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Prediction of transport properties of dense molecular fluids using the 
effective diameter hard sphere theory 

Perturbation method 

By R. CASTILLO and J. OROZCO 

Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P.O. Box 20-364, 
01000 Mexico, DF, Mexico 

(Received 18 May 1992; accepted 18 September 1992) 

The present paper explores the ability of the effective diameter hard sphere 
theory to estimate the transport properties of a fluid made up of particles 
interacting through the Gaussian overlap model. This method relies on the 
assumption that at high densities the behaviour of a fluid is dominated by harsh 
repulsive forces. Hence, the properties of the fluid can be given in terms of a hard 
convex body fluid, and the properties of this fluid can also be expressed in terms 
of an effective hard sphere fluid. The state-dependent diameter of the reference 
hard sphere fluid is obtained through the blip function theory, well known in the 
equilibrium liquid theory of molecular fluids, in terms of the Gaussian overlap 
model parameters. Comparisons with measured thermal conductivities and shear 
viscosities for nitrogen and benzene were made, because of the lack of molecular 
dynamics data. Our results are in good agreement with experimental data over 
wide density ranges, and the sources of discrepancy could be explained by the fact 
that the Gaussian overlap model parameters used for those fluids are not 
accurately determined. Despite this, our results are surprisingly close to exper- 
imental determinations. 

1. Introduction 
Predictions of  transport properties (TPs) of molecular fluids in terms of  rigorous 

realistic physical models are difficult to obtain, and further progress is needed. Since 
the pioneering work of Curtiss and coworkers [1-3], who found a generalized Boltz- 
mann equation for dilute gases in order to include contributions to free streaming and 
collisions, several routes have been devised mainly for hard convex body (HCB) 
fluids. These routes follow quite different lines: (1) derivation of kinetic equations for 
the phase space density [4, 5], with solutions obtained through the Grad's moment 
method; (2) the use of  time correlation functions in conjunction with the method of 
Ernst to transform the time correlation functions into distribution functions [6]; (3) 
the use of a Mori-generalized Langevin equation method [7]; and (4) the use of 
first-order perturbation theory, through the expansion of  all terms in the time correla- 
tion functions including the propagator [8, 9]. In spite of these formal results, an 
explicit evaluation of these methods has not been reported. 

An alternative route that can deal with realistic intermolecular potentials (making 
our estimations less dependent on measurements, even when neither the model 
potential nor the theory is exact) can be developed. This paper therefore addresses 
the study of transport properties of  fluids made up of non-spherical and non-polar 
molecules, in the dense regime, based on an extension of effective diameter hard 
sphere theory (EDHST) [10]. 
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344 R. Castillo and J. Orozco 

The selection of a model potential to mimic the interaction between the particles 
of our system is the starting point. Although there are several different options, the 
model must have two basic characteristics: it must be mathematically simple, and it 
must not violate too strongly our sense of what is physically correct. The potential 
models mainly considered in the literature for modelling these fluids are: the 
generalized Stockmayer [11], the Kihara types [11, 12], the site-site types [11], and the 
Gaussian overlap (GO) [13-21]. For this study we have selected the last model. In the 
GO model, a molecule is regarded as an ellipsoidal Gaussian distribution of matter 
density, and it is assumed that when the distributions overlap slightly, the pair 
potential is proportional to the overlap volume integral of the distributions. The 
original model was devised primarily to give a simple expression for the orientation 
dependence of molecular interactions, and further modified to give a realistic r 
dependence [13]. This model is valid for oblate as well as for prolate shapes of 
arbitrary anisotropy, and the shape of the molecular core is modelled correctly, at 
least qualitatively. The main problem with the GO potential is related to the failure 
to yield correctly some long-range interactions, and of course the correct multipolar 
behaviour. Some of the most important features of the GO, and its relation with other 
models, have been reported [14, 16-19]. The GO potential can be expressed as 

(I)(//1, i12, r) = 4e(ul ,  u2) [(a(ul, u2, f ) / r )  ~2 -- (a(u,, / ' /2' r)/r)6], (la) 

with 

and 

( {(" i  (e.. ,-~-uO2~] -~/~ "'gj + r_" u2) 2 -~ 
a(u, ,u2,~) = ao 1 - ~)~ + Xul u2 1 - Zu~ " u2 3 /  

(lb) 

s ( . ~ ,  . 2 )  = s0 [1 - x2( .1  �9 . 2 ) ]  - ' 2  ( l c )  

Here, ~ is the unit vector in the r direction, .~ and .2 are unit vectors along the principal 
axes of the molecules, e0, a0 and Z are strength, range and anisotropy parameters, 
respectively, cr 0 and ~ can be written in terms of the range parameters ~, and ~• 
characterizing each ellipsoid as 

a 0 = ~ /2a •  = [a~ - az]/[a~ + a~] : [g2_ 1]/[~c2 + 1]. (2) 

Here, x is the length to breadth ratio of the spheroidal molecules such that K > 1 for 
prolate, and K < 1 for oblate molecules. 

As mentioned, the shape of the anisotropic molecular core is modelled reasonably 
well, this is not the case for long-range interactions. This point will be of no conse- 
quence in our approach to the transport properties of dense non-spherical fluids, since 
it seems that the repulsive forces [11], i.e. the shape of the molecules, determine the 
liquid structure and intermolecular correlations in the same way as in atomic fluids. 

In addition, for the anisotropies studied here, we will show that TPs of the GO 
model fluid can be estimated with a more simple version of this model, i.e. the 
Gaussian overlap model with constant s (GOCE) [17]. 

Once the potential has been selected, our next step would be to use kinetic theory 
for particles interacting through a potential given by equation (1). However, this is not 
possible at the present state of the theory. Simpler cases than those related to the HCB 
mentioned above [4-7] can be used as examples. Efforts to deal with realistic potentials 
have been reported only for 'simple fluids', i.e. the atomic fluids, and have proved to 
be difficult [22-25, 31]. Formally, kinetic theory has been developed only for the hard 
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Prediction of transport properties of dense molecular fluids 345 

sphere fluid [26, 27], for the square-well fluid [28-30], and for systems interacting 
through a spherical hard-core plus an attractive tail [22-25,27, 31]. Even in these 
cases, there are several issues still unresolved [25, 30]. 

Here, we will test a procedure that is an extension of the EDHST [10]. Probably 
since the time of Enskog, and later with the recognition that the dynamics of liquids 
are mainly determined by the repulsive part of the interaction potential, there is a 
common belief that hard sphere expressions can give good estimates of the TPs of 
actual fluids, if some state-dependent effective hard sphere diameter is used. But, only 
with the development of kinetic mean field equations could this issue be included in 
the framework of kinetic theory. There are two lines of approach that give the 
appropriate theoretical support to the EDHST. The first is based on the maximization 
of entropy principle subject to constraints developed by Stell and colleagues [22- 
25, 29]. The second was developed by Sung and Dahler using a Mori-Zwanzig 
formalism [31]. Sung and Dahler presented the conditions for which the formulas of 
the Enskog-like theory can be adapted to estimate TPs of fluids modelled with a 
Lennard-Jones (LJ) potential. These two approaches, derived originally by different 
means, can be related [25]. 

To extend EDHST to the case of interest in this paper we make two assumptions. 
First, the particles in the fluid can be modelled through the GO model. Second, in the 
dense regime, the dynamics of the fluid are determined mainly by the repulsive part 
of the non-spherical interaction potential. Hence, following the same line of reasoning 
as in blip function theory [36-38], the properties of the repulsive system can be given 
in terms of an appropriate HCB fluid. Thus, a reasonably good representation of the 
TPs of the GO model fluid at high densities can be obtained through the HCB fluid. 
However, the TPs of HCB fluids are not known in the dense regime. In a further level 
of approximation, we can obtain these properties through hard sphere expressions 
following the procedure given in blip function theory for dealing with non-spherical 
potentials [38]. Accurate estimates may be expected if the anisotropy of the original 
molecules to be modelled is not too large. These assumptions have been tested for 
equilibrium properties of molecular fluids, but they have never been used for trans- 
port properties [11, 16, 18, 19, 21]. 

2. Theory 

As mentioned above, the basic idea of our approach is simple, and is responsible 
for much of the progress achieved in the equilibrium theory of dense molecular 
liquids. In a dense fluid, the repulsive forces, which are nearly convex hard core 
interactions, dominate the liquid structure. Hence, we expect that attractive forces, 
dipole-dipole interactions, and any other slowly varying forces play a minor role in 
dense fluid behaviour. Thus, if a dense liquid is composed of nearly spherical mole- 
cules, the intermolecular structure should be very similar to that of a HCB fluid. This 
HCB fluid can be described in terms of a fluid made up of hard spheres of an 
appropriate effective diameter, a fluid that can be handled with hard sphere kinetic 
theory in order to predict the thermal conductivity (2) and the shear viscosity (t/) of 
our original fluid, viz., the GO model fluid. Of course, the effective diameter of the 
hard sphere fluid must depend on the thermodynamic state, to reflect the somewhat 
soft repulsive r-dependence of the model potential, and on the anisotropy parameters 
of the GO model. This procedure can be generalized for mixtures, although some 
additional problems must be solved, as will be presented shortly. 
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346 R. Castillo and J. Orozco 

2.1. Effective diameters 
To obtain the effective diameter for the non-spherical fluid studied here, we use 

perturbation theory. This approach relates properties of a system, in which the 
intermolecular pair potential energy is U(rl2,0)1,0)2), with those of a reference system 
interacting with a potential energy U0 (r12 , 0)1,0)2). Here, rl2 is the vector separating the 
centres of molecules 1 and 2, with molecular orientations 0)1 and 0)2 (0)i = qSi, 0~, X, for 
nonlinear, and ~9 i, q5 i for linear molecules, respectively). This procedure was devel- 
oped by several workers using different specific methods [37-41, 16, 21], all inspired by 
the successful work of Weeks, Chandler, and Andersen (WCA) [36] on atomic fluids. 
Here, we follow Mo and Gubbins [38]. These authors divided the potential 
U(rl2,0)1,0)2) into repulsive and attractive regions for each set of molecular orienta- 
tions. The repulsive part was handled by two consecutive expansions. This splitting 
of the potential has been studied by molecular dynamics [19], and it takes into account 
properly the free energy contributions of dense molecular fluids at medium and high 
densities. 

The reference system is made up of rigid HCBs, and the whole theory can be 
developed in order to give the free energy of this system in terms of a hard sphere 
system plus additional corrections. Hence, following Mo and Gubbins [38], the 
Helmholtz free energy of our model potential can be given in terms of the free energy 
of a system of HCBs interacting through U0 

U0(r12,0)l,o)2) = 0 rl2 > d(0)1,0)2) 
(3) 

= 0o rl2 < d ( 0 ) ~ , 0 ) 2 )  

where d(0)1,0)2) is the closest (contact) distance of approach of the two molecular 
centres for fixed orientations COl and 0)2. 

The expression of the free energy of the GO model fluid in terms of the hard sphere 
fluid, and the hard sphere diameter can be obtained as follows. First, our model 
potential is split into two parts. One involves the repulsive forces, Urep (rl2,0)1,0)2), and 
the other involves the attractive forces Ua(rl2,0)l,0)2). Thus, a potential 
V(rl2,0)1,0)2, ~) is introduced such that 

V(r12 ,0 ) l , 0 )2 ,00  = e rep( r l2 ,0 ) l ,0 )2  ) .qt_ ~ e a ( r l 2 , 0 ) l , 0 ) 2 )  ' (4) 

where 

Urep(r l2 ,0) l ,0)2)  = U(r12,0)l,0)2) -4- e(0)1,0)2) rl2 < rmin(0)l,0)2) 
(5) 

= 0 r12 > rmin(0)l,O92) 

Ua(rl2,0)l,0)2) = - - 8 ( ( 0 1 , 0 ) 2 )  rl2 < rmin(0)l,0)2) 
(6) 

= U ( r i 2 , 0 ) l , 0 ) 2 )  El2 > rmin(0)l ,0)2).  

Here, e(0)l, (,02) and rmin(0)l, 0)2) are the magnitude of U(rmin, 0)1, (D2), and the separa- 
tion distance, respectively, both evaluated at the minimum of the pair potential (for 
fixed 0)1,0)2). Functional differentiation shows that 

Aco =Arcp  + correcting terms. (7) 

For details see [38]. In a second expansion, Arc p is related to the free energy of a system 
interacting through equation (3), giving 

Arep -- A0 + first order terms. (8) 

The contact distance d(0)1,0)2) is chosen in such a way to nullify the first-order term 
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Prediction of  transport properties of  dense molecular fluids 347 

in the free energy expansion, equation (8), in the same way as in the WCA method 
[36, 41]. Thus, the first-order free energy term vanishes if d(COl, 0)2) is chosen to satisfy 

f0 ~ - e x p ( -  flUrep@12 , COl, co2))] Y0 (rl2, ml, c~ drl2r~2[1 

= [.a(~,.~o2~ dr12~2 Yo(r12,o91,o)2). (9) 
3 0 

Since the fluid interacting through the potential given by equation (3) is unknown, 
it is necessary to go to the second level of approximation. Using Bellemans' [43] 
method, which should apply provided the anisotropy is not too great, the contact 
distance d(COl, 0)2) can be expanded as 

d(Ol, ('02, O0 = do + o~y(e)l, co2)do, (10) 

where 7(col, c02) is defined so that d(col, (o2, e = 1) = d((01, e)2), and do is the effective 
hard sphere diameter given by 

do = (d((.Ol, (.02))ml,m2. (11) 

From here, it is possible to obtain working equations for the free energy in terms of 
a hard sphere fluid of  diameter do plus a few corrections. Mo and Gubbins [38] 
extended the work of Verlet and Weis [41] for atomic fluids, and gave an analytical 
expression for d(col, o2) in the form 

d((_Ol,fD2) = dB(~01,0)2)[1 + 2ao(Co,,a'(c~176 6((L)I, (.02) 1 , (12) 

where dB is the Barker-Henderson contact distance 

;7 dB(~Ol,O)2) = dr,2 [1 - exp{-flUrep(rl2,col,(02)}], (13) 

and 

6(c0j , c02) ~- drj2 ~ 1 
O 

[_dB(Ol,(02) ~ exp[--flUrep(rl2,(.Ol,(.02) ]. (14) 

The approximate expressions for ao(~01, c02) and al (COl, o)2) are 

(2 - t/) 
a~176 = 2(1 -- q)3 (15a) 

(1 -- 5t/w -- 5t/2w) 27q3w (1 - 0"717qw - 0"l14q2w) 2 
~ , ( a ~ , , c o 2 )  = ~ o ( C O ~ , ~ o 2 )  + - (1  - , 1~ )  ~ - 2 ( 1  - ~ w )  6 (1  - , I w / 2 )  ' 

(15b) 

where 

7~ 
t/ = g p[(d(~o,, c02))o,,,o,213 (15c) 

r/w = t/ -- r/2/16 (15d) 

hence, the hard sphere diameter do can be obtained from the closed set of equations 
00-15).  
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348 R. Castillo and J. Orozco 

There is another way to obtain an effective diameter for non-spherical molecules. 
This method uses a variational technique. Here, the Gibbs-Bogoliubov inequality is 
used to obtain an upper bound for the Helmholtz free enrgy of the system. This is a 
direct extension of the work of Rasaiah and Stell [49] dealing with upper bounds for 
free energies of atomic fluids in terms of a hard sphere fluid. We will present our 
results using this procedure in a forthcoming paper. 

2.2. Explicit formulas for the transport properties 
As mentioned, for the case of the LJ system there are two well connected starting 

points in order to obtain a procedure giving good estimates of TPs, based on kinetic 
mean field theories [22, 31]. But, for the interaction potential of interest here, there are 
no fundamental works that establish rigorously the conditions for which the formulas 
of Enskog theory could be applicable. Thus, an adaptation of the Enskog theory for 
fluids interacting through the GO model is implemented here, following the same line 
of reasoning presented in the previous section for obtaining the thermodynamic 
properties, and with the procedure of Sung and Dahler [31] given for the LJ interac- 
tion as a guide. 

Following our basic assumptions, the TPs of our model system in the dense regime 
can be estimated through the evaluation of the TPs of the hard sphere fluid with 
effective diameter do. We hope that this procedure will improve the estimation of TPs 
of actual fluids, since there is a large body of evidence [32-35] that supports the idea 
that the predictions of the Enskog theory can be made to agree with the experiment 
quite well, when an effective diameter is introduced. The actual potential in these 
fluids is probably better modelled with a three-parameter potential like the GO model. 

The hard sphere kinetic theory that will be used here, is the so called revised 
Enskog theory (RET) first derived by van Beijeren and Ernst [26]. Here, the hard 
sphere radial distribution function is the same function of the number density as the 
radial distribution function of a system in non-uniform equilibrium. The RET equa- 
tion can be solved by the use of the Chapman-Enskog method. The molecular fluxes 
and the transport coefficients for a dense hard sphere fluid, up to the Navier-Stokes 
level, can be obtained directly on the basis of the procedure used in [27] and [44]. Here, 
we present only the final expressions to obtain the TPs for pure fluids: 

= 1 [ 4//2 3 c'~ ( 2  )~] q0 /I ~ 1 + ~ n n ~  X ) + 0.7615 -~rcna3z ~ (16) 

2 = + 7 /  Z / + 0.7575 rcna3x ~ 20, (17) 

where 

5 
~/0 = 161t--~ (rcmkT)~/2 (18) 

75k (~_T)I/2. (19) 

Here, n is the number density, a the hard sphere diameter, m the mass of the particle, 
X c the pair distribution at contact, T the absolute temperature, and k Boltzmann's 
constant. 

The evaluation of equations (16) and (17) requires knowledge of Z% We used the 
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Prediction of transport properties of dense molecular fluids 349 

Table 1. Parameters. 

Nitrogen Benzene 
G O C E  ~ L J1 b LJ c GOCE1 a GOCE2 a L J1 b 

ao/A 3.37 3.798 3.6502496 6.3 6.474 5.349 
(e.0/k)K -1 94 71.4 100.01654 300 265 412.3 
x 1.3 1 1 0.5 0.5 1 

~GOCE from [14]. 
bLennard-Jones from [61]. 
CLennard-Jones from [52]. 

approximate expression of Carnahan and Starling [45], since it appears to be quite 
accurate when compared with molecular dynamics (MD) data. 

MD calculations have proved that Enskog's expressions for transport coefficients 
are not exact, since these do not take into account velocity correlations in the dense 
regime. Correction multiplicative factors to the Enskog expressions have been given 
by Dymond [46] (Dymond's correction) for shear viscosity and thermal conductivity 
although, for the case of shear viscosity, van der Gulik and Trappeniers [47] have 
modified these expressions on the basis of  the computations given by Michels and 
Trappeniers [48]. The correction factors are 

1.02 + 10.61(n* - 0.495) 3 + 247.49 (n* - 0.813) 3 n* > 0.813 

1-02 + 10.61(n* - 0.495) 3 0.593 < n* < 0.813 
Cq 

G 

1"02 0"593 > n* (20a) 

= 0"99 + 0"1597 n* - 0.7464 n .2 + 1.2115 n .3 - 0"5583 n .4 .  (20b) 

In all the above equations n* = n o  -3. 

3. The sources of  experimental data 

To make a stringent test of the predictive capability of  EDHST for predicting 
transport properties of the GO model fluid, experimental data from MD simulations 
are needed. But, as far as we know, there are no MD data for transport properties 
involving the GO model. Although some MD data have been reported for molecular 
fluids [50, 51], they are not useful in the discussion of  our results. Hence, we used 
experimental data to make our comparisons, although only very few fluids have been 
characterized in the context of the GO model. We obtained from the literature [14] 
the GO model parameters (s0,a0 and x) for nitrogen, benzene, and carbon dioxide. 

It is clear that this comparison could not be a good test of  our procedure, not only 
by the fact that actual fluids do not interact through the GO model, but also since 
there is not enough information to support the quality of the reported parameters in 
the estimation of  transport properties. TPs appear to be quite sensitive to the potential 
parameters, at least this is the case for atomic fluids. As a matter of  fact, for our case 
the parameters were determined in order to fit thermodynamic properties [14]. 

For  comparison with experimental data for nitrogen and benzene we used the 
parameters given in table 1 for our model potentials. There are one set of GOCE 
parameters for nitrogen, and two sets for benzene. In addition, this table includes 
several sets of  parameters for the usual LJ potential for those systems. They will be 
used in our comparisons later. Carbon dioxide was not studied here, since the GO 
parameters reported in [14] do not fit the experimental data therein. 

D
ow

nl
oa

de
d 

by
 [

U
N

A
M

 C
iu

da
d 

U
ni

ve
rs

ita
ri

a]
 a

t 1
9:

19
 2

3 
A

pr
il 

20
13

 



350 R. Castil lo and J. Orozco  

1.2 
0 

1.1 

GO 

+ GOCE 

0 GO 

[]  GOOE 

0.9 

+ + 

0.• ~- 
0.8 0.9 1 

O 8 O ~ C~ ~ ~ ~3 

= 1 5  

[k? = 0 5] 
+ + + + + + + + 

I i I I ~ i - - [  I 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 -~ 1.9 

T 

Figure 1. Effective diameters as a function of the reduced temperature T* = kT]~o, for GO 
and GOCE model potentials at two length to breadth ratios (pe~ = 0-6). 

Accurate  experimental  data for nitrogen were obtained from [52] and [54], and for 
benzene  [53] and [55]. 

4. Results and discussion 

With the above  procedure,  our first step was  to evaluate the effective hard sphere 
diameters in different thermodynamic  states. In figures 1 and 2, s o m e  examples  o f  
calculated effective diameters  are s h o w n  for different anisotropy parameters.  In these 

1 . 2  

d/o-o 
1.1 

0 . 9  

Figure 2, 

GO 

4- GOOE 

0 GO 

[ ]  GOCE 

+ + + + + + + 

0 . 8  i i i i i i _ i 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 . 9  
p~ 

Effective diameter as a function of  the reduced density p* = p~3, for GO and 
GOCE model potentials at two length to breadth ratios (kT]eo = 1.4). 
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/ ' /*  0.5 

0 .45  

0.4  

0 .35  

GO 

0 GO 

_L GOOE 

[ ]  GOOE 

4- 
4- 

x* 
~3 

4- 

0.3 + + ~ ~ ~ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 

2X" 

1.8 

~3 

1.6 

+ 

1.4 

1.2 

i 1 

0.8 0.9 
p* 

Figure 3. Transport properties (t/* = ;0" = a /k given by EDHST as a 
function of the reduced density p* = pa3, evaluated for systems interacting with GO and 
GOCE model potentials (~ = 0"5, and kT]e o = 1.4). 

figures, we can see that these effective diameters, as expected, decrease as the 
temperature increases, and for densities above p* -- 0.5 they decrease as density 
increases. As mentioned in the introduction, since the strength parameter e is a weak 
function of  molecular orientation for the anisotropic molecules studied here, we have 
therefore neglected the variation in well depth. Thus, we have used e as a constant 
obtaining the GOCE model where e = e0. This enables us to make our calculations 
simpler, and it does not have any adverse consequences in the thermodynamics and 
the transport  properties. From figures 1 and 2, note that, in the same thermodynamic 
state, GO and GOCE give essentially the same effective diameter. The difference is 
negligible, and it does not have any influence in the final calculations of transport 
properties, as can be seen in figure 3 for x = 0.5. 

Figure 4 shows our predictions for the shear viscosities of liquid N2, modelled with 
the GOC E model potential, along the coexistence curve. In addition, figure 4 shows 
the experimental data, and calculations for the shear viscosity of N 2 modelled with LJ. 
The calculations for LJ were done following the same theory as presented here, but 
for the spherical case [10, 22]. That is, given an LJ potential and using the corrected 
version of  the WCA method presented by Verlet and Weis [42], an effective diameter 
depending on the thermodynamic state can be obtained. With this diameter and 
equations [16-20], transport properties for the LJ system can be given. For  details see 
reference [10]. It is important to mention that for the case of LJ, with EDHST, it is 
possible to obtain predictions closer to the experimental data if the effective diameters 
are obtained with a variational technique [10]. 

In figure 4, the predictions of  our theory are shown to be good, taking into account 
that the GOCE parameters given in [14] were not obtained from a rigorous study for 
fitting transport data, as is the case for the LJ parameters. It is clear that a greater 
error can be introduced by the different sets of  LJ parameters currently used in the 
literature. 
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Figure 4. Comparison between shear viscosity calculations for N 2 along the liquid coexistence 
curve, and experimental data. Calculations were performed with EDHST for N2 
modelled with GOCE potential, and with LJ potential (parameters given in table 1). 

Figure 5 presents our calculations for the shear viscosities of  fluid N2 as a function 
of the density at constant temperature, together with experimental data, and calcula- 
tions for nitrogen modelled with the GOCE model and with the LJ. Here, in a broad 
density range, the EDHST for the GOCE model behaves correctly (p < 0.6), 
although it overestimates at high densities. This overestimation increases a little with 
temperature. In figures 4 and 5, at high densities, the LJ gives the best fit, probably 
due to the better quality of the parameters used. 

Figure 5. 
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Comparison between shear viscosity calculations of fluid N 2 modelled with GOCE 
potential and with LJ potential, and experimental data, at T = 250 K. 
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An important point is that in our approach the rotational degrees of freedom are 
ignored. For thermal conductivity a contribution of rotational and other internal 
degrees of freedom is expected, although in the range of few per cent [32]. To improve 
the EDHST results some corrections due to the internal degrees contribution can be 
introduced. In this paper we follow a heuristic approach followed by some authors 
[56, 57, 60] and suggested by previous work by Mason and Monchick [58] on the basis 
of the Wang Chang-Uhlenbeck-De Boer theory [59], to deal with polyatomic gases 
in the dilute regime. Mason and Monchick showed that 2 can be separated effectively 
into two parts: one dealing with the transfer of thermal energy due to the translational 
motion of the molecules, and one dealing with the transfer of energy due to changes 
in the internal energy of the molecules. Here, we assume that 2 of a dense fluid can 
be split into a part due to the energy transfer by molecular motion and collisional 
transfer (2'), given by EDHST, and a part due to the energy transfer associated with 
the internal degrees of freedom of the molecules through diffusion (2"). Terms 
involving the interchange of translational and internal energy through inelastic col- 
lisions have not been considered. This correction will improve the EDHST results 
mainly at moderate densities. Thus, 

,Z = 2' + ,V'. ( 2 l )  

In addition, we assume that 2" can be represented by the first order approximation 
formula given by Mason and Monchick for quasielastic collisions: 

2" = pDC~,'/M = 2;'/l c (22)  

where D is the self-diffusion coefficient, and 2~ is the internal contribution to 2 for the 
dilute hard sphere gas, Cs is the molar heat capacity at constant volume for the 
internal degrees of freedom, and M is the molecular weight. 

To obtain a general formula for the evaluation of 2~, for real fluids, the modified 
Eucken correlation for polyatomic gases was used [60, 62], 

2;' = M (23) 

where % is the dilute gas viscosity, Cp is the ideal gas molar heat capacity, R is the 
gas constant, M is the molecular weight, and fnt has a constant value of 1.32. 

Cp values for different systems were obtained through a temperature expansion up 
to the sixth order: we used the expansions that appear in the TRAPP computer 
program developed by Ely and Hanley [60]. 

Figure 6 presents our calculations for the thermal conductivity of liquid N2 along 
the coexistence line, and figure 7 shows the density dependence of thermal conductiv- 
ity in the fluid phase, also for N2, at constant temperature. As above, we included in 
these figures the experimental data and the predictions for GOCE model and for the 
LJ potential. We included for all these cases the correction for 2" as given in equations 
(22) and (23). Also in these figures we show the calculations for GOCE, but without 
including this correction due to the internal degrees of freedom. Figure 6 shows, in 
general, very good agreement. The predictions for the GOCE model give better results 
than for any LJ. The contribution of the internal degrees clearly corrects the calcula- 
tions mainly in the less dense region, as expected, but at very high densities, there is 
a little overestimation. 

In figure 7, we can see how the contribution due to the internal degrees changes 
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Figure 6. Comparison between thermal conductivity calculations for N2 along the liquid 
coexistence curve, and experimental data. Calculations were performed with EDHST. N2 
was modelled with GOCE potential (GOCE) and with LJ potential (LJ and LJ1). The 
parameters are given in table 1. In these cases, we included a correction due to the 
contribution of internal degrees. GOCE-ID denotes calculations with EDHST for N2 
with GOCE, but without the correction due to the contribution of internal degrees. The 
solid line is drawn through the data points as a guide to the eye. 

200 ~ Exp. 
-F GOOE 

./-~/mWm 1K ~ -;K- LJ1 
/ 

[] LJ ,~ 
150 X GOCEHD ~ ~ ~ ~ 

IO0  

5o ,~ ~ ~ ~ ~ ~ ~ ~i ~ - x  

0 I I I I I I 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 
- 3  

p/g cm 

Figure 7. Comparison between thermal conductivity calculations of N2 modelled with GOCE 
potential and with LJ potential, and experimental data, at T = 130 K. Notation as for 
figure 6. 
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Figure 8. Comparison between thermal conductivity calculations for benzene along the liquid 
coexistence curve, and experimental data. Calculations were performed with EDHST, 
Benzene was modelled with GOCE potential (GOCE1 and GOCE2) and with LJ potential 
(LJ). The parameters are given in table 1. In these cases, we included a correction due 
to the contribution of internal degrees. GOCE 1-ID denotes calculations with EDHST for 
benzene with GOCE, but without the correction due to the contribution of internal 
degrees. The solid line is drawn through the data points as a guide to the eye. 

the good fitting of the predictions for GOCE not including this contribution. This is 
more noticeable at moderate and low density regions. It is difficult at this point to 
determine the exact origin of this problem. One possibility could be that formulas (22) 
and (23) are unable to give the proper contribution due to internal degrees of freedom. 
But, the more acceptable possibility is related to the procedure used to obtain the 
effective diameter. There is clear evidence [32, 10] that the thermal conductivity is 
somewhat overestimated in this region (p < 0.4) when the procedure described in this 
paper is used for the case of the L J, due to the breakdown of the WCA assumptions. 
We consider that the failure of  our calculations to fit the thermal conductivity at 
medium and low densities for N2 using the GOCE model is due to the same problem. 

Figure 8 presents our calculations for the thermal conductivity of liquid benzene 
along the coexistence curve. As before, we presented in this figure the experimental 
data, and our calculations for benzene modelled with the GOCE model and with the 
LJ potential. The correction due to internal degrees was included in these cases. We 
also included here our calculations for GOCE without the contribution of  internal 
degrees. For  this figure, we used two sets of GOCE parameters as given in [14]. The 
parameters labelled as GOCE1 gave the best fit to the experimental data. Here, it is 
clear that our approach to the estimate of TPs using GOCE1 or GOCE2 gives better 
results than using any LJ. 

Also we can see from figure 8 that our approach is sensitive to the selection of 
GOCE parameters. This is due to the high sensitivity of the hard sphere expressions 
for the TPs to variations in the hard sphere diameter. Thus, small variations in the 
GOCE parameters produce, through the effective diameter, quite different TPs. In this 
way, slightly different fluids can give significant different TPs. The behaviour of the 
TPs as a function of the parameters of the model potential, i.e. the geometry of  the 
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molecules, is not easy to see. For a given number density and temperature, the TPs 
are functions of the effective diameter do = do (e0, a0, x) and, depending on how the 
parameters defining the model potential are arranged, they will influence the TPs. 

As expected, test calculations of transport properties for carbon dioxide gave bad 
results. This confirms that the GOCE parameters given in [14] must be improved. 

In summary, the procedure presented in this paper constitutes the first attempt to 
predict numbers for transport properties of molecular fluids. The results are encou- 
raging, since some examples have given very good results. The conclusions drawn 
from our calculations are not clear enough in all cases. Although this procedure is 
conceptually more elaborate than those using the L J, MD data for transport proper- 
ties of GO fluids are needed to determine if our procedure is a good option to give 
accurate estimates of TPs for non-spherical fluids. We hope this type of study will 
motivate work in this direction. The approach can be improved in several ways: one 
is the use of other schemes to obtain the effective diameter. The variational method 
has given very good results when fluids are modelled with the LJ potential [10]. This 
study is underway and will be published shortly. Another area that deserves more 
careful study is the contribution of internal degrees to thermal conductivity. The 
procedure used here, although very common, must be refined with more powerful 
theories [63]. 

We acknowledge partial supports from the DGAPAUNAM and CONACYT, 
grants IN 102689 and 0114E, respectively. J.O. acknowledges CONACYT support 
for this work. 
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