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Abstract

A novel ‘symbiotic’ algorithm, based on the genetic algorithm, is presented for finding the structure and energy
distribution of the lowest energy isomers of large clusters and molecules. This approach takes advantage of the strong

Ž .coupling of nearest neighbor atoms through the fitness function the binding energy directing the selection process, due to
the short range of the interatomic potential in comparison to the cluster size. Evolving locally in cells and then forming and
evolving a symbiosis of the cells is substantially more efficient than employing the genetic algorithm on the full cluster.
Application is made to Lennard-Jones clusters of 6, 18, 23, 38 and 55 atoms. q 1998 Elsevier Science B.V. All rights
reserved.

1. Introduction

The determination of the structure of the ground
state and low energy isomers of clusters of atoms, or
molecules, is important in many practical applica-

w xtions from nano-electronics 1 to the design of an-
w xtibiotics 2 . The inherent difficulty in experimentally

isolating and probing such fragilely bound systems
has put the onus on theoretical calculations to predict
their structural, electronic, chemical and thermody-
namic properties. There are now various approaches
to this end based on the optimization, leading to low
energy structures, of, either a basis set of wavefunc-

Ž .tions or densities density functional theory in quan-
tum calculations, or atom coordinates in semiempiri-
cal approaches. Ab initio and density functional stud-

ies are generally considered to be the most informa-
tive but are computationally too expensive to imple-
ment in the global optimization of large clusters.
Semi-empirical approaches employing potentials with
parameters adjusted to either experimental data or

w xselected ab initio results 3 are an effective alterna-
tive. Such potentials can often include effects beyond

w xthe scope of the formalism 4 and, in any case,
results obtained through the semiempirical optimiza-
tion can be used as configurational input to a full ab
initio or a density functional calculation.

An effective, and therefore popular, optimization
approach is simulated annealing invoking either ran-

Ž . w xdom displacements Monte Carlo 5 or molecular
w xdynamics 6,7 . However, recent investigations of

large clusters with complex potential energy surfaces
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Že.g. the number of local, energy minima of a
Ž .Lennard-Jones LJ cluster increases exponentially

w x.with the number of atoms 8 have demonstrated
that the genetic algorithm can significantly outper-
form simulated annealing and most other currently
available global optimization techniques 1 in finding
the ground state structure and that of the low energy

w xisomers 10–13 .
w xThe genetic algorithm, proposed by Holland 14 ,

is based on nature’s efficient problem solving method
of evolving a microscopic genetic code through mu-
tation and crossover, and selection based on the
fitness of the corresponding individuals. It is an

w xintelligent and information efficient approach 11 to
multi-variable, global optimization and has been suc-
cessfully applied to a large number of complex

w xproblems from the physical sciences 15 . Judson et
w xal. 10 first applied the genetic algorithm to the

configuration of a cluster of atoms confined to two
Ž .dimensions and bound through a Lennard-Jones LJ

potential. Recent application to the well studied,
w x w xthree dimensional LJ 16 and ionic 17 clusters has

yielded new ground states and low energy isomers
for even relatively small systems. A general intro-
duction to genetic algorithms can be found in Sutton

w xand Boyden 18 . For an introduction to the genetic
algorithm approach applied to cluster physics see

w xMichaelian 17 and, to molecular conformation see
w xJudson et al. 19 .

The intention of this Letter is to demonstrate that
the efficiency of this evolutive approach to cluster or
molecular configuration can be substantially im-
proved by taking advantage of a peculiarity of the
fitness function directing the selection process. For
optimization at zero temperature, the fitness function
is naturally chosen as being directly related to the
binding energy of the configuration as a whole.

1 w xIn an interesting alternative, Wales and Doye 9 have applied
the Monte Carlo search to the LJ cluster after transforming the
potential energy surface into a collection of interpenetrating stair-
cases, the steps corresponding to basins of attraction of the local
minima. This transformation removes the transition state regions
while leaving the global minimum unchanged. They report new

Žglobal minima not found in previous searches including those
.employing the genetic algorithm .

However, for large clusters or molecules the inter-
atomic potential is often of short range in compari-
son to the size of the system and the contribution to
the binding energy due to interactions between near-
est neighbors is of significantly larger magnitude
than that for interactions between atoms separated by
larger distances. This is particularly true for the LJ
potential used in modeling rare gas clusters. Genetic
fitness is thus largely determined by the nearest
neighbor structure. This means that, to a first approx-
imation, the multi-variable, global problem can be
reduced to a linear combination of various local
problems of fewer variables, resulting in a consider-
able reduction in the complexity and in the number
of local minima in the corresponding potential en-
ergy surfaces.

The local sensitivity in the fitness function also
adversely affects the efficiency of the genetic opera-
tor of crossover, regardless of the ordering of the
atomic coordinates in the genetic string. If neighbor-
ing atom coordinates are located close together on
the string, crossover is not very effective locally
where it is most essential for improving the fitness.
If they are located far apart, or at random positions
on the string, unrestrained crossover has the effect of
disrupting the acquired beneficial characteristics of

w xthe population 20 . Restraining crossover to specific
sections of the cluster, for example to cluster halfs
w x21 , is a compromise but far from optimal and is
likely to favor evolution towards corresponding sym-
metries in the final configuration.

Here we consider evolving localized solutions in
overlapping cells of the cluster separately. The atom
positions within the cell are mutually optimized, the
rest of the atoms are fixed and provide a constant
energy contribution. Optimizing sequentially from
cell to cell, a symbiosis is forced between the evolved
cell and the rest of the cluster. Aside from reducing
the complexity of the potential energy surface, this
scheme makes optimal use of the crossover opera-
tion, constraining it to act locally, only within each
cell.

In the following sections the symbiotic algorithm
is described in detail and an evaluation of the rela-

Ž .tive efficiency symbioticrgenetic is made for opti-
mizing the structures of LJ clusters of 6, 18, 23, 38
and 55 atoms. These sizes were chosen because they

w xpresent elusive ground states 22,23,16,24 .
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2. Symbiotic optimization of the Lennard-Jones
cluster

The atoms in the LJ cluster are bound through a
potential of the form

1 2
V s y 1Ž .i j 12 6r ri j i j

giving an energy of y1 at an equilibrium distance of
1, for the dimer. All energy and distance values
reported in this work are in these units and the
energy values are per atom. This system has been
extensively studied through various traditional seed

w xand growth techniques 8,25 , with Monte Carlo and
w xmolecular dynamics 5,7,9 and, with the genetic

w x Ž w xalgorithm 10,22,26,16 see Ref. 9 for a complete
list of first reported global minima and references

.therein for the details of the methods used .
The n atoms of the cluster are first generated at

random positions within a sphere of radius
1r3n

rs1.2P 2Ž .ž /13
centered at the origin of a three dimensional coordi-
nate system. This relation gives a radius somewhat
larger than that of a sphere enclosing the ground
state icosahedral structure for the 13 atom LJ cluster.
A ‘‘template’’ genetic string is composed for the

w xconfiguration 17 by locating the three spatial coor-
dinates of each atom together, and the sets of coordi-
nates of each atom are ordered along the string in the
order in which they are generated. An eight bit

w xbinary Gray coding 27 of the coordinate variables
was chosen.

A first spherical cell is defined of radius 1.4,
containing on average, ms8 atoms, centered on the
location of the first atom appearing in the string. The
variables corresponding to atom coordinates within
this cell are evolved with the standard genetic algo-

w xrithm technique 17 employing mutation and
crossover, with selection based on a reduced fitness
function for the cell

m

E s V . 3Ž .Ýc k l
l-k

The sum on k and l is only over the atoms in cell
one, m being the number these. Each of the m atoms
is thus simultaneously optimized with respect to the
other my1 atoms of the cell. The rest of the cluster

Ž .nym atoms presents, in this first approximation, a
fixed contribution to the total energy.

Evolution within the cell proceeds until the best
energy for the cell has not changed during 7 consec-
utive generations. This stopping criterion is simple to
implement and has been shown to work significantly
better than the usual one based on bit convergence of

w xthe genetic strings 19 . The best fit solution then
forms a symbiosis with the rest of the cluster by
updating the template if this action gives a lower
total energy

n

Es V 4Ž .Ý i j
j-i

for the entire cluster.
Next, a second cell is defined of equal radius

centered on atom 2 of the genetic string and the
evolutive and symbiotic process repeated. After
evolving and completing the symbiosis for n cells
the algorithm is repeated beginning with cell one.
The symbiotic algorithm is continued in this manner
until there is little improvement in the binding of the
entire cluster. At this point a local conjugate gradient
optimization is performed to refine the structural
details most dependent on the long range part of the
potential.

3. Results

The proposed symbiotic technique was compared
with a standard genetic algorithm. The genetic algo-
rithm was obtained from the symbiotic algorithm
simply by fixing the radius of the cell to a value
sufficiently larger than the size of the whole cluster
so that complete global optimization was performed
within one cell only. This procedure ensures a fair
evaluation of the two different approaches by avoid-
ing significant algorithm coding difference effects.

Fig. 1 shows, for three different sized LJ clusters,
the lowest energy obtained for the cluster as a func-
tion of the number of evaluations of the potential
Ž Ž ..Eq. 1 . The curves are averages of 20 runs with
distinct initial configurations. Both evolutive algo-
rithms performed best at a small population size of 5

Ž .genetic strings see Fig. 1 . For both algorithms, a
new generation was produced by creating four new
solutions through crossover reproduction between
pairs selected from the three best solutions of the
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Fig. 1. Comparison of the best energy found with the symbiotic and genetic algorithms as a function of the number of potential evaluations
Ž Ž ..Eq. 1 for three different sized LJ clusters. The curves are averages of 20 separate runs for each algorithm. For the cluster size of 23
atoms results for population sizes of 5 and 10 individuals are given.

previous generation. One of these four suffered a
mutation of one bit. The best solution was always
passed to the subsequent generation without change
w x17 . Significant variations of this reproduction
scheme produced only very small changes in the
relative efficiency of the two algorithms.

It was determined to be most efficient to stop the
symbiotic algorithm and begin local minimization at

Table 1

Size Symbiotic Hybrid Genetic
a b ceach run global minimum global minimum

6 0.03 0.36 0.90
18 0.66 42 240

d23 1.16 122 155
38 4.73 189200
55 12.65 337333

a w x Ž .Average CPU time s Alpha Station 500, 266 MHz for
Ž . beach individual run including local optimization . Average

w x cglobal minimum encounter times s . Global minimum encounter
w x Ž . dtimes of Gregurick et al. 22 divided by a factor of 7 see text .

This result was obtained for global optimization starting from a
w xconfiguration seed of the fully optimized 22 atom cluster 22 . All

our results are for completely random starting configurations.

4.0=103, 1.5=105, 2.5=105, 7.5=105, and 1.8
6 Ž .=10 potential evaluations arrows Fig. 1 for the

cluster sizes of 6, 18, 23, 38 and 55 atoms respec-
tively. These numbers are the result of an evaluation
of the average CPU time required by the symbiotic
algorithm to arrive at a particular energy, the time

Ž y8 .required to minimize locally to D ErEs10 from
this energy with the conjugate gradient technique,
and the probability of entrapment in high energy
local minima. 2 Requiring the genetic algorithm to
reach the same best energy values, Fig. 1 then
indicates that the symbiotic approach is approxi-
mately 2.8, 3.4 and 5.5 times more efficient in terms
of potential evaluations than the standard genetic
approach at finding low energy candidates suitable

2 This conclusion, to stop the global optimization at a relatively
high energy and to follow it with a fast conjugate gradient local
minimization, rather than to continue the global optimization to
much lower energies, was also arrived at for the configuration of
LJ clusters using simulated annealing as the global optimization

w xtechnique 5 .
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for local optimization for the 23, 38 and 55 atom
cluster respectively.

Table 1 compares the global minimum mean en-
counter time for the symbiotic algorithm with the

w xresults of Gregurick et al. 22 for a hybrid genetic
algorithm employing local minimization of each in-

Ždividual before selection similar to the potential
energy surface transformation described by Wales

w x.and Doye 9 . The results of Gregurick et al. have
been divided by a factor of 7 to account for the
differences in computer hardware 3. Average CPU
times for each individual run are also listed in the
table. The symbiotic algorithm finds the global min-
ima in less time than the hybrid genetic approach, at
least up to cluster sizes of 23 atoms for which CPU
times have been published 4.

The symbiotic algorithm not only outperforms the
hybrid genetic algorithm in the global minimum
search but also provides the energy distribution of
the local minima and encounter statistics, giving an
indication of their attraction basin widths. Fig. 2
shows the energy distribution of the lowest energy
stationary points found within an energy of 0.17 of
the ground state, after local conjugate gradient mini-
mization of 80000 separate runs of the symbiotic
algorithm. The plots include about 10000 distinct
minima for cluster sizes greater than 18 atoms. It
was confirmed that these distributions were similar
to those obtained with the genetic algorithm after
minimizing locally from the the same energy values.

Ž .The density of configurations per unit energy is
plotted in the insets of Fig. 2 as a function of the
cluster energy. This information is normally not
available from most implementations of the genetic

Žalgorithm which fixate on finding the global mini-
.mum but is of considerable value in mapping out

the potential energy surface and thereby elucidating
w xthe thermodynamic behavior of the cluster 28,29 . In

3 Bench marks available via www.sissa.itrfuriormdbnch.html.
4 w xNiesse and Mayne 26 have reported improved performance

with the hybrid genetic algorithm by using two point crossover
Žboth our and Gregurick et al. crossover is limited to the usual one

.point and base–10 real variables and operators instead of binary.
However, due to ambiguous reporting of CPU times, it is impossi-
ble to make a quantitative comparison here.

Fig. 2. Distribution in energy of the stationary points, within an
energy interval of 0.17 of the ground state, found in 80000
separate runs of the symbiotic algorithm after local minimization.
The ground states are marked with an arrow. The insets give the
configuration density as a function of energy.
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Table 2
Ž . Ž .Energies and the number of times in parenthesis encountered in 80000 runs 81624 runs for the 23 atom cluster of the 10 lowest energy

stationary points found. Saddle points are marked with a ‘)’, all others are stable minima.

Isomer 6 18 23 38 55

Ž . Ž . Ž . Ž . Ž .1 y2.118677 7425 y3.696163 1267 y4.036716 778 y4.577064 2 y5.077245 3
Ž . Ž . Ž . Ž . Ž .2 y2.050488 71758 y3.682476 1935 y3.973725 1221 y4.559273 1 y5.029169 7
Ž . Ž . Ž . Ž . Ž .3 y2.013172 9 ) y3.657906 2557 y3.972523 379 y4.556166 17 y5.029149 6
Ž . Ž . Ž . Ž . Ž .4 y1.938385 10 ) y3.655614 3473 y3.970773 1261 y4.551543 2 y5.029032 11
Ž . Ž . Ž . Ž . Ž .5 y1.889006 50 ) y3.654815 861 y3.968442 457 y4.549414 17 y5.024851 4

Ž . Ž . Ž . Ž .6 y3.649542 923 y3.965148 1194 y4.534616 6 y5.023399 1
Ž . Ž . Ž . Ž .7 y3.640785 1114 y3.962312 325 y4.532567 1 y5.023373 2
Ž . Ž . Ž . Ž .8 y3.617695 23 y3.959557 707 y4.532498 5 y5.023352 3
Ž . Ž . Ž . Ž .9 y3.609328 300 y3.958110 241 y4.532387 11 y5.021806 2
Ž . Ž . Ž . Ž .10 y3.608971 392 y3.957323 372 y4.532281 9 y4.987240 2

Table 2, the energies and encounter statistics of the
10 lowest energy stationary points are listed.

4. Discussion and conclusions

Ecological or physical symbiosis between distinct
organisms, once adapted on simpler fitness land-
scapes, played an essential role in the evolutive

w xhistory of all complex biological organisms 30 .
Symbiosis aids in the development of new organisms
adapted to more complex niches for which mutation
and crossover alone would take prohibitively long.

In the symbiotic optimization of the cluster, fit-
ness is based on the local structure and the problem
has effectively been reduced from one of 3=n
variables to n problems of approximately 3=m

Ž .variables each m<n . The fitness landscapes
Ž .potential energy surfaces are considerably simpler
and the crossover operation is optimized, acting only
locally within the cell. Connectivity between cells is
afforded by their overlapping nature, the symbiotic
events, and the local optimization of the entire clus-
ter. For large Lennard-Jones clusters, the results of
this Letter indicate that the symbiotic approach is
substantially more efficient than the standard genetic
algorithm in finding low energy stable structures,
and that this advantage increases with cluster size.

The symbiotic algorithm, in the configuration pre-
sented here, provides an unbiased, complete and
accurate energy distribution of the low energy min-
ima, and does not just fixate on localization of the
global minimum. Nevertheless, it outperforms the

hybrid genetic technique in finding the global mini-
mum. Mean global minimum encounter times could
be significantly reduced by; starting from seed con-

w xfigurations 22,26 , minimizing locally only the low-
w xest energy global results 9 , preventing premature

convergence to low energy local minima by aug-
menting the diversity of solutions with either a larger

w xinitial population 31 or by introducing niche inter-
w xaction 2 . Techniques which would improve the

overall performance of the algorithm are; relaxing
the precision on the energy, hybrid local optimiza-
tion of the entire cluster before selection at the

w xsymbiotic events, multi-point crossover 26,31 ,
base-10 real variable encoding and operators, instead

w xof binary ones 26,13 , and removal of the six de-
grees of freedom related to the rotational and transla-
tional invariance of the cluster.

As the range of the potential increases at constant
cluster size, or the size of the cluster decreases at
constant potential range, the local tight coupling of
variables through the fitness function is lost and to
maintain optimal efficiency the ratio of the cell radii
to the radius of the cluster would have to increase
correspondingly. Under these conditions the impera-
tive for symbiosis is eventually lost and the symbi-
otic approach merges into the genetic approach.
However, such clusters are more amenable to opti-
mization since extending the range of the potential
adiabatically removes local minima, and, few atom
clusters have few minima.

The symbiotic algorithm may be regarded as the
genetic analogue of the divide-and-conquer method

w xof Yang 32 in quantum density functional theory.
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In this approach the system is partitioned into sub-
systems in physical space and the electron density
determined locally for each subsystem. The computa-
tional advantage lies in the fact that the construction
and diagonalization of the global Hamiltonian matrix
is not required. The coupling between each subsys-
tem can, in many cases, be shown to be minimal.

Although we stressed the advantages of a
semiempirical first approach to finding the low en-
ergy structures of large clusters, there is no funda-
mental limitation, other than that of CPU time, in
coupling the symbiotic algorithm to ab initio or
density functional calculations. If the interest is in
determining stable cluster geometries rather than in
specific dynamical trajectories, this approach would
significantly improve on the popular Car-Parinello

w xtechnique 33 employing molecular dynamics.
We have also applied a similar symbiotic ap-

proach to clusters bound through an n-body, tight-bi-
nding, Gupta potential used in modeling transition

w xand noble metal clusters 34 . Similar improvements
in the efficiency were obtained and new global min-

w xima and low energy isomers were discovered 35 .
The symbiotic algorithm should also be applicable to
the more general case of a complex many-variable
problem where, although the variables are indepen-
dent, there is a strong coupling of variable groups
through the fitness function.
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