
5 Chapter 5: The Phenomenological Laws, Interference of

Irreversible Processes

5.1 Domain of Validity of Phenomenological Laws, Chemical Reactions

Near Equilibrium

Examine the domain of validity of linear phenomenological laws.
Eg. Transport process — heat flow in continuous systems.
Entropy production per unit time and volume is given by;

σ = −Wx

T 2
∂T

∂x
> 0 (1)

with the phenomenological relation

Wx = −
L

T 2
∂T

∂x
(2)

which is Fourier’s law with heat conductivity

λ = − L
T 2

(3)

Therefore, domain of validity of the phenomenological law (2) same as validity of Fourier’s law.
From statistical theory, Fourier’s law valid if relative variation of temperature is small within length
of mean free path φ,

φ

T

∂T

∂x
≪ 1. (4)

Satisfied in most cases.

Consider now a single chemical reaction, the phenomenological relation is

v = L
A

T
(5)

with entropy production
diS

dt
= L

(
A

T

)2
(6)

To consider the accuracy of phenomenological law (5), consider reaction for hydriodic acid,

H2 + I2 = 2HI (7)

The affinity
A = µH2 + µI2 − 2µHI (8)

For a mixture of perfect gases (see 3.24 and 3.25) and neglecting the pressure dependence

µγ = ηγ(T ) +RT logCγ (9)

where the Cγ are the molar concentrations.
Introducing the equilibrium constant K, from (3.41) and (3.25)

RT logK(T ) = −
∑

γ

νγηγ(T ) (10)



and the affinity (3.40) becomes

A = −
∑

γ

νγηγ(T )−RT
∑

γ

νγ logCγ (11)

= RT log
K(T )

Cν11 . . . C
νc
c

(12)

For the synthesis of HI therefore,

A = RT log
K(T )

C−1I2 C
−1
H2
C2HI

(13)

Usual kinetic expression for the reaction rate is

v = −→v −←−v =
−→
k CI2CH2 −

←−
k C2HI =

−→
k CI2CH2

(

1−←−k /−→k
(
C2HI
CI2CH2

))

(14)

Ratio of the kinetic constants
−→
k /
←−
k = K(T ). Using (10) in (11) and comparing with (14) gives,

v = −→v
(
1− exp

(
− A

RT

))
(15)

For reactions close to equilibrium ∣∣∣∣
A

RT

∣∣∣∣≪ 1 (16)

and (15) reduces to

v =
�ve

R

A

T
(17)

where
−→
ve is the value of the partial rate −→v at equilibrium (

−→
ve =

←−
ve for A = 0).

Therefore, the physical meaning of the phenomenological coefficient in eqn. (5) is

L =
−→
ve /R (18)

its value depending on only the value of −→v at equilibrium.

For the other extreme case of
A

RT
→∞ (19)

from eqn. (13),
CI2CH2
C2HI

→∞ or CHI → 0 (20)

which for a closed system corresponds to the initial stage of the reaction. The corresponding value
of v is

v → −→v (21)

which is independent of the affinity. The entropy production diS
dt

= vA
T
= −→v A

T
thus becomes a linear

function of the affinity.

Thus, in contrast to the simple behavior of transport processes, linear relations between rates and
affinities are not always justified, and it is necessary to take into account the non-linear relations,
like eqn. (15).



However, if affinity of a chemical reaction is large, it may be possible to divide the reaction into
a number of more elementary reactions, each having an affinity sufficiently small to justify the
application of linear phenomenological laws.
Eg., Consider the reaction

M → F (22)

which proceeds in a number of steps

M → N (1) (23)

N → O (2) (24)

· · (25)

· · (26)

· · (27)

P → F (r) (28)

Entropy production due to these successive reaction is

T
diS

dt
= A1v1 +A2v2 . . .+Arvr (29)

If the intermediate components N,O, . . . P are unstable, a steady state

v1 = v2 = . . . = vr = v (30)

is reached after a short time so that

T
diS

dt
= Av (31)

where
A =

∑

ρ

Aρ (32)

is the macroscopic affinity.
If

|Aρ|
RT

≪ 1 (33)

then we are still in the domain of the linear phenomenological laws between reaction rates and affini-
ties, even if the total affinity

|A|
RT

≫ 1 (34)

This appears to be the case for many biological reactions which occur in steps.

Near equilibrium, the kinetic equations become very simple, even for complicated reactions. Consider
a closed system

v =
dξ

dt
=
L

T
A ≈ L

T

(
∂A

∂ξ

)

e

(ξ − ξe) (35)

Introduce the relaxation time τ

τ = − T

L
(
∂A
∂ξ

)

e

(36)

Integration of eqn. (35) gives

ξ − ξe = (ξ − ξe)0 exp−
t

τ
(37)

Note that the relaxation time τ is positive since ∂A/∂ξ < 0.



For the general case of r simultaneous reactions, it is possible to show that

ξρ − ξρ,e =
∑

ρ′

aρρ′ exp−
t

τρ′
(38)

Based on the form of eqn. (38), it is possible to state that, independent of the initial conditions,
ξρ can only cross its equilibrium value ξρ,e, at most (r − 1) times. Therefore, a periodic behavior in
time is impossible with a finite number of reactions.
Show that the above statement is correct.

5.2 Electrokinetic Effects — Saxen’s Relation

Will use Onsager’s reciprocity relation to study interference between irreversible processes. Consider
system of two phases I and II connected by means of a porous wall. Temperature and compositions
uniform throughout entire system. Difference is in the pressure and electrical potential. Entropy
production due to the transfer of constituents from vessel I to vessel II is

diS =
1

T

∑

γ

Ãγdξγ = −
1

T

∑

γ

Ãγdn
I
γ (39)

where Ãγ is the electrochemical affinity (see eqn. (3.62))

Ãγ = (µIγ − µIIγ ) + zγF(φI − φII) (40)

Ãγ = ∆µγ + zγF∆φ (41)

Since temperature and composition are the same in each phase, (see eqn. (3.22))
(
∂µγ
∂p

)

Tnγ
= vγ

(specific molar volume)
∆µγ = vγ∆p (42)

where vγ is the specific molar volume of constituent γ. Thus

diS

dt
= − 1

T

∑

γ

vγ
dnIγ
dt

∆p− 1

T

∑

γ

zγF
dnIγ
dt

∆φ (43)

Define the following flows

J = −
∑

γ

vγ
dnIγ
dt

; I = −
∑

γ

zγF
dnIγ
dt

(44)

where J is the flow of matter and I is the electrical current due to a transfer of charge from I to II.
The entropy production is then

diS

dt
=
J∆p

T
+
I∆φ

T
(45)

The phenomenological eqns. are then

I = L11
∆φ

T
+ L12

∆p

T
(46)

J = L21
∆φ

T
+ L22

∆p

T
(47)

with the Onsager relation L12 = L21 which describes the interference of two irreversible processes;
transport of matter under the influence of a difference of pressure; flow of electrical current due to a
difference of electrical potential.



Definition of some electrokinetic effects;
Streaming potential — potential difference per unit pressure difference in state with zero electrical
current (

∆φ

∆p

)

I=0

= −L12
L11

(48)

Electro-osmosi — flow of matter per unit electrical current in state of uniform pressure

(
J

I

)

∆p=0

=
L21
L11

(49)

Electro-osmotic pressure — pressure difference per unit potential difference when the flow of matter
is zero (

∆p

∆φ

)

J=0

= −L21
L22

(50)

Streaming Current — flow of electrical current per unit flow of mass in the state of zero electrical
potential (

I

J

)

∆φ=0

=
L12
L22

(51)

With the use of Onsager’s relations,

(
∆φ

∆p

)

I=0

= −
(
J

I

)

∆p=0

(52)

(
∆p

∆φ

)

J=0

= −
(
I

J

)

∆φ=0

(53)

Relate an osmotic effect to a streaming effect. Eqn. (52) was obtained before through kinetic
considerations, but was based on a model of restricted generality.

5.3 Thermomolecular Pressure Difference and Thermochemical Effect

Consider system of two phases I and II which communicate via a small hole or porous membrane.
System as a whole is closed. Temperature difference is maintained between the two. Will have flow
of heat and may have flow of matter.

Using eqns. (4.22) and (4.26), the forces are given by

Xth = ∆
(
1

T

)
≈ − 1

T 2
∆T (54)

Xm = −(∆µ)T
T

≈ − v
T
∆p (55)

where Xm is the transformed force (see chapter 4) and
(
∂µγ
∂p

)

Tnγ
= vγ (specific molar volume). And

the fluxes of energy and matter are, using (4.19) and (4.20) with (4.17),

Jth =
dIIi φ

dt
− hdn

II

dt
(56)

hγ =
(
∂H
∂nγ

)

pTn′γ
(specific molar enthalpy), and Jth is the transformed flow including h,

Jm =
dnII

dt
= −dn

I

dt
(57)



with the phenomenological laws

Jth = −L11
∆T

T 2
− L12

v

T
∆p (59)

Jm = −L21
∆T

T 2
− L22

v

T
∆p (60)

with the Onsager relation
L12 = L21 (61)

Define Thermomolecular pressure — difference of pressure which arises between two phases held at a
finite temperature difference when the flow of matter goes to zero, i.e. Jm = 0

(
∆p

∆T

)

Jm=0

= − L21
L22vT

(62)

In the stationary state (Jm = 0) the state variables of the system no longer depend on time. Flow of
matter due to pressure difference is balanced by flow of matter due to temperature difference. This is
not an equilibrium state since the flow Jth is different from zero and thus there is entropy production.

In the case of the system consisting of a gas separated by a small opening, the thermomolecular
pressure difference is called the “Knudsen effect”.

This effect also occurs in liquid helium below the λ point (2.19◦K) and is called the “fountain
effect”.
Investigate and describe the “fountain effect”.

In the case of a permeable membrane separating the two phases, the effect is called “thermo-osmosis”.

Define Thermomechanical effect — a pressure difference is maintained between the two phases and the
temperature is maintained uniform throughout the whole system. Matter will flow from one phase
to the other and will result in a corresponding, proportional flow of energy.

(
Jth
Jm

)

∆T=0

=
L12
L22

(63)

L12/L22 has physical significance of energy transfer per unit transfer of mass. Often called heat of

transfer.

Q∗ ≡ L12
L22

(64)

Onsager’s reciprocity relation establishes the relation between the thermomolecular pressure differ-
ence and the thermomechanical effect

(
∆p

∆T

)

Jm=0

= − 1

vT

(
Jth
Jm

)

∆T=0

(65)

Both effects depend on the heat of transfer Q∗. Further insight into this heat of transfer can be
obtained by applying principle of conservation of energy to phase II.

dEII

dt
=
dIIφ

dt
=
dIIe Q

dt
+
dIIi φ

dt
(66)

but from eqns. (56) and (57)
dIIi φ

dt
= Jth + h

dnII

dt
(67)

so
dEII

dt
=
dIIe Q

dt
+ (
Jth
J

+ h)
dnII

dt
(68)



dEII

dt
=
dIIe Q

dt
+ (Q∗ + h)

dnII

dt
(69)

Thus, Q∗ + h is the average energy transferred to phase II per unit mass transfer, denote this by e∗

e∗ = Q∗ + h (70)

or
Q∗ = e∗ − h (71)

5.4 Kinetic Interpretation of Heat of Transfer — Knudsen Gas

Two phases connected by a small opening, the diameter of which is small compared to the mean free
path.

From kinetic theory of gases, the number of molecules coming from phase I which pass through
the opening is proportional to pI/

√
T I , and the corresponding molecules from phase II is pII/

√
T II .

For the stationary state, in which the flow of matter is zero,

pI

pII
=

√
T I

T II
(72)

Show that this equation can be derrived from the kinetic theory of gases.

With pII = pI +∆p, T II = T I +∆T, ignoring terms of (∆p)2 y (∆T )2, can write differential form
of the above as

∆p

∆T
=

1

2

p

T
=
R

2v
(73)

With eqn. (62)
(
∆p
∆T

)

Jm=0
= − L21

L22vT
and (64) Q∗ ≡ L12

L22
, the heat transfer for a Knudsen gas is

Q∗ = −RT
2

(74)

Heat of transfer can also be obtained through a direct statistical calculation by determining the
mean energy e∗ transported by a molecule crossing the opening.

Assume direction x is perpendicular to the opening. vx is the velocity of a molecule and f is
the corresponding velocity distribution function.

f ∝ exp−mv
2
x

2kT
(75)

Total flow of molecules through the unit area of the opening per unit time is (C is a constant
proportional to size of opening)

Cvx =
∫
∞

0

fvxdvx (76)

Each molecule passing the opening transports a kinetic energy

1

2
mv2 =

1

2
mv2x +

1

2
mv2y +

1

2
mv2z (77)



Total flow of energy (per unit time and unit area of the opening) corresponding to the coordinate x
is

C
1

2
mv2x · vx =

m

2

∫
∞

0

fv3xdvx (78)

The mean value of the energy transported per molecule is given by the ratio of the total flow of
energy to the total flow of molecules

m

2

∫
∞

0 fv3xdvx∫
∞

0 fvxdvx
= kT (79)

This is exactly twice the equipartition value of 1/2kT and is a consequence of fact that molecules of
high velocity have greater chance of crossing the opening than slow molecules.

The mean values of 1/2mv2y and 1/2mv2z are simply the equipartition value of 1/2kT . So the total
mean value of energy transported per molecule is 2kT, so per mole

e∗ = 2RT (80)

Therefore, the heat of transfer is

Q∗ = e∗ − h = 2RT − (5/2)RT = −RT
2

(81)

which is the same as (74), obtained through noneq. TD methods.

In cases in which the mean energy of the molecules crossing the separating layer between two phases is
different from the enthalpy h, there will be a heat of transfer, a thermomolecular pressure difference,
and a thermomechanical effect.

5.5 Diffusion — Einstein’s Relation

From equation for entropy production due to diffusion in a two component system, eqn. (4.78)

σ =
1

T

(

F1 −
∂µ+1
∂x

)

ρ1(ω1 − ω2) > 0 (82)

the corresponding phenomenological law is

ρ1(ω1 − ω2) =
L

T

(

F1 −
∂µ+1
∂x

)

(83)

For an ideal gas or a dilute solution,

µ1 = η1(T ) +RT logC1 (84)

by multiplying (83) by the molar mass of component 1 , M1, gives

C1(ω1 − ω2) =
L

T

(

F1M1 −
∂µ1
∂x

)

= −L
T

RT

C1

(
∂C1
∂x

− F1M1C1
RT

)

(85)



C1(ω1 − ω2) =
L

T

(

F1M1 −
∂µ1
∂x

)

= −L
T

RT

C1

(
∂C1
∂x

− F1M1C1
RT

)

(86)

Consider two particular cases.
1) A uniform system;

(ω1 − ω2) =
L

TC1
F1M1 (87)

coefficient of proportionality between the relative velocity ω1 − ω2 and the force F1M1 (per mole),

B =
L

TC1
(88)

is called the mobility of component 1.

2)A system without external forces;

C1(ω1 − ω2) = −
L

T

RT

C1

∂C1
∂x

(89)

Coefficient of proportionality bewteen flux of diffusion C1(ω1−ω2) and concentration gradient is the
diffusion coefficient

D =
L

T

RT

C1
(90)

Comparing eqns. (88) and (90), we obtain Einstein’s relation between mobility and the diffusion
coefficient,

D = RTB (91)

Consider the general definition of the diffusion coefficient without external forces

C1(ω1 − ω2) = −
L

T

∂µ1
∂x

(92)

or

C1(ω1 − ω2) = −
L

T

∂µ1
∂N1

∂N1
∂x

(93)

From an experimental point of view, the diffusion coefficient is measured from

C1(ω1 − ω2) = −DC
∂N1
∂x

(94)

where C is some constant. Therefore,

D =
1

TC
L
∂µ1
∂N1

(95)

(For an ideal gas or dilute solution, this definition is the same as eqn. (90).) Note that the diffu-
sion coefficient is a product of the phenomenological coefficient L and the thermodynamic quantity
(1/TC)(∂µ1/∂N1).

The coefficient L is always positive, and so is the quantity ∂µ1/∂N1 for all ideal systems. Therefore
the diffusion coefficient is positive and according to eqn. (94) the flow of diffusion is directed in a
direction such that concentration gradients are compensated.

For systems containing two “non-miscible”liquids, like benzene and water, ∂µ1/∂N1 is negative,
in this case, the two concentration gradients are maintained.



5.6 Continuous and Discontinuous Formalism

General method for describing continuous systems through discontinuous formalism.

Consider the case of thermal conductivity

diS/dt =
∫
σdV = −

∫
(Wx/T

2)(∂T/∂x)dV (96)

Would like to put this continuous form into a discontinuous form, eg.

diS/dt =
∑

i

JiXi (97)

Expand W and T in a Fourier series

W =
∑

f

Wf exp(ifx) T =
∑

f

Tf exp(ifx) (98)

Wf and Tf complex. Introducing these into eqn. (96) gives
Show this as homework.

diS/dt = −1/t20
∑

ff ′

Tf ifWf ′

∫
exp[i(f + f ′)x]dx (99)

= −1/t20
∑

f

ifTfWf (100)

Thus, the flows Ji are the Fourier components of W, and the generalized forces are ifTf . Eg.,
Fourier’s law becomes

Wf = −λifTf (101)


