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The explicit dependence of the thermal diffusion factor with respect to composition and interaction
parameters for the van der Waals binary mixture is obtained in the framework of the mean-field
kinetic variational theory and in the scheme of Scott and van Konynenburg. Here, we present a
numerical study where the global behavior of the thermal diffusion factor is described in terms of
molecular masses, sizes, and interaction parameters, along the phase diagram of this model mixture.
This numerical study allows us to understand what molecular parameters modify the sign of the
thermal diffusion factor. In addition, a comparison is made between the thermal diffusion factor
coming from the van der Waals mixture and from the hard-sphere mixture. ©1997 American
Institute of Physics.@S0021-9606~97!51019-1#
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I. INTRODUCTION

Thermal diffusion is the transport of matter associa
with a thermal gradient. It may occur in both the gaseous
the liquid mixture. As a result of the thermal gradient, co
position gradients subsequently appear in the mixture. Th
composition gradients produce ordinary diffusion. A stea
state is finally reached in which the separating effect aris
from thermal diffusion is balanced by the remixing effect
ordinary diffusion. As a consequence, partial separation
observed and described by the thermal diffusion fac
~TDF!. Experimental results have shown in most of the ca
a ‘‘normal’’ behavior, i.e., the heavier species in the co
region and the lighter species in the hot region. Also, th
are systems with ‘‘abnormal’’ behavior, where the situati
is the opposite. Typical values for the TDF, disregarding
sign, lie in the range of 0.3 to 1.1–6 Although, they tend to
infinity at the critical point of the mixture. Absolute value
between 10 and 100 have been measured in the vicinit
the critical region.7

Thermal diffusion in liquids was first reported b
Ludwig8 and studied in detail by Soret.9 For the case of
gases, it was predicted independently by Enskog10,11 and by
Chapman,12 and later confirmed with the experiments
Chapman and Dootson.13 The phenomenological descriptio
of the thermal diffusion process is provided by the irreve
ible thermodynamics in the linear regime,14 although isotope
separation has been a famous application of thermal d
sion, the variety of systems studied is quite low. Therefore
is a property quite unknown. In particular, the influence
molecular parameters on this transport property is not cl
since very few models can be explicitly developed to g
the TDF in terms of molecular parameters.15 By far, the most
interesting property of the TDF is the origin of its sign, a
how this is related to thermodynamic states and to molec
parameters of the mixture.

The purpose of this paper is to present a new metho

a!On leave from Instituto de Fisica, UG.
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study the TDF of binary mixtures. There are few model m
tures for which theory can be handled almost without a
proximation, and at the same time they could give expl
equations relating molecular properties, in particular attr
tive forces, to thermal diffusion. One of those model m
tures, as will be shown here, is the van der Waals bin
mixture. Therefore, here we will study the thermal diffusio
for van der Waals mixtures through the mean-field kine
variational theory~KVT I !.16 Points of interest will be to
understand the effect of molecular masses, short-range fo
~molecular volumes!, and attractive potential interactions o
the TDF. Of course, we will try to understand the origin
the change of sign of this property.

The phenomenological expression for the mass fluxJi
ph

~relative to the local center of mass velocity,i51,2), under
the condition of no external forces and mechanical equi
rium (¹p50), is17,18

Ji
ph52(

j51

2

~12dL j !Di j
CM¹r j2rDi

T¹ ln T. ~1!

Here, we will confine ourselves to binary mixtures. In Eq
~1!, r is the mass density,T is the temperature,Di j

CM are the
mutual diffusion coefficients, andDi

T are the thermal diffu-
sion coefficients. Equations~1! have been written in such
way that all the gradients occurring therein are independ
The choice of the componentL is arbitrary, and although it is
not explicitly stated, theDi j

CM and theDi
T will depend upon

the choice ofL.17,18

As mentioned, the property more often used to descr
thermal diffusion in a binary mixture is the TDF,a12, which
is defined at stationary states as

a1252F¹ lnS r1
r2

D
¹ ln T

G
Ji50

~2!

with a121a2150. The TDF is invariant to the change o
reference system~center-of-mass or center-of-volume!.
106(19)/8204/12/$10.00 © 1997 American Institute of Physics
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8205R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
Molecular simulations have been done to obtain therm
diffusion coefficients and TDFs for Lennard-Jones liqu
mixtures,19,20 although most of the studies are focused
method developments. Systematic studies probably start
the work on isotopic mixtures using nonequilibrium molec
lar dynamics due to Kincaidet al.21 and Hafskjoldet al.22 In
the former study, the authors studied isotopic binary m
tures of particles interacting through the Lennard-Jon
spline potential. They found that the dependence of the T
on the mass ratio in the mixture is very similar to that giv
by the Enskog theory. In the later study, the authors p
sented a study of the TDF for isotopic binary mixtures int
acting through a switched Lennard-Jones potential. T
found that for a stationary temperature gradient and, a
consequence, for a concentration profile: 1! The potential
energy flux is small. 2! The lighter component prefers the h
side of the system. 3! The ratio of intermolecular energ
transfer to kinetic energy flux increases as the density
creases. This ratio also increases from the hot to the
region in the system. The last feature is consistent with
increasing of the collision rate as density increases. In a
tion, they found that the contribution of the lighter comp
nent to the energy flux is predominantly kinetic energy, a
this contribution increases from the cold to the hot side. T
contribution of the heavier component to the energy flux
predominantly intermolecular energy transfer through m
lecular interactions, and it increases from the hot to the c
side.

Most of the models developed to understand the T
come out from kinetic theory. The Chapman-Enskog so
tion of the Boltzmann equation yields an accurate descrip
in the dilute gas limit.23 Calculations based on the Boltzman
equation indicate that TDF is very sensitive to the interm
lecular potential. For moderate and high density fluid m
tures the revised Enskog theory~RET! for hard-spheres has
prominent place, since it can give explicit calculation
Kincaid, Cohen and Lopez de Haro24 using RET made a
comprehensive numerical study of the TDF for the ha
sphere binary mixture. The most striking difference found
those authors, between the low-density~Boltzmann! and
high-density regime, is that the region of mass ratio-diame
ratio plane for which thea12 is strictly positive or negative
as a function of composition, is much smaller at high den
ties. Also,a12 is not a monotonic function of the mole frac
tion, at higher densities.

More than a century ago, van der Waals develope
simple model which turned out to be extremely fruitful f
describing the main properties of realistic fluids. In mode
language, a rigorous formulation can be given by writing
molecular pair interaction in the form:

V~r !5VS~r !1gVL~gr !, ~3!

whereVS refers to the short-range reference system, wh
VL is the long-range part of the potential, with rangeg21. If
the properties of this model are analyzed in the limit
g→0, the van der Waals equation, combined with the M
well equal-area construction, is obtained.25 Besides, the van
der Waals theory has been developed to understand
J. Chem. Phys., Vol. 106
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phase equilibria in binary mixtures, revealing a rich varie
of behaviors accounting for most of the types of fluid pha
equilibria shown by actual mixtures, in a qualitative way.26,27

This model potential has also been used to understand a
list of related problems such as the theory of capillarity28

nonuniform fluids,29 interphase properties,30 density
fluctuations,31 and the mutual diffusion coefficient.32

As mentioned, our point of departure to study the TD
of the van der Waals mixture is the KVT I.16 As we shall see,
explicit expressions for the thermal diffusion coefficient a
for the TDF can be obtained without approximations,
terms of molecular parameters. To obtain the TDF, we a
need the mutual diffusion coefficient for the van der Wa
mixture. This can be obtained in the framework of the KV
I, too.32 Quite recently, we presented a comprehensive st
of the mutual diffusion coefficient for van der Waals bina
mixture obtained with the KVT I. There, we made a nume
study devoted to understanding the dependence of the mu
diffusion coefficient in the binary mixture on molecular siz
and interaction parameters. Moreover, we related the mu
diffusion coefficient to the classification scheme devised
Scott and van Konynenburg26,27 to study in a systematic way
the phase equilibria of binary systems. With this classifi
tion, those authors were able to reproduce most of the kno
types of fluid-fluid phase equilibria observed in actual flu
mixtures. In modern language, this classification scheme
lies on curvature of the free energy. The free energy cur
ture of a binary mixture is responsible for the specific ch
acteristics of the equilibrium phase diagrams. T
multiplicity of phases and the connectivity of their associa
critical points are determined by the form of the spinod
surfaces~free energy curvature50!. The link between the
mutual diffusion coefficient and the fluid phase equilibr
was possible, since this coefficient in the KVT I is equal
the free energy curvature of the binary mixture, modula
by a compressibility factor, and other factors related to
dynamics of two-particle collision. Therefore, a global b
havior of the mutual diffusion coefficient for the van d
Waals mixture was obtained on the same basis as in the
of phase diagrams.32

The link between phase equilibria and thermal diffusi
coefficient can not be done clear-cut, as in the case of
mutual diffusion coefficient, because, as it will be show
below, there are two terms in the expression of the ther
diffusion coefficient, but only one is related to the attracti
tail through the chemical potential. However, for the TD
the situation is a little bit different due to its relation with th
mutual diffusion coefficient. We will use along with the nu
merical study given below the parameters devised by S
and van Konynenburg to describe the different types of
havior of the TDF in the binary mixture. As will be show
below this practice is useful.

The outline of the paper is as follows. In Section II, w
review the KVT I, i.e., the van der Waalsian theory of tran
port processes, as well as the most important features o
Scott and van Konynenburg scheme. In that section, we
present the derivation of an expression for the thermal di
sion coefficient and for the TDF, in the KVT I. In Section II
, No. 19, 15 May 1997
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8206 R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
we will present the results of our numerical study and
discussion.

II. THEORY

A. Kinetic theory for the van der Waals mixture

The kinetic variational theory, first obtained b
Karkhecket al.,16 is defined by a set of coupled nonline
mean-field kinetic equations given below. Those equati
were derived for a system of particles interacting throug
pair potential consisting of a hard-sphere part plus a smo
but otherwise arbitrary attractive tail. The set of equations
the two single particle distribution functions defined in
binary mixturef i(r1 ,v1 ,t), ~i 5 1,2) are the following:

F ]

]t
1v1•

]

]r1
G f i(r1,v1,t…

5CRET~ f i , f j !1
1

mi
(
j51

2 E
r12.s i j

`

dr2nj~r2 ,t !

3gi j
HS~r1,r2u$nk%!

]

]r1
w i j
tail
•

]

]v1
f i~r1,v1,t…, ~4!

wheref i(r1 ,v1 ,t) is the average number of particles of com
ponenti ~with massmi) at the positionr1 , at the velocity
v1, and at timet. ni5*dv1f i(r1 ,v1 ,t).

The Kac limit,

w i j
tail5 lim

g→0
g3Vi j ~gr !, ~5!

can be done in the mean field terms of Eqs.~4! (s i j→0,
gi j→0). Kinetic equations for thef i can be obtained tha
embody the exact thermodynamic description of a sys
interacting with a potential consisting of a hard-sphere c
and an infinitely weak long-range attraction, i.e., the van
Waals interaction. We shall call this theory KVT I. The co
lision termCRET( f i , f j ) has exactly the form of that which
appears in the revised Enskog theory introduced by
Beijeren and Ernst:33

CRET~ f i , f j !5(
j51

2

s i j
2 E dv2E de„e–vj i )Q~e–vj i !

3@gi j
HS~r1,r11s i jeu$nk%! f i~r1,v18 ,t !

3 f j~r1 ,v28 ,t !2gi j
HS~r1,r12s i jeu$nk%!

3 f i~r1 ,v1 ,t ! f j~r1 ,v2 ,t !#. ~6!

Here, vj i5vj2vi is the relative velocity between two pa
ticles with velocitiesvj andvi , respectively.e is a unit vec-
tor directed along the line of the centers from the particle
componentj to the particle of componenti upon collision,
andQ is the Heaviside step function.vi8 andvj8 denote the
velocities of the restituting collision, which are connected
those of the direct collisionvi andvi by the relations

vi85vi12M ji ~vj i •e!e, vj85vj22Mi j ~vi j •e!e, ~7!

whereMi j5mi /(mi1mj ). Thegi j
HS(r1,r2u$nk%)’s are the ra-

dial distribution functions of a binary hard-sphere mixtu
J. Chem. Phys., Vol. 106
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They are the same functionals of the local number dens
$nk%, as in the case of a binary mixture in nonuniform eq
librium.

Explicit expressions for the transport coefficients up
the Navier-Stokes level can be directly obtained by expa
ing the heat, the momentum and the mass fluxes to lin
order in the gradients. This is done by solving Eqs.~4! in the
Kac limit, in the form f i5 f i

(0)@11F i # through the
Chapman-Enskog development. Here, thef i

(0) are the local
Maxwell distribution functions, andF i;O (¹). The thermal
conductivity and the viscosities are identical to those giv
in the RET.34 The diffusion and thermal diffusion coeffi
cients exhibit an explicit dependence on the tail strength
we will show below.

We will limit our derivation to the case of the therma
diffusion of a binary mixture. Here, an explicit derivation
obtain this coefficient will be presented on the basis of
procedure developed by Lopez de Haroet al.34 for the case
of hard spheres. The starting point for our discussion will
the linearized integral equations for theF i8s in Ref. 16:

(
j51

2

s i j
2 yi j f i

~0!E dv2f j
~0!E de~e–vi j !Q~e–vi j !

3@F j~v28!1F i~v18!2F j~v2!2F i~v1!#

5 f i
~0!H ~v12u!•F nni di1 ] lnT

]r
@Ci25/2#

3F11
8p

5 (
j51

2

s i j
3 yi j nj

m i j

mi j
G G12CiCi

0

:
]u

]r

3F11
8p

15(j51

2

s i j
3 yi j nj

m i j

mi j
G12/3@Ci

223/2#

3
]

]r
–uF12

PHS

nkT
1
4p

3 (
j51

2

s i j
3 yi j nj

m i j

mi j
G J . ~8!

The yi j are the contact values ofgi j
eq , Ci5A(mi /2kT)

3(v12u), mi j5mi1mj , andCiCi

0

5CiCi1(1/3)Ci
2II. II is

the unit dyadic andu the local velocity.k is the Boltzmann
constant.di5di

HS1di
t , where

di
HS5~ni /n!H bS ]m i

HS

]r D
T

2b
mi

r

]PHS

]r
1

] lnT

]r

3F11
4p

3 (
j51

2

s i j
3 yi j nj

mi

mi j
G J ~9!

and

di
t5~ni /n!bF2(

j51

2

ai j
]nj
]r

2
mi

r

]Pt

]r G . ~10!

Here,n5 ( i51
2 ni , r 5 ( i51

2 nimi 5 ( i51
2 r i , b 5 1/(kT). The

temperature isT5(3/2nk)21( i51
2 *dvi(1/2)mi(vi2u)2f i ,

and the pressure isP5PHS1Pt, where
, No. 19, 15 May 1997
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8207R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
PHS5kTFn1
2p

3 (
i , j51

2

s i j
3 yi j ninj G ~11!

and

Pt5( ai j ninj ~12!

with ai j5*Vi j (r )dr .
The chemical potentials are expressed asm i(T,$ni%)

5m i
HS1m i

t , where

m i
t52 (

i , j51

2

ai j ni ~13!

andm i
HS is the chemical potential for componenti in a bi-

nary mixture of hard spheres.
As mentioned, Eqs.~8! can be solved with the sam

method developed for the hard-sphere mixture presente
Ref. 34, with some appropriate changes. Hence, to follow
derivation given there, we will define some variables:

Ki5F11
8p

5 (
j51

2

s i j
3 yi j nj

m i j

mi j
G , ~14!

Ki85F11
8p

15(j51

2

s i j
3 yi j nj

m i j

mi j
G , ~15!

Ki95F12
PHS

nkT
1
4p

3 (
j51

2

s i j
3 yi j nj

m i j

mi j
G . ~16!

Now, Eqs.~8! can be written in the following form:

(
j51

2

s i j
2 yi j f i

~0!E dv2f j
~0!E de~e–vi j !Q~e–vi j !

3@F j~v28!1F i~v18!2F j~v2!2F i~v1!#

5 f i
~0!H ~v12u!•FKi@Ci25/2#

] ln T

]r
1

n

ni
di G

1Ki8@2CiCi

0

# :
]u

]r
12/3Ki9@Ci

223/2#
]

]r
•uJ . ~17!

Equations~17! are the same as equations~25a! of Ref.
34. The only difference relies on the definition ofdi , where
the tail contribution is included. Hence, following th
method of solution presented there, the independent m
flux in a binary system under the condition of no extern
forces, i.e., mechanical equilibrium can be obtained. T
mass flux, relative to the local center of mass velocity, can
obtained substituting the solution for thef i to the first order
in the gradients into the expression

Ji~r1 ,t !5E dv1mi~v12u! f i~r1,v1,t…. ~18!

The most relevant steps of the derivation are presen
in Appendix A. The final result is as follows:
J. Chem. Phys., Vol. 106
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Ji
~1!52

r i
2n2(j51

2

~12d jL !F (
k51

2

di ,0
~k!SEkj2

Pj

PL
EkLD G]nj

]r

2
r i
2nH (

k51

2 di ,o
~k!

n F (
j51

2 H nkS dk j12rbk j
mk

mkj
yk j D2

EkL

PL

3 (
p51

2

npS dp j12rbp j
mp

mpj
yp j D J G2a

0

~ i !J ] log T

]r
,

~19!

where theJi
(1) are the macroscopic mass fluxes to the fi

order in the gradients, relative to the local center of m
velocity, rbi j5

2
3pnjs i j

3 , and

Pi5(
j51

2

Eji , ~20!

where Eji5(ni /kT)(]m i /]nj )T,nkÞ j
. Those functionsPi

should not be confused with the pressure.
In binary mixtures, there is only one independent diff

sion coefficient as well as one independent thermal diffus
coefficient. Comparing Eqs.~1! and~19! allows us to obtain
expressions for the coefficients of interest here, for the
der Waals mixture in the KVT I, as follows:

~a! The thermal diffusion coefficient:

Di
T5

r i
2nrH (j51

2 d1,0
~k!

n F (
j51

2 S nkS dk j12rbk j
mk

mkj
yk j D

2
EkL

PL
(
p51

2

npS dp j12rbp j
mp

mpj
yp j D D G2ao

~1!J . ~21!

As far as we know, this is the first derivation of th
thermal diffusion factor in the KVT I.

~b! The mutual diffusion coefficient:32

Di j
CM5

r i
2mjn

2(
k51

2

di ,0
~k!FEkj2S Pj

PL
DEkLG . ~22!

~c! The thermal diffusion factor can be obtained usi
Eqs.~21! and ~22! in Eqs.~2! in the following form:34,24

a i j5kTi2kT j , ~23!

where

(
j51

2

~12d jL !Di j
CMr j kT j5rDi

T

and

kTL52
1

PLnL
H (
j51

2

~12d jL !PjnjkT j

2(
i51

2

(
j51

2

ni~d i j12rbi jM i j yi j !J .
In both Eqs.~21! and ~22! the ao

(1) and thed1,0
( j ) are the

coefficients that appear in the Sonine polynomial expans
given by Eqs.~A8!. They depend on the hard core part on
The tail contribution in Eqs.~21! and~22! comes through the
, No. 19, 15 May 1997
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8208 R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
chemical potential Eqs.~13! and ~20!. In our derivation, the
explicit dependence of the tail contribution is handled
such a way that the structure of the equations given in R
34 for the case of hard spheres using RET is conserved.
is quite useful, in particular, for making comparisons b
tween KVT I and RET. Since we need only to turn off th
tail contribution to recover the TDF and the mutual diffusi
coefficient as they are given in the RET. In order to obt
practical results, one restricts the number of Sonine poly
mials in the expansion. We shall adopt here the conven
usually called theNth Enskog approximation, i.e., only th
firstN Sonine polynomials are taken into account. For det
see Appendix B.

Equations~22! can be transformed, straightforwardl
into the expression previously derived by Karkhecket al.16

in terms of the Helmholtz free energy per volumeav .

B. The Scott and van Konynenburg scheme

Studies of fluid phase equilibria have shown that th
are continuous transitions between phase diagrams tha
hibit gas-liquid, liquid-liquid, and gas-gas phase separatio
Critical lines are often observed to change continuously fr
one type of the phase separation to another. When the
representing a single degree of freedom~pure-component va
por pressure curves, three-phase lines, critical lines, etc.! are
plotted on P-T diagrams, the resulting graphs fall natura
into several different categories, providing a convenient
sis for classification of the fluid phase equilibria.

A very useful classification scheme has been devi
some time ago by Scott and van Konynenburg,26 who used
the van der Waals equation in a systematic way to study
fluid phase equilibria of binary mixtures. They characteriz
the mixtures by three dimensionless parameters:

j5
b222b11
b221b11

, ~24!

z5

a22
b22
2 2

a11
b11
2

a11
b11
2 1

a22
b22
2

, ~25!

L5

a11
b11
2 2

2a12
b11b22

1
a22
b22
2

a11
b11
2 1

a22
b22
2

. ~26!

For j50,z is related to the difference in critical temperatur
or pressures of the pure components, andL is related to the
molar heat of mixing. The van der Waals constantsam and
bm for the mixture depend on mole fractionxi , as follows:

am5( xixjai j , andbm5( xixjbi j . ~27!

The constantsa11 anda22 measure the attractive force
between pairs of molecules of the pure components 1 an
respectively, anda12 is the corresponding parameter for th
J. Chem. Phys., Vol. 106
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interaction between molecules 1 and 2. The constantsbi j are
the size parameters for the pure components and for m
pairs, respectively. Here, in agreement with the Scott a
van Konynenburg convention,26 we have used the cross siz
parameter as

b125~b111b22!/2. ~28!

On the basis of the selected parametersL andz, and on
the P-T diagrams resulting from their calculations, Scott a
van Konynenburg grouped fluid phase equilibria diagra
into five types~see Fig. 1!. The diagrams were distinguishe
mainly by the configuration of the critical lines and the thre
phase lines on the P-T graphs. They recognized a sixth
of diagram that occurs in some aqueous systems, but it
not among those predicted by the van der Waals equation
the diagrams of types I and II, the gas-liquid critical line
continuous between the critical points of the pure com
nents, Ca and Cb . In the diagrams of type II, there is
liquid-liquid phase separation bounded by a three-phase
gion LLG and a liquid-liquid critical line LL. These two
lines intersect an upper critical end point. In the diagrams
type IV, the liquid-liquid-gas three-phase region is bound
above and below by critical end points. In the diagrams
type III, IV and V, the gas-liquid critical line is divided into
two branches. In the diagrams of type IV and V, the bran
of the gas-liquid critical line originating in Cb terminates in
an upper critical end point, while the branch originating
Ca rises to a maximum pressure and passes continuously
a liquid-liquid critical line, terminating in a lower critical end
point. In the diagrams of type IV, there is a second liqu
liquid phase separation at lower temperatures, with a crit
line ending in a second upper critical end point. Finally,
the diagrams of type III, the branch of the critical line orig
nating in Ca rises to high pressures, sometimes pass
through maximum and minimum pressures and/or a m
mum in temperature.

The usefulness of the above scheme relies on the
that it gives a qualitative description of the properties of t
liquid mixtures, and very rarely yields non-physical resul
The fluid phase of binary mixtures can be qualitatively d
cussed in terms of interaction parameters and change
thermodynamic properties near the critical points. Therefo
a very natural extension of the work of Scott and v
Konynenburg is to use this scheme to describe the beha
of the mutual diffusion coefficient and of the TDF of bina
mixtures. The former has been presented quite recently
us.32

III. THE THERMAL DIFFUSION COEFFICIENT

A. Definition of parameters

The TDF was calculated for van der Waals liquid bina
mixture through Eqs.~23! as a function of the concentration
for different thermodynamic states. Here, we will presen
numerical study to understand the influence of each par
eter of the model mixture on the TDF. Both the therm
diffusion and the mutual diffusion coefficients were calc
lated in the ninth Sonine approximation. We also presen
, No. 19, 15 May 1997
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FIG. 1. Classification of Scott and van Konynenburg.~a! Values ofL andz defining the main regions of similar phase diagram~modified form Ref. 26!. The
shield region is not shown.~b! Sketches of the pressure-temperature projections of the six possible types of fluid phase equilibria exhibited by binary
@modified from K. E. Gubbins, K. S. Shing, and W. B. Street, J. Phys. Chem.87, 5473~1983!#. The vapor-pressure curves of pure components are show
solid curves. The gas-liquid-liquid three-phase lines are shown as dash-dot, and the gas-liquid and liquid-liquid critical lines are shown dashed. Th
are upper and lower critical end points, respectively.
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comparison between the predictions of the RET~hard-sphere
mixture! and of the KVT I~van der Waals mixture! to deter-
mine the effect of the attractive tail on the TDF.

There are several sets of parameters that can be us
define a binary mixture under study. We have used the
lowing set:

m1 , m2 , a22, b22, L, j, z, n, T, and X2 . ~29!

Once this set is given, the other interactions parameters
be obtained with the following equations:

b115
@12j#

@11j#
b22, ~30!

a115
@12z#

@11z#

@12j#2

@11j#2
a22, ~31!

a125
@12j#

@11j#

@12L#

@11z#
a22. ~32!

Interpretation of the calculations is easier, if some of
above mentioned parameters are fixed for most of the ca
lations. As a final goal, we shall use the procedure prese
here to understand the concentration dependence of the
for actual binary mixtures. Therefore, we fixed some para
eters close to that of simple fluids, like argon, to obtain so
feeling about the influence of each parameter in actual m
tures. The fixed parameters arem15m256.6335310223 g,
J. Chem. Phys., Vol. 106
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a22521.305 L2At mol22, b22549.79 L mol21,T5168 K,
n52.0331022 L21. They will remain fixed unless otherwis
explicitly mentioned.

B. The thermal diffusion factor in the van der Waals
mixture

With the theory developed above, the TDF was calc
lated for several binary liquid mixtures with the aim of u
raveling the complex relation between the TDF and the m
lecular parameters of the mixture that determine its behav
The molecular parametersL, j, andz were selected to fall
into the different phase diagram types~I–V! of the Scott and
van Konynenburg scheme. Some of our results are discu
below.

In Figs. 2 and 3, we presenta12 versus the mole fraction
of component 2 (X2) for all the fluid mixtures types of the
Scott and van Konynenburg scheme. Those calculati
were done for three mass ratios of the components in
mixture (m1 /m250.25,1, and 4). Also, we included calcu
lations for the hard-sphere binary mixture. The hard-sph
calculations just correspond to turn the attractive tails off.
general, the mass ratio is the most important parameter
determining the sign ofa12. This will be more clear below.
For m1 /m250.25 a12 is negative, form1 /m251 a12 is
close to zero, and form1 /m254 a12 is positive no matter if
there are or there are not attractive tails. Actually, our cal
, No. 19, 15 May 1997
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8210 R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
FIG. 2. a12 versus the mole fraction of component 2 for van der Wa
mixtures of types I~upper panel!, II ~middle panel!, and III ~lower panel! of
the Scott and van Konynenburg scheme.a12 is presented for three mas
ratios of the components in the mixture:m1 /m250.25, 1, and 4. Calcula-
tions for the hard-sphere binary mixture were also included for the s
mass ratios.m1 /m250.25~HSh, VWs!, 1 ~HSn, VW ¹!, 4 ~HSL, VW
1!.

FIG. 3. a12 versus the mole fraction of component 2 for van der Wa
mixtures of types IV~upper panel!and V ~lower panel! of the Scott and van
Konynenburg scheme.a12 is presented for three mass ratios of the comp
nents in the mixture. Calculations for the hard-sphere binary mixture w
also included for the same mass ratios.m1 /m250.25 ~HS h, VW s!,
1 ~HS n, VW¹!, 4 ~HS L, VW 1!.
J. Chem. Phys., Vol. 106
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lations show that the mass fraction does not determine
shape of thea12 vs X2 diagram, but it puts a level for the
sign. The attractive tails only modify the trend imposed
the mass ratio. When the mass ratio is close to one,
attractive tails do not modify in this scale range the shape
the diagrams. But, at greater mass ratios, the change du
the attractive tails is more important. For types I and
(L,0), thea12 vs X2 diagrams present a curvature alwa
in the sense of decreasing the absolute value of the TDF
the contrary, for types II, III, and IV (L.0) the curvature of
thea12 vs X2 diagrams moves in the direction of increasin
the absolute value ofa12. The mass ratio dependence
a12 obtained with the KVT I is inherited from the hard
sphere model, as it is given in the RET. As mentioned in
Introduction, Kincaidet al.21 have shown in their molecula
simulations for particles interacting through Lennard-Jon
spline potential that the mass ratio dependence ofa12 is very
similar to that given in the RET. This suggests that in o
procedure we have captured the correct mass ratio de
dence ofa12. The lack of symmetry in Figs. 2 and 3 is du
to the molecular parameters used to define properly the
ferent mixture types of the Scott and van Konynenbu
scheme.

Figures 4 and 5 present how the TDF vs X2 diagrams are
affected when the parameterL ~cross interaction! is varied.

e

-
re

FIG. 4. a12 versus the mole fraction of component 2 for van der Wa
mixtures of types I~upper panel,z50.2, j50; L520.1 h, L520.2
s, L520.3 n), II ~middle panel,z50.2, j50; L50.1 h, L50.2 s,
L50.3 n) and III ~lower panel,z50.58, j50; L50.1 h, L50.2 s,
L50.3 n) of the Scott and van Konynenburg scheme. Here, we pres
how the diagrams are affected when the parameterL ~cross interaction! is
varied. In all those casesm1 /m251.
, No. 19, 15 May 1997
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8211R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
In all those cases, the mass ratio was fixed equal to 1 and
parameterj50. The hard-sphere calculations fora12 in all
those cases give a vanishinga12 no matter what the concen
tration is. Actually, this is a test for our algorithms. A har
sphere binary mixture of components of the same size
masses is actually a monocomponent system. Thus, the
must be zero. For most of the cases in the van der W
systems, the cross interaction lowers thea12 vsX2 diagrams
to negative values. Although, in absolute value,L modifies
the TDF vs X2 diagrams in a lesser extent than the ma
ratio. Actually, the attractive tails change only the shape
the diagrams. The sign ofL modifies the curvature of the
diagrams in most of the concentration range.L,0 makes
thea12 vsX2 diagrams convex (]

2a12/]X2
2 , 0) andL.0

makes the diagrams concave (]2a12/]X2
2.0). Although, it

could be an inversion in the regions of the mixture rich
one of the components. In the latter case, the larger theL,
the larger the curvature of the diagrams. This is difficult
see in Fig. 5 due to the scale, but, changing the scale, th
quite clear.

Figures 6 and 7 present the influence of the param
a22 ~interaction between particles of component 2! on the
TDF vs X2 diagrams. Those figures show a strong sensitiv
to the molecular interaction parametersa22. This parameter
also lowers the TDF to negative values. The more nega
a22, the lower the TDF. As before,L modifies the concavity
of thea12 vsX2 diagrams.L,0 ~types I and V! makes them
convex andL.0 ~types II, III, and IV! makes them con-
cave. As in the previous case, the test for the hard-sp
mixture ~turning off the attractive tails! gives a vanishing
a12 in all the concentration range.

The dependence of the TDF onz can be seen in Figs. 8
and 9~mass ratio51 andj50). In most of the cases for th

FIG. 5. a12 versus the mole fraction of component 2 for van der Wa
mixtures of types IV~upper panel,z50.58,j50; L50.015h, L50.025s,
L50.035n! and V ~lower panel,z50.58,j50; L520.1h, L520.2s,
L520.3 n! of the Scott and van Konynenburg scheme. Here, we pre
how the diagrams are affected when the parameterL ~cross interaction! is
varied. In all those casesm1 /m251.
J. Chem. Phys., Vol. 106
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van der Waals mixtures, the greater thez, the lowera12. A
change of sign can be reached for a negativez. In each
mixture type,z moves the diagrams almost in a parallel wa
For some concentrations, usually close to the region rich
one component, the attractive tail can make the TDF in
van der Waals case greater than zero. It is clear from
range of variation ofa12 shown in the diagrams of Figs.
and 9 thatz modifies thea12 diagrams less thanL and
a22. Also here, thea12 vs X2 diagrams of types I and V
present a convex curvature for most of the concentra
range.

The dependence of the TDF vs X2 diagrams onj can be
obtained from Figs. 10 and 11. The dependence of thea12 on
the parameterj is important, since it can change its sign
different concentrations of the binary mixture, as well as
shape of the diagrams. For comparison, Fig. 10~a! presents
the TDF for the hard-sphere binary mixture with the app
priate diameter ratio to give the samej values as those use
for the van der Waals systems. In all the mixture types,
attractive tails modify thea12 vsX2 diagrams in a very simi-
lar form. Comparing the van der Waals mixture and the h
sphere-mixture, the general feature is the largerj, the lower
a12, for most of the concentration range. At largej, there is
a depression in the diagrams for the van der Waals case

nt

FIG. 6. a12 versus the mole fraction of component 2 for the types I~upper
panel, z50.2, L520.2, j50; a22520.5 h, a22521.3053 s,
a22523 n, a22525 ¹), II ~middle panel, z50.2, L50.2, j50;
a22520.5 h, a22521.3053 s, a22523 n), and III ~lower panel,
z50.58,L50.2, j50; a22520.5 h, a22521.3053s, a22523 n) of
the Scott and van Konynenburg scheme, showing the influence of the
rametera22 ~interaction between particles of component 2!. In all those
casesm1 /m251.
, No. 19, 15 May 1997
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8212 R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
FIG. 7. a12 versus the mole fraction of component 2 for the types IV~upper
panel,z50.58,L50.025;a22520.5 h, a22521.3053s, a22523 n)
and V ~lower panel,z50.58,L520.2; a22520.5 h, a22521.3053s,
a22523 n, a22525 ¹) of the Scott and van Konynenburg scheme, sho
ing the influence of the parametera22 ~interaction between particles of com
ponent 2!. In all those casesm1 /m251.

FIG. 8. a12 versus the mole fraction of component 2 for the types I~upper
panel,L520.2, j50; z50.1h, z50.2s, z50.3n), II ~middle panel,
L50.2, j50; z50.1 h, z50.2 s, z50.3 n), and III ~lower panel,
L50.2, j50; z50.58 h, z50.7 s, z50.8 n) of the Scott and van
Konynenburg scheme. We present here the dependence of the TDF o
parameterz. In all those casesm1 /m251.
J. Chem. Phys., Vol. 106
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FIG. 9. a12 versus the mole fraction of component 2 for the types IV~upper
panel,L50.015,j50; z50.58h, z50.61s, z50.64n), and V ~lower
panel,L520.2, j50; z50.58h, z50.7s, z50.8n) of the Scott and
van Konynenburg scheme. We present here the dependence of the TD
the parameterz. In all those casesm1 /m251.

FIG. 10. a12 versus the mole fraction of component 2, where the dep
dence of the TDF onj can be obtained (j50.157 h, j50.489 s,
j50.777n, j50.947¹). ~a! Upper panel, hard-sphere binary mixture wi
the appropriate diameter ratios to give the samej values as those used fo
the van der Waals systems.~b! Middle panel, mixtures of type I
(L520.2, z50.2) ~c! Lower panel, mixtures of type II (L50.2,
z50.2). In all those casesm1 /m251.
, No. 19, 15 May 1997
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8213R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
In summary, we have presented a detailed mode
study the behavior of the TDF in binary mixtures. With th
model, TDFs of liquid mixtures were calculated explicitly
terms of the molecular parameters. Now, we have a cle
idea of how the different molecular parameters affect
a12 vsX2 diagrams. Certainly, this is quite complicated. T
procedure followed here can be used to correlate experim
tal data for actual mixtures. There are many actual syst
well characterized within the Scott and van Konynenbu
scheme, where an estimate for the interaction parameters
be obtained, in particular forL. We have just started to
correlate some systems with good success. The approp
combination of those effects determines the sign ofa12.
This work is underway and will be presented shortly.

APPENDIX A: SOLUTION TO THE INTEGRAL
EQUATION FOR F i

Equations~17! are a set of two linear inhomogeneo
integral equations for theF i . Those equations are soluble
the inhomogeneous part of the integral equations is ortho
nal to the solutions of the homogeneous equations. Howe
the only solutions for the homogeneous equations are
conserved quantities in a binary collision. Those conser
quantities are indeed orthogonal to the inhomogeneous
of Eqs.~17!. Hence, one can find the solutions and they
fixed, apart from a linear combination of solutions for t

FIG. 11. a12 versus the mole fraction of component 2, for types
(L50.2, z50.58), IV (L520.025, z50.58), and V (L520.2,
z50.58) of the Scott and van Konynenburg scheme, where the depend
of the TDF onj can be obtained~j50.157h, j50.489s, j50.777n,
j50.947¹). In all those casesm1 /m251.
J. Chem. Phys., Vol. 106
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homogeneous equations. The solution for Eqs.~17! can be
made unique using the following conditions:35

E f i
~0!F idv150, ~A1a!

(
i51

s E f i
~0!F imiV idv150, ~A1b!

(
i51

s E f i
~0!F imiV i

2dv150. ~A1c!

Here,V i5v12u.
Equations~17! are linear in the gradients of the macr

scopic quantities of different tensorial character, hence i
possible to write theF i as

34,35

nF i52A i–
] lnT

]r
2B:

]u

]r
1H

]

]r
•u2 (

k51

s

Di
k
–dk . ~A2!

Here, we will restrict our derivation to obtain the TDF
constant pressure. This can be performed by substitu
Eqs.~A2! into f i5 f i

(0)@11F i #, and the results must be sub
stituted into the mass flux Eqs.~18!. Therefore, an expres
sion for the mass flux in the first order of the gradients can
written in the form

Ji
~1!52

mi

3nH E dviA i–V i f i
0J ] lnT

]r i

2
mi

3nH E dvi(
k51

s

Di
k
–V i f i

0J dl . ~A3!

Now, the task is to calculate the integrals in the mass fl
Eqs. ~A3!. If Eqs. ~A2! are substituted into Eqs.~17!, those
integrals can be obtained through the following equation35

(
j51

s
ninj
n2

I i j ~D
k!52

f i
0

ni
S d ik2

r i
r DV i , ~A4!

where

I i j ~D
k!5

yi js i j
2

ninj
E E dedvj~e–vi j !Q~e–vi j !

3 f i
0f j

0~Di8
k1Dj8

k2Di
k2Dj

k!.

If Eqs. ~A4! are multiplied by a vectorM , and integrated
over velocities, then after summing overi , one can obtain
expressions for Eqs.~A3!, in terms of the bracket integrals:35

E (
i51

s

(
j51

s
ninj
n2

I i j ~D
k!M idvi

5@Di
k ,M i #52

1

nk
E f k

~0!Vk–M kdvk . ~A5!

Here, the conditions to obtain a unique solution were us
In particular, for the caseM i5Di

l andM i5A, the integrals
given in Eqs.~A5! are equal to those appearing in Eq.~A3!.
Thus, Eq.~A3! can be written in the form

ce
, No. 19, 15 May 1997
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8214 R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
Ji
~1!5

r i
3nH @Di

l ,A#
] lnT

]r i
1(

l51

s

@Di
k ,Di

l #dlJ . ~A6!

An explicit expression for the bracket integrals can
obtained in terms ofDi

k(V i) andA(V i), if we take into ac-
count two facts. First, the integral operator of Eqs.~17! are
isotropic in the velocity space, thus theDi

k andA are isotro-
pic tensors in that space, i.e.,

Di
k~V i !5Di

k~Vi !V i , ~A7a!

A~V i !5A~Vi !V i . ~A7b!

Second,Di
k andA can be expanded in terms of the Soni

polynomials in the following way:34,35

Di
k~Vi !5

mi

2kT(r50

`

di ,r
~k!S3/2

~r !SmiVi

2kT D , ~A8a!

A~Vi !5
mi

2kT(r50

`

ar
i S3/2

~r !SmiVi

2kT D , ~A8b!

wheredi ,r
(k) andar

i are the Sonine coefficients, andS3/2
(r ) are the

Sonine polynomials.
To calculate the bracket integrals given in Eq.~A6!, we

need to substitute Eqs.~A7! and ~A8! into Eq. ~A5!. Then,
this result must be multiplied byS3/2

(p) . A working expression
can be found if the orthogonality properties of the Son
polynomials are used, as well as conditions~A1!. ~See Ref.
34 for details.! The bracket integrals forDi

k andA can be
written in terms of the Sonine coefficients in the form

@Di
l ,A#5

2

3
a0

~ i ! , ~A9a!

@Di
k ,Di

l #52
3

2
di ,0

~k! . ~A9b!

Equations~A6! can be written as

Ji
~1!5

r i
2nH a0~ i ! ] lnT

]r
2(

l51

s

d0
i l ~dl !pJ . ~A10!

Finally, using the condition

(
i51

s

di50,

the expression fordi at constant pressure, can be given a

~di !p5dl5
nl
n FbS ]m l

]r D1S 11
4p

3 (
j51

s

s l j
3 yl j

c njM l j D ] lnT

]r G ,
and the Gibbs-Duhem equations, Eqs.~A10!, can be handled
in the form given in Eqs.~19!.

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE
SONINE COEFFICIENTS

Substituting Eqs.~A9! and ~A5! into ~A4! enables us to
obtain the Sonine coefficients given in Eqs.~21! and ~22!.
~See Ref. 35 for details.! The equations obtained are
J. Chem. Phys., Vol. 106
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(
j51

2

(
q50

N21

L i j
pqdj ,q

~k!5
8

25k S d ik2
r i
r D dp0 , ~B1a!

(
j51

2

(
q50

N21

L i j
pqaq

~ j !5
4

5

ni
kn

Kidp1 , ~B1b!

where

Ki511
8

5
p(
j51

2

s i j
3 yi j nj

mj

mi1mj
.

Here, the indexes are defined so thati51,2 and
p50,1, . . . ,N21. HereN denotes theNth Enskog approxi-
mation. An expression for theL i j

pq can be given as

L i j
pq52

8~mimj !
1/2

75k2T H d i j(
l51

s
ninl
n2

Bi j
pq81

ninj
n2

Bi j
pq9J

~B2!

with

Bi j
pq85@S3/2

~p!~C!C1/2V,S3/2
~q!~C!C1/2V# i j8

and

Bi j
pq95@S3/2

~p!~C!C1/2V,S3/2
~q!~C!C1/2V# i j9 .

The bracket integrals@ # i j8 and@ # i j9 are defined as follows:35

@F,G# i j8 5
s i j*

2

ninj
E E E dedvjdvi~e–vi j !Q~e–vi j ! f i

~0! f j
~0!

3Gi@Fi2Fi8#,

@F,G# i j9 5
s i j*

2

ninj
E E E dedvjdvi~e–vi j !Q~e–vi j ! f i

~0! f j
~0!

3Gi@F j2F j8#,

where

s i j*
25s i j

2 yi j . ~B3!

Equations~B1! are a set of linear equations. Those c
be solved in theNth Enskog approximation to find the So
nine coefficientsdj ,0

(k) and a0
( j ) . The coefficients can be ob

tained numerically solving theN3N determinant. The
Bracket integrals given in~B2! can be found through the
transformation~B3!. Under this transformation, the brack
integrals of Eqs.~B2! are identical to the bracket integrals o
a dilute gas of hard spheres. They can be solved using
results of Ref. 36:
, No. 19, 15 May 1997
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8215R. Castillo and J. Orozco: The thermal diffusion factor of a mixture
Bi j
pq852s i j*

2S 2kT~mi1mj !

mimj
D 1/2

3 (
n50

w

(
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Here,Mi j5@mi /(mi1mj )#, andw5min(p,q).
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