
7 Chapter 6: Stationary Non-equilibrium States

7.1 Thermodynamic Significance of Stationary Non-equilibrium States

Have seen example of a typical stationary non-equilibrium state
— thermomolecular pressure difference:

transport of matter Jm is zero but the transport of energy between the two phases at different tem-
perature , as well as the entropy production, are different from zero.

Another example, various chemical reactions among various components. The system receives a
component M from the outside and transforms it into a final product F which is returned to the ex-
ternal environment. Stationary state arises when the concentrations of the intermediate components
no longer varies with time.

Now will see that the stationary state may be characterized by an extremum principle, — the entropy
production has its minimum value compatible with the external constraints.

Eg. Thermomolecular pressure difference — constraint is the difference in temperature between phase
I and II.

Eg. Chemical reactions, — constraint is the concentrations of M and F in the external environment.

7.2 States of Minimum Entropy Production

Consider the transfer of matter and energy between two phases at different temperatures;

diS

dt
= JthXth + JmXm > 0 (1)

with the phenomenological laws

Jth = L11Xth + L12Xm (2)

Jm = L21Xth + L22Xm (3)

For the stationary state
Jm = L21Xth + L22Xm = 0 (4)

Now we will show that eqn. (4) gives the condition that the entropy production is a minimum for a
given value of Xth.

We have
L12 = L21 (5)

so that eqn. (1) becomes

diS

dt
= L11X

2

th + 2L21XthXm + L22X
2

m > 0 (6)



Taking derivative of this eqn. with respect to Xm at constant Xth gives

∂

∂Xm

(
diS

dt

)

= 2(L21Xth + L22Xm) = 2Jm = 0 (7)

Thus the two conditions

Jm = 0 or
∂

∂Xm

(
diS

dt

)

= 0 (8)

are completely equivalent as long as the linear relations (3) are valid.

Argument can be generalized to the case of n independent forces X1 . . . Xn of which a certain number
k, X1 . . . Xk are kept constant. In the stationary state

Jk+1 = . . . = Jn = 0 (9)

These conditions are equivalent to the minimum conditions for the entropy production

∂

∂Xj

(
diS

dt

)

= 0 (j = k + 1, . . . , n) (10)

Note that since diS/dt is a definite positive quadratic expression, the extremum condition defined by
(10) refers to a minimum.

7.3 Consecutive Chemical Reactions

Consider open system undergoing sequence of r consecutive reactions

M → N (1) (11)

N → O (2) (12)
... (13)

P → F (r) (14)

Only components M and F can be exchanged with the environment, so

dnM
dt

=
denM
dt

− v1;
dnN
dt

= v1 − v2;
dnF
dt

=
denF
dt

+ vr (15)

For the stationary state, the flows dni/dt are zero so the above implies,

denM
dt

= v1 = v2 . . . = vr = −
denF
dt

(16)

The internal entropy production, including the two transport processes

M(outside world) → M (system)
F (outside world) → F (system)

is given by

T
diS

dt
= AM

denM
dt

+
r∑

ρ=1

Aρvρ +AF
denF
dt

> 0 (17)

where AF and AM are the forces or “affinities” corresponding to the transport of the components M
and F , and Aρ is the affinity of the ρ

th reaction.



Denoting the system itself by I and the external environment by II, then

AM = µIM − µ
II
M ; AF = µ

I
F − µ

II
F (18)

In the stationary state, eqn. (16) implies

T
diS

dt
= (AM +

∑

ρ

Aρ −AF )v = Av > 0 (19)

where v is the common value of the partial rates, eqn. (16), and A is the resultant affinity

A = AM +
∑

ρ

Aρ −AF (20)

corresponding to the global process

M (external environment) → F (external environment)

This affinity can often be written in the simple form (see eqn. (5.13))

A = RT log
K(T )

C−1M CF
(21)

and depends essentially on the concentrations CM and CF in the outside environment.
Show that this is correct.

We now show that conditions (16) that the net flows dni/dt = 0 in the stationary state give the
condition of minimal entropy production for a given value of the resultant affinity. Using the phe-
nomenological laws, eqn. (17) may be written

T
diS

dt
=

r+2∑

ρ=1

r+2∑

ρ′=1

Lρρ′
Aρ
T

A′ρ
T
> 0 (22)

Now must determine minimum of (22) given a fixed value of the resultant affinity (20). Can be done
by method of Lagrange’s undetermined multipliers. Must determine the extremum of the function

Φ =
r+2∑

ρ=1

r+2∑

ρ′=1

Lρρ′
Aρ
T

A′ρ
T
− 2λ

∑

ρ

Aρ
T

(23)

where λ is the Lagrange multiplier. The extremum conditions of (23) are

∂Φ

∂(Aρ/T )
= 2

∑

ρ′
Lρρ′

A′ρ
T
− 2λ = 0 (24)

or
vρ = λ (ρ = 1, 2, . . . r + 2) (25)

which is precisely the condition of stationary flows, eqn. (16).



7.4 More Complicated Systems of Chemical Reactions

Consider a more complicated system of chemical reactions. Synthesis of hydrobromic acid.

Br2 → 2Br (1) (26)

Br +H2 → HBr +H (2) (27)

Br2 +H → HBr +Br (3) (28)

The macroscopic stotiometric equation is

Br2 +H2 → 2HBr (2) + (3) (29)

For convenience, we ignore the affinities of the transport processes. The stationary state now corre-
sponds to an extremum of entropy production for a given value of the resultant affinity

A = A2 +A3 (30)

Show that the extremum conditions of entropy production are given by

v1 = 0 v2 = v3 (31)

It is easy to see that these conditions give that the time variation of the concentrations inside the
system are zero

dnH
dt

= v2 − v3 = 0 (32)

dnBr
dt

= 2v1 − v2 + v3 = 0 (33)

So, here again, the stationary conditions are equivalent to the conditions of minimum production of
entropy.

7.5 Time Variation of Entropy Production - Stability of Stationary States

Will show that irreversible processes occurring inside a thermodynamic system always lower the value
of the entropy production per unit time. Define

P ≡
diS

dt
(34)

Consider a system with two simultaneous chemical reactions. Entropy production per unit time is

P = L11

(
A1
T

)2
+ 2L12

A1A2
T 2

+ L22

(
A2
T

)2
> 0 (35)

Suppose that the phenomenological coefficients Lij are constant in time, then

1

2

dP

dt
=

(
L11
A1
T
+ L12

A2
T

)
d(A1/T )

dt
+
(
L12
A1
T
+ L22

A2
T

)
d(A2/T )

dt
(36)

= v1
d(A1/T )

dt
+ v2

d(A2/T )

dt
(37)



First, consider a closed system. Then A1 and A2 may then be expressed in terms of two indepen-
dent physical variables (eg. p and T ), assumed to be constant, and ξ1, ξ2, so that

1

2

dP

dt
=
v1
T




(
∂A1
∂ξ1

)

pT

v1 +

(
∂A1
∂ξ2

)

pT

v2



+
v2
T




(
∂A2
∂ξ1

)

pT

v1 +

(
∂A2
∂ξ2

)

pT

v2



 (38)

Now, (
∂A1
∂ξ2

)

pT

=

(
∂A2
∂ξ1

)

pT

= −

(
∂2G

∂ξ1∂ξ2

)

pT

(39)

Show that the above is correct. Therefore, Eqn. (38) may be written in the form

1

2

dP

dt
=
1

T

(
∂A1
∂ξ1

v21 + 2
∂A1
∂ξ2

v1v2 +
∂A2
∂ξ2

v22

)

(40)

Now, it can be shown that ∂Aρ/∂ξρ′ are negative definite (see chapter on Onsarger’s reciprocity
relations (Chpt. IV Prigogine) when considering fluctuations, and homework). Thus,

1

2

dP

dt
< 0 (41)

Therefore, in a closed system, the entropy production per unit time can only diminish.
Discuss this fact in relation to the development of an egg.

The above arguments can be extended to open systems.
The affinities can be written as functions of the mole numbers n1 · · ·nc. Therefore,

dA1
dt

=
∑

γ

∂A1
∂nγ

dnγ
dt

=
∑

γ

∂A1
∂nγ

dinγ
dt

+
∑

γ

∂A1
∂nγ

denγ
dt

nγ changing internaly due to 2 chemical ractions, and flow from env.

=
∑

γ

∂A1
∂nγ

νγ1
dξ1
dt
+
∑

γ

∂A1
∂nγ

νγ2
dξ2
dt
+
∑

γ

∂A1
∂nγ

denγ
dt

νγ1 is the stotiometric coefficient of componet γ in reaction 1

now
∑
γ
∂A1
∂nγ
νγ1 =

∑
γ
∂A1
∂nγ

∂nγ
∂ξ1

= ∂A1
∂ξ1

remember dξ = dnγ
νγ

Therefore,

dA1
dt

=
∂A1
∂ξ1

v1 +
∂A1
∂ξ2

v2 +
∑

γ

∂A1
∂nγ

denγ
dt

and similarly for dA2
dt
.

Using this relation in (37) gives

1

2

dP

dt
=
1

T

(
∂A1
∂ξ1

v21 + 2
∂A1
∂ξ2

v1v2 +
∂A2
∂ξ2

v22

)

+
1

T

∑

γ

(

v1
∂A1
∂nγ

+ v2
∂A2
∂nγ

)
denγ
dt

(42)



The time variation of the entropy production can thus be split into two terms: an internal term
which is always negative

1

2

diP

dt
=
1

T

(
∂A1
∂ξ1

v21 + 2
∂A1
∂ξ2

v1v2 +
∂A2
∂ξ2

v22

)

< 0 (43)

and an external term of no definite sign

1

2

deP

dt
=
1

T

∑

γ

(

v1
∂A1
∂nγ

+ v2
∂A2
∂nγ

)
denγ
dt

(44)

Conclusion, internal irreversible processes always operate in such a way that their effect is to lower
the value of the internal entropy production per unit time.

Has implications for the stability of the stationary state. If system is in state of minimum en-
tropy production, it therefore cannot leave this state by a spontaneous irreversible change. If, as a
result of some fluctuation, it deviates from the this state, internal changes will take place to bring
the system back to its initial state, the stable state.

7.6 Entropy Flow in Stationary States

In the stationary state, the total entropy is independent of time. Therefore, positive entropy pro-
duction has to be compensated by a negative flow of of entropy such that,

dS

dt
=
deS

dt
+
diS

dt
= 0 (45)

Since
diS

dt
> 0 (46)

we must have
deS

dt
< 0 (47)

Stationary non-equilibrium states cannot occur in isolated systems because a flow of entropy is nec-
essary to maintain the stationary state.

Eg. Consider a system of two subsystems maintained at temperatures T I and T II . Both subsys-
tems are individually open but the system as a whole is closed. The entropy flow from the outside
is

deS

dt
=
1

T I
dIeQ

dt
+

1

T II
dIIe Q

dt
(48)

where dIeQ represents the heat flowing into (or out of) phase I from the external environment.
Suppose that T I > T II . Then, in order to maintain the temperature difference, we must have
dIeQ > 0 and d

II
e Q < 0. Moreover, in the stationary state, the total heat received by the system is

zero
dQ = dIeQ+ d

II
e Q = 0 (49)

and thus
deS

dt
=
dIeQ

dt

(
1

T I
−

1

T II

)
< 0 (50)

Negative entropy flow due to fact that the heat received by the system at temperature T I is returned
to the external world at a lower temperature T II .



Eg. Consider an open system. Entropy flow to or from external environment has been given by
(3.51) (flow of energy φ and matter nγ)

deS =
dφ

T
−
∑

γ

µγ
T
denγ (51)

Instead of dφ/dt, which is only defined apart from a term β(dm/dt) (see section 2.4) where β is an
arbitrary constant, it is more convenient to use the flux J ′th defined in eqn. (4.19). The entropy flow
is then

deS

dt
=

1

T
J ′th −

∑

γ

µγ − hγ
T

denγ
dt

(52)

=
1

T
J ′th +

∑

γ

sγ
denγ
dt

(53)

where we have used
µγ = hγ − Tsγ (54)

based on the relation G = H − TS.
Show that eqn. (54) is correct.
Note that in the stationary state, eqn. (53) has to become negative. Consider the limiting case when
J ′th = 0, i.e. when the entropy exchanges with the environment are due solely to an exchange of
matter. Then,

deS

dt
=
∑

γ

sγ
denγ
dt

< 0 (55)

Therefore, the entropy of matter entering the system has to be smaller than the entropy of matter
given off by the system to the external world. From a thermodynamic point of view, the open system
“degrades” the matter it receives and this degradation maintains the stationary state.

7.7 Time Variation of the Entropy

Have shown that

1. entropy flows from a system in a stationary state toward the external environment,

2. during the evolution toward a stationary state the entropy production decreases and takes its
lowest value compatible with the external constraints

Will now examine what happens to the entropy of the system during this evolution — will find
that it often decreases.

Eg. Consider the Knudsen gas (Chpt. 5 sec. 4). Two subsystems connected by an opening of a
diameter smaller than the mean free path. The distribution of matter in the stationary state is given
by eqn. (6.72),

pI

pII
=

√
T I

T II
(56)

The volumes of the two subsystems are assumed to be the same. Will now calculate the entropy of
the system in the initial, uniform, state and compare it with the entropy once the system has reached
the stationary state — will show that the entropy decreases.
In the initial state, we have one mole of gas in each subsystem

nIin = n
II
in = 1, nI + nII = 2 (57)



In the stationary state, Eqn. (56) leads to (since V I = V II = V ) using pV = NRT

nI

nII
=

(
T II

T I

)1/2
=
(
1 +

∆T

T

)1/2
(58)

Thus, the distribution of matter for the stationary state is (because we need nI + nII = 2)

nIst =
2[1 + (∆T/T )]1/2

1 + [1 + (∆T/T )]1/2
; nIIst =

2

1 + [1 + (∆T/T )]1/2
; (59)

In textbooks on thermodynamics, it can be found that the entropy of a perfect gas is

S = n
[
σ(T )−R log

n

V

]
(60)

and that
∂S

∂T
= n

∂σ

∂T
= Cv/T (61)

The entropy of the system can thus be written

S = SI + SII = nI
[

σ(T )−R log
nI

V

]

+ nII
[

σ(T +∆T )−R log
nII

V

]

(62)

Applying this formula to the initial state and the stationary state, and developing σ(T + ∆T ) in
powers of ∆T/T we find that

Sst − Sin = −(1/16)(4Cv +R)
(
∆T

T

)2
< 0 (63)

Show that the above formula is correct.
The entropy of the stationary state is thus smaller than that of the initial state. The same is true
for thermal diffusion. The separation of matter corresponds to a decrease of entropy in comparison
with the initial uniform state.
Note; the above is not always true, entropy may increase in the stationary state.

8 Stationary State Coupling of Irreversible Processes

Interference of irreversible processes shown to occur through the existence of interference coefficients
Lik (i �= k) in the phenomenological relations. However, it is possible that in the stationary state,
processes which are not connected directly by phenomenological coefficients may be coupled, eg.
diffusion and chemical reactions.

Example, open system (phase I) receiving a component M from the external environment (phase
II), transforming it into component N , which is returned to the external environment. Besides M
and N , the system receives a component O which does not take part in the chemical reaction (inert
component).

The entropy production is

T
diS

dt
= AM

denM
dt

+AN
denN
dt

+AO
denO
dt

+Achvch > 0 (64)

AM , AN , and AO are affinities corresponding to the transfer phenomena.



Assume the following phenomenological relations

denM
dt

= L11
AM
T
+ L12

AO
T

(65)

denO
dt

= L21
AM
T
+ L22

AO
T

(66)

denN
dt

= LN
AN
T

(67)

vch = Lch
Ach
T

(68)

Only the transport of components M and O is coupled. What are the consequences of this coupling
in the stationary state?

Stationary state conditions are;

dnM
dt

=
denM
dt

− vch = 0;
dnN
dt

=
denN
dt

+ vch = 0;
dnO
dt

=
denO
dt

= 0 (69)

or

vch =
denM
dt

= −
denN
dt

;
denO
dt

= 0 (70)

Using the phenomenological equations (68) and Onsagers reciprocity relation, gives

AM =
T

L11 − (L212/L22)
vch; AN = −

T

LN
vch; AO =

−T (L21/L22)

L11 − (L212/L22)
vch (71)

The last formula shows that in the stationary state a difference in concentration in the inert compo-
nent O has appeared.

AO = RT log
K(T )

(CIIO )
−1(CIO)

=
−T (L21/L22)

L11 − (L212/L22)
vch (72)

The concentration of O in the open system may be higher or lower than in the external environment,
accroding to the sign of the phenomenological coefficient L21. This effect is proportional to the rate
of the chemical reaction. Thus, an interference between transport phenomena and chemical reaction
occurs even though the two processes are not directly coupled by phenomenological laws. Such a
coupling is called stationary coupling.

As a consequence of the positive definite value of the entropy production, it is easy to show that

L11 −
L212
L22

> 0 (73)

is always positive, so that the affinity AM has always the same sign as the reaction rate vch. If
component M is consumed in the reaction then vch > 0 , and therefore AM > 0, meaning that the
concentration inside the system is lowered with respect to the environment.

But, this is not always the case.



Consider the more general phenomenological laws

denM
dt

= L11
AM
T
+ L12

AO
T
+ L13

AN
T

(74)

denO
dt

= L21
AM
T
+ L22

AO
T
+ L23

AN
T

(75)

denN
dt

= L31
AM
T
+ L32

AO
T
+ L33

AN
T

(76)

vch = Lch
Ach
T

(77)

We find that, instead of (72),

AM =
T

D
(L22L33 − L12L23 − L

2

23 + L13L22)vch (78)

where D is the determinant of Lij

D ≡

∣∣∣∣∣∣∣

L11 L12 L13
L21 L22 L23
L31 L32 L33

∣∣∣∣∣∣∣
> 0 (79)

Since the entropy production due to the coupled flows is positive, (Eqn. (64)), the determinant must
be positive also.
Show that this is true.
It may happen that the numerator in Eqn. (78) is negative. There would then be in the stationary
state a flow of M (the reacting constituent) against its concentration gradient as a result of the
stationary state coupling between transport phenomena and chemical reaction.

Eg. In a living cell at a stationary state, may have a non-equilibrium distribution of matter which
differs from that in its environment by amounts determined by the rate of metabolism in the cell.

9 Applications to Biology

The transport of a compound against its concentration gradient could take place for the following
reasons

1. The existence of a force which compensates the gradient of the chemical potential. Eg. charged
particles influenced by an electric potential.

2. Coupling by means of phenomenological relations. Eg. thermomolecular pressure difference,
thermodiffusion.

3. Stationary state coupling as seen above.

All these effects may be operating in living organisms. Irreversible processes related to internal
degrees of freedom may also play a part.

May consider a living organism as evolving under constant constraints, eg. fixed concentrations
of components in the environment which are transformed within the organism.

The stationary state may probably, to a good approximation, be considered as a state of minimum
production of entropy per unit time. Fits well with some striking characteristics of living organisms.



1. Well documented stability against external pertubation.

2. Living organisms show a decrease in entropy production during their life span ... leading to
the stationary state.

3. Organization also increases during this evolution — corresponds to a decrease in entropy as
found in section 7.

It has always been difficult to reconcile living organisms with thermodyanmics. However, the
situation looks much more plausible from this new perspective of open systems and stationary states.


