
8 Chapter 8: Non-linear Thermodynamics of Irreversible

Processes

8.1 Introduction

Irreversible thermodynamics is based on the Gibbs formula and an evaluation of the entropy produc-
tion and flow. Gibbs formula was derived for equilibrium conditions and its use in non-equilibrium
situations is a new postulate. Must ultimately be justified by methods of statistical mechanics of
irreversible processes.

Use of Gibbs formula implies that even without equilibrium conditions, entropy depends on the
same independent variables as in equilibrium.
Based on the kinetic theory of gasses, domain of validity of the thermodynamics of irreversible pro-
cesses is restricted to domain of validity of linear phenomenological laws. (Excludes only cases of
rarefied gasses and very low temperature situations where interactions are not numerous enough to
maintain a state of local equilibrium.)

For chemical reactions, reaction rate must be sufficiently slow so as not to disturb the Maxwell
equilibrium distribution of the velocities of each component. (Excludes only reactions of abnormally
low energies of activation.)

For the study of stationary states, we assumed

1. Linear phenomenological laws

2. Validity of Onsager’s reciprocity relations

3. Phenomenological coefficients can be treated as constants.

These conditions are more restrictive than conditions for the validity of the Gibbs formula. Eg. In
chemical reactions, linear phenomenological laws may not be sufficiently good approximations; in
transport processes it may be necessary to account for the variation of the phenomenological coeffi-
cients (eg. variation in the coefficient of thermal conductivity with temperature). These effects may
be considered as being non-linear.
Purpose of this chapter is to extend the treatment into the non-linear regime. Eg. theorem of mini-
mum entropy production was only proved for the linear regime.

8.2 Variation of the Entropy Production

The entropy production is

P =
diS

dt
=
∑
k

JkXk ≥ 0 (1)

Decompose the time change dP into two parts, one related to the change of forces and the other to
the change of flows

dP = dXP + dJP =
∑
k

JkdXk +
∑
k

XkdJk (2)
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Will now prove the following theorems

1. Under the restrictive conditions assumed for the study of the stationary state,

dXP = dJP =
1

2
dP (3)

Proof:

dXP =
∑
k

JkdXk =
∑
kl

LklXldXk (4)

using the reciprocity relations and treating the Lkl as constants

dXP =
∑
kl

Xl(LlkdXk) =
∑
l

XldJl = dJP (5)

2. In the whole domain of the validity of thermodynamics of irreversible processes, the contribution
of the time change of the forces to the entropy production is negative or zero

dXP ≤ 0 (6)

Holds whenever the boundary conditions are time-independent. This is the most general
result obtained in the thermodynamics of irreversible processes.
Proof: Will not provide a general proof. Instead, will prove it for chemical reactions;
Consider an open system in contact with some external phases in a time-independent state.
For each component of the system, one of the following two conditions is realized

(a) it has a time-independent chemical potential determined by the external reservoirs

(b) it cannot cross the boundary of the system

The change in the number of moles of component γ is

dnγ/dt = denγ/dt+
∑
ρ

νγρvρ (7)

multiplying both sides by the time derivative of the chemical potential of component γ gives

µ̇γ(dnγ/dt) = µ̇γ(denγ/dt) +
∑
ρ

νγρµ̇γvρ (8)

First term on right hand side vanishes by the boundary conditions. Summing up all components
and taking account that the temperature and pressure are assumed constant in time

∑
γ

µ̇γ
dnγ
dt

=
∑
γ

∑
γ′

(
∂µγ
dnγ′

)
pT

dnγ
dt

dnγ′

dt
=
∑
ργ

νγρµ̇γvρ (9)

Introducing the affinity Aρ
Aρ = −

∑
γ

νγρµγ (10)

gives ∑
γ

∑
γ′

(
∂µγ
dnγ′

)
pT

dnγ
dt

dnγ′

dt
= −

∑
ρ

vρ
dAρ
dt

(11)
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Now, equilibrium stability conditions involve the inequality (see eqn. (4.28) in section of
fluctuations in book of Prigogine)

∑
γ

∑
γ′

(
∂µγ
dnγ′

)
pT

xγxγ′ ≥ 0 (12)

whatever the quantities x1, . . . , xc. Theorem of classical thermodynamics and is analogous
to the theorem that specific heat at constant volume is positive. Applying this theorem to
eqn. (11) gives (can be applied because we assume that the chemical potentials have the same
functional dependence on the nγ as in equilibrium)∑

ρ

vρdAρ = TdXP ≤ 0 (13)

since the generalized flows are vρ and the forces are Aρ. Which completes the proof.

Note that by combining eqn. (13) with eqn. (5) gives the theorem of minimum entropy production
valid in the linear region

dP ≤ 0 (14)

An important feature of the inequality dXP ≤ 0 is that it can be extended to include flow processes
in inhomogeneous systems as well (proved elsewhere). Therefore,

dΦ =
∫
dV

∑
k

J ′kdX
′
k ≤ 0 (15)

where the integral is over the volume of the system and where the forces X ′k and the flows J ′k now
include mechanical processes such as convection terms. For time-independent boundary conditions
inequality (15) is so general that it may be called a universal evolution criterion valid throughout
the whole range of macroscopic physics.

Note, however, that dΦ is not a total differential. Therefore it does not imply the existence of
a universal potential (eg. like entropy), however, will see that it leads to the concept of a “local
potential” which is nevertheless of great interest.

8.3 Steady States and Entropy Production

Note that even though dXP is not a total differential, it can still be used in a manner similar to
the use of the entropy production to describe the equilibrium of chemical reactions, but now in the
steady state;
Consider first

TdiS =
∑
ρ

Aρdξρ ≥ 0 (16)

The condition of chemical equilibrium

Aρ = −
∑
γ

νγρµγ = 0 (17)

is independent of the existence of of thermodynamic potentials. Eqn. (13) can be treated in a similar
way.
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The condition for a time independent situation is∑
ρ

vρdAρ = 0 (18)

for all independent variations of the affininties. Suppose that the steady state can be characterized
by the concentrations X1, . . . Xc of the different components. Equation (18) implies the following
conditions between the reaction rates ∑

ρ

vρ
∂Aρ
∂Xγ

= 0 (19)

Show that the above is true. (Remember that

∂

∂Xm

(
diS

dt

)
= 0 (20)

)
Which is a restatement of the usual relations between the reaction rates at the steady state. To see
this, consider the following example of a sequence of reactions

A
1
⇀↽ X

2
⇀↽ B (21)

3 ‖ (22)

M (23)

where the concentrations of A and B are fixed. There are only two independent affinities because of
the condition

A1 + A2 = given or δA1 + δA2 = 0 (24)

Therefore, eqn. (18) leads to
v1 = v2, v3 = 0 (25)

which are indeed the usual steady state conditons (see Chpt. 7.4 notes, discussion of production of
hydrobromic acid) and include as a special case the equilibrium condition

v1 = v2 = 0, v3 = 0 (26)

Now, consider a restatement of eqn. (13) of the following form

TdXP = d(
∑

Aρvρ)−
∑

Aρdvρ ≤ 0 (27)

The conditions of the steady state are now

δ

(
diS

dt

)
−
∑
ρ

Aρ
T
δvρ = 0 (28)

and the equations corresponding to (19) are

∂

∂Xγ

diS

dt
−
∑
ρ

Aρ
T

∂vρ
∂Xγ

= 0 (29)

These are the general relations which give the steady state concentrations.
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Near equilibrium, in the domain of validity of the linear kinetic laws we have

∑
ρ

Aρ
T
δvρ =

∑
ρ

vρ
T
δAρ =

1

2
δ

(
diS

dt

)
(30)

Remember that dXP = dJP = 1/2dP .
Therefore Eqn. (28) reduces to the theorem of minimum entropy production

δ

(
diS

dt

)
= 0 (31)

In general, both thermodynamic and kinetic quantities enter into the determination of the steady
state through Eqn. (29). It is only near equilibrium that all explicit reference to the reaction rates
disappears.

Consider again the chemical reactions (23). Asume kinetic laws of the form (all equilibrium and
rate constants, as well as RT are set equal to one).

v1 = A−X v2 = X −B v3 = X −M (32)

Eqn. (29) gives

∂

∂X

diS

dt
+

A1 − A2 − A3

T
= 0

∂

∂M

diS

dt
+

A3

T
= 0 (33)

Using the steady state condition
v1 = v2, v3 = 0 (34)

and the usual form of the affinities in terms of the concentrations

A = log
CII

CI
(35)

gives

∂

∂X

diS

dt
= −log 4AB

(A+B)2
(36)

∂

∂M

diS

dt
= 0 (37)

Define
1− γ ≡ B/A (38)

where γ measures the deviation of the steady state from thermodynamic equilibrium (for which B/A
=1). Then Eqn. (36) becomes

∂

∂X

diS

dt
= −log4(1− γ)

(2− γ)2
(39)

Note that, as expected, the deviations from the theorem of minimum entropy production begin with
the terms of second order in γ.
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Consider now the action of a catalyst on reaction (23). Specificaly, assume the following rate
equation for v1

v1 = (1 + αM)(A−X) (40)

Here M is assumed to be the catalyst. Will see that the steady state concentration of M increases
as a result of its catalytic action. Using Eqn. (40) together with Eqn. (32) and the steady state
conditions (34) gives

M = X =
1

2α
[αA− 2 + [4 + 4αA(1− γ) + α2A2]

1
2 ]

→ 1

2
(A+B) for α→ 0

→ A for α→∞ (41)

If A is less than B then the concentration of M has increased due to the catalytic activity. This
increase in concentration can be large if more complicated reactions of the following form are con-
sidered.

A ⇀↽ X1 ⇀↽ X2 ⇀↽ . . . ⇀↽ Xn ⇀↽ B (42)

‖ (43)

M (44)

For n large, we find that in the steady state in the absence of catalytic activity (α→ 0)

Xn = M = B +O(
1

n
) (45)

while if M acts as a catalyst for all reactions leading to Xn and for (α→∞)

Xn = M = A (46)

Thus the amplification of the steady state concentration can take arbitrarily large values if the ratio
B/A is sufficiently small. Note that this amplification is a typical non-equilibrium process since in
equilibrium B/A = 1.

Consider now the entropy production of the sequence of chemical reactions (23)

diS

dt
= (A−X)(1 + αM) log

A

X
+ (X −B) log

X

B
+ (X −M) log

X

M
(47)

(from diS
dt

=
∑
vA)

At the steady state, using (41)(
diS

dt

)
α→0

=
A−B

2
log

A

B
= −A

2
γ log(1− γ) (48)

and (
diS

dt

)
α→∞

= −Aγ log(1− γ) (49)

Note that the entropy production is larger for α→∞ than for α→ 0.
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Will now show that the entropy production as a function of M has a minimum which shifts to
larger values of M as a result of the catalytic activity. In the steady state, we have X = M (41).

∂

∂M

diS

dt
= −A+B − 2M

M
− log

AB

M2
− α

[
(A−M)− (A− 2M) log

A

M

]
(50)

The exact positions of the steady state concentrations of M can be obtained by using (50) with eqns.
(29). However, to simplify the analysis and for a qualitative understanding, we assume the condition
of minimum entropy production, i.e.

∂

∂M

diS

dt
= 0 (51)

Using this, and the steady state conditions eqns. (41), it can be shown that the catalytic activity
moves the minimum of the entropy production from M = 1− (γ/2) to 1.

Such a result may shed light on the problem of the occurance of complicated biological molelcules in
steady state concentrations which are of orders of magnitude larger than the equilibrium concentra-
tions.

Thus, for steady states sufficiently far from equilibrium, kinetic factors (like catalytic activity) may
compensate for thermodynamic improbability and thus lead to an amplification of the steady state
concentrations. Note that this is a non-equilibrium effect. Near equilibrium, catalytic action would
not be able to shift in an appreciable way the position of the steady state.

7



8.4 Evolution Criterion and Velocity Potential

As mentioned, the general evolution criterion TdXP ≤ 0 does not lead in general to a classical po-
tential. Can be expected because the existence of a potential implies the possibility of the system to
forget its initial conditions (Eg. an isolated system tends to a state of maximum entropy regardless
of the initial conditions. Similarly, in domain of validity of theorem of minimum entropy production,
the final state is independent of the initial specification of the system compatible with the given
constraints.)

Here we will see systems which cannot forget the initial perturbation and their evolution cannot
be described in terms of any potential in the classical sense.

However, a description in terms of a generalized potential may still be useful.

There is no difficulty if one deals with only one or two independent variables. Eg. for a single
independent chemical reaction

TdXP = v(A)dA

= dD ≤ 0 (52)

The right hand side may be considered as the differential of some function D - to be called a velocity
potential. Therefore,

v = ∂D/∂A (53)

In the stationary state
v = ∂D/∂A = 0 (54)

and the stability condition for this state is that D is a minimum

∂2D/∂A2 > 0 (55)

This minimum condition has to be realized, if not, the slightest fluctuation would permit the system
to leave this state (see (52)). As an example, consider the reactions

A
1
⇀↽ X

2
⇀↽ B (56)

Assume that the concentrations of A and B are given and time independent. Therefore, the total
affinity for the two reactions

A = A1 + A2 = log
A

X
+ log

X

B
(57)

will also be time-independent. We therefore have a single independent process and we can write

TdXP = (v2 − v1)dA2 ≤ 0 (58)
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We now assume the following expressions for the reaction rates corresponding to auto-catalytic
reactions

v1 = Xn(A−X); v2 = Xn(X −B) (59)

We then easily find that the velocity potential has the form

D =
2

n+ 1
Xn+1 − 1

n
(A+B)Xn = function independent of X (60)

Giving two stationary states
X = 0 (61)

and

X =
A+B

2
(62)

The second state corresponds to a minimum of D and therefore to a stable situation. However,
the first corresponds to a maximum of D. Has an obvious physical reason, the smallest fluctuation
starting from (61) will increase the rates (59) and therefore again increase the value of X until the
stable state (62) is reached.

Consider now, two independent reactions

A
1
⇀↽ X

2
⇀↽ Y

3
⇀↽ B (63)

We take the simplest possible kinetic laws

v1 = A−X
v2 = X − Y
v3 = Y −B (64)

Assume again that A and B are given and constant. Therefore,

dXP =
∑
ρ

vρdAρ

= (A−X)d log
A

X
+ (X − Y )d log

X

Y
+ (Y −B)d log

Y

B

=
(
X − A
X

− Y −X
X

)
dX +

(
Y −X
Y

− B − Y
Y

)
dY (65)

We will now see that this is not a total differential. The existence of a velocity potential would imply

∂D

∂X
=
X − A
X

− Y −X
X

∂D

∂Y
=
Y −X
Y

− B − Y
Y

(66)

But this is clearly impossible since

∂2D

∂X∂Y
= − 1

X
6= ∂2D

∂Y ∂X
= − 1

Y
(67)

Therefore, (65) is not in general a total differential. It is only so when we can replace X by Y by
the same steady state values.

9



Now, at the steady state Eqns. (64) give

X =
B + 2A

3
; Y =

A+ 2B

3
(68)

Thus X will be near to Y if the ratio of A/B is near to 1, but then the total affinity of the reactions
will be near to zero. Thus, near equilibrium a velocity potential indeed exists, it is just the entropy
production. Show that for the example above this is true.

(Note that we could have introduced an integrating factor to satisfy the total integrability con-
dition. However, this cannot be done for more than two independent variables and has therefore no
great interest.)

Graphically, the velocity field in the space of the thermodynamic variables (X and Y ) can be repre-
sented in the following manner.

Case (a) referes to the case in which a velocity potential exists. The velocity lines are orthogonal to
the surface corresponding to a given value of the velocity potential. Case (b) is the case in which
ther is no velocity potential. We have then in general a turning motion of the velocity lines in the
approach to the steady state S. In extreme cases this turning motion can become a rotation around
the steady state. To be seen in the following section.
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8.5 Rotation around the Stationary State

Consider now in more detail rotations around the stationary state (chemical oscillations). As in the
example of eqn. (64) with concentrations of A and B kept constant, consider case of two independent
chemical reactions. Develop the rates in the neighborhood of the stationary state. Eg.

va = v1 − v2

vb = v2 − v3 (69)

Remember that these rates vanish in the stationary state.

We no develop the rates in terms of the affinities in the neighborhood of the stationary state

va = LaaδAa + LabδAb

vb = LbaδAa + LbbδAb (70)

where δAa and δAb are the differences between the affinities and their values at the stationary state.

If the stationary state is far from equilibrium, which corresponds to an affinity large with respect
to RT (remember that A = RT log(K/C−1

A CB)) then the phenomenological coefficients no longer
satisfy Onsager’s relations

Lab 6= Lba (71)

As an extreme case, we will examine the particular situation in which the matrix L is purely anti-
symmetric

Laa = Lbb = 0, Lab = −Lba (72)

then

va = LabδAb

vb = −LabδAa (73)

giving

−T dXP
dt

= −Lab
[(
δAb

dAa
dt

)
−
(
δAa

dAb
dt

)]
(74)

Introducing polar coordinates θ, ρ in the plane Aa, Ab gives

−T dXP
dt

= −Labρ2dθ

dt
≥ 0 (75)

Therefore we have a rotation and this inequality determines the direction of rotation around the
stationary state. Similar results can be shown for an arbitrary number of reactions. Note that rotation
is permitted around a non-equilibrium stationary state while it is not permitted around an equilibrium
state. The rotation around the stationary state, even if it introduces negative contribution to the
entropy production, is possible as long as the total entropy production remains positive.
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8.6 Local Potentials and Fluctuations

A generalized, “local” potential can be useful in resolving non-linear problems.

Eg. Consider the case of heat conduction in solids. The equation of energy conservation is

ρ
∂e

∂t
= −∂Wj

∂xj
(76)

where ρ is the density and e is the energy per unit mass. W is the heat flow. Multiplying (76) by
∂T−1/∂t gives for the left-hand side

ψ = ρ
∂T−1

∂t

∂e

∂t
= −ρ 1

T 2

∂T

∂t

∂e

∂t

[
∂t

∂T

∂T

∂t

]
= −ρCv

T 2

(
∂T

∂t

)2

≤ 0 (77)

This quantity has a well defined sign because Cv = ∂e/∂T is always positive.
The right-hand side of (76) gives

ψ = −∂Wj

∂xj

∂T−1

∂t
=

∂

∂xj

(
−Wj

∂T−1

∂t

)
+Wj

∂

∂t

(
∂T−1

∂xj

)
≤ 0 (78)

Integrating over the volume gives, for time-independent boundary conditions,

∫
ψdV =

∫
dVWj

∂

∂t

∂T−1

∂xj
≤ 0 (79)

Show that the first term in eqn. (78) is zero after doing the integral Hint: Use Gauss’s Law.
Inequality (79) is a special case of (15) with the thermodynamic force given by

Xj =
∂(1/T )

∂xj
(80)

and the flow
Jj = Wj (81)

Using Fourier’s law Wx = −(L/T 2)∂T/∂x = −L∂T−1/∂xj in (79) gives

∫
dV λ(T )T 2∂T

−1

∂xj

∂

∂t

∂T−1

∂xj
≤ 0 (82)

where λ(T ) = −L/T 2.

Now, consider the Fourier equation for temperature (see Chpt. 4)

∂T

∂t
= λ(T )

∂2T

∂x2
j

(83)

Let T0(x) be the solution of the time-independent Fourier equation

0 = λ(T )
∂2T

∂x2
j

(84)

12



We can also replace λ(T )T 2 by λ0T
2
0 . Eqn. (82) still remains valid but now we can write (using

∂F 2/∂t = 2F∂F/∂t).

1

2

∂

∂t

∫
dV λ(T0)T 2

0

(
∂T−1

∂xj

)2

≤ 0 (85)

The integral

φ(T, T0) =
1

2

∫
dV λ(T0)T 2

0

(
∂T−1

∂xj

)2

(86)

is the local potential appropriate to heat conduction in the time-independent case. The essential
point is that it is a function of both T and T0. This splitting of the variable T “in two” has (we
will see below) a simple physical meaning: T0 is the average distribution of the temperature T . T is
considered as a fluctuating (or random) quantity. The properties of φ(T, T0) are;

1. φ(T, T0) decreases in time until it reaches its minimum value of φ(T0, T0); and

2.

φ(T0, T0) =
1

2

diS

dt

(See Eqns. (5.1), (5.2) and (5.76) in book of Prigogine).

The local potential therefore appears as a generalization of the usual thermodynamic entropy pro-
duction.

We now minimize (86) with respect to T (at constant T0) giving (note that the minimization of
an integral is a standard mathematical problem leading to the so-called Euler-Lagrange equation of
variational calculus) (

δφ

δT

)
T0

= 0,
∂

∂xj
λ0T0

(
∂T−1

∂xj

)
= 0 (87)

If, moreover, after the minimization we use the subsidiary condition

T = T0 (88)

we obtain that the divergence
∂W

∂xj
= 0 (89)

(see Eqn. (5.2) and (5.3) in book of Prigogine).
In this way we derive the steady state condition (89) as an extremum condition of our local potential.
Provide the derivation of equations (87) and (89).

The two functions T and T0 which appear in the local potential have both a simple and impor-
tant physical meaning: T0 is the average temperature and T = T0 + δT is a fluctuating temperature
whose probability can be calculated using the Einstein-Boltzmann formula (Eqn. (4.33) in book of
Prigogine)

The method permits the treatment of all dissipative processes through variational techniques in
conjunction with an appropriate local potential which is itself a generalized entropy production.
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