
fluids, and to improve our understanding of TPs of fluid mixtures. In particular we 
can mention: (a) MD experients for hard sphere binary mixtures in order to determine 
the velocity correlation correction to RETs transport properties. (b) MD experiments 
for LJ mixtures in several regions of the binary phase diagram, in order to have a 
critical evaluation of the procedures given here, and in a general way. (c) New 
approaches for developing kinetic theories which can deal with realistic potentials 
directly. 

We acknowledge partial support from the TWAS and the DGPAUNAM, grants 
RG MP 88-70 and IN102689, respectively. JVO acknowledges CONACYT support 
for this work. 
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