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Abstract

A statistical technique to efficiently map out the energy surfaces of nanoclusters and molecules is described. Global

energy minimizations are performed to reach of the catchment basins of the lowest energy stationary points. Saddle

points are located by using a large value of the iterative energy change as the stopping criterion of a final local re-

laxation. Minima are derived from saddle points by simply tightening the stopping criterion and continuing the re-

laxation. A statistical approximation to the widths of the paths in phase space between saddle points and minima is

obtained. Application is made to argon clusters of 7 and 38 atoms.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Understanding the dynamical behavior of small

clusters of atoms and molecules in nonzero tem-

perature environments is indispensable to their

eventual utility in nano-chemical, nano-electronic,

and nano-optic applications [1,2]. Equilibrium
molecular dynamics is normally employed to

model the thermodynamical behavior of an en-

semble of such systems by employing the ergodic

hypothesis. However, a time averaged, or even an

ensemble description is not very useful for pre-

dicting the time local dynamical behavior of a

single nanocluster or molecule. Such behavior can

only be obtained by knowing the initial state and

by detailing the local free energy surface of the

system in the neighborhood of that state. Fur-

thermore, molecular dynamics cannot readily

identify particular reaction paths, these can only

be delineated by directly mapping the topography

of the energy surface.
Even if the interest is in the average behavior

of an ensemble in thermodynamic equilibrium,

calculation of the forces in molecular dynamics is

computationally expensive, and it can be expected

that a typical trajectory, even for small clusters,

will only visit a small fraction of the allowed

phase space, making a poor approximation to

ergodicity. The need for statistically based meth-
ods to characterize the potential energy surface

for large systems has been previously emphasized

[3,4].
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Periodic quenching along molecular dynamic

traces to find minima, and eigenvector following to

find associated saddle points, has been the tech-

nique of choice to statistically map out potential

energy surfaces [5–8]. This technique samples effi-

ciently the potential energy minima and some of
the lowest energy connecting saddle points, thereby

allowing construction of �disconnectivity graphs�
[9–11] which characterize the global nature of the

energy surface. However, this method does not

provide a very detailed map of the lowest energy

topography, since, for reasons of computational

economy, normally only the path determined by

the smallest positive eigenvalue of the Hessian,
evaluated at the minimum, is explored. All other

paths available from one given minimum to an-

other are usually ignored. The resulting map is thus

only a skeleton of the real multi-dimensional

topography, defining the path of likely least acti-

vation energy. Even in exceptional cases where all

of the saddle points are obtained [12], information

needed for describing the dynamics or thermody-
namics is still lacking since no measure is obtained

of the widths of the paths in phase space, or, in

other words, of the most important part of the

enthropic contribution to the free energy.

Another proposed technique, also employing

molecular dynamics, is to raise the total energy

starting from a given minimum until the potential

energy drops below this minimum. Quenching
finds the second minimum, and the saddle point

connecting the two is then obtained by quenching

from the point of maximum potential energy on

the molecular dynamic trace using a large cutoff

value for the kinetic energy [13]. As with the ei-

genvector following approach, this method ob-

tains a path which may be the most probable

reaction path in phase space, but little information
is provided on the possible range of paths and their

probabilities and thus on the spectrum of allowed

dynamical behavior.

2. Statistical characterization of the energy surface

In this Letter, we present an efficient technique
for mapping out in detail the topography of the

lowest energy regions of the potential energy sur-

face. This is achieved through a statistical sam-

pling of the probability of passing from saddle

point to saddle point, or from saddle point to

minimum by enumerating the trajectories taken by

a fast conjugate gradient local relaxation, once an

effective global search has put the system within
reach of the lowest energy saddle points and

minima. Saddle points are located by using a large

value of the relative energy change per iteration,

jDV =V j, as the convergence criterion of the local
relaxation. Minima are obtained from saddle

points by simply tightening the criterion for con-

vergence and continuing the relaxation. Saddle

points can be obtained from saddle points by
tightening the convergence criterion and relaxing it

once again if the potential energy has decreased by

more than a few percent. The relative volume in

phase space of the attraction basin associated to a

particular minimum or saddle point at the site of a

saddle point can thus be statistically estimated and

probabilities for reaction paths assigned. No cal-

culation of the forces in the global relaxation, nor
of the Hessian in the local search, is required. With

moderate computational resources, the low-energy

regions of systems of up to approximately 100

atoms can be routinely mapped out (with some-

what lower efficiency for short range potentials

since these give a more complex energy surface

[14]).

As a demonstration of this technique, we pres-
ent the topography mapping of the potential en-

ergy surface of argon clusters of 7 and 38 atoms,

modeled with a Lennard–Jones (LJ) potential of

form

V ¼
X
i<j

4�
r
rij

� �12"
� r

rij

� �6#
; ð1Þ

with r ¼ 3:4 �AA and � ¼ 1:671� 10�14 erg [7]. The
potential energy surface of this system has been

studied through the conventional technique of
molecular dynamics and eigenvector following

[7,11–13,15–18]. It is known that, within the LJ

model, Ar7 has four minima and at least 838

saddle points [12]. The low-energy minima and

their connections through the lowest energy saddle

points for Ar7 have been enumerated by Wales

and Berry [7] through the eigenvector following
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method, providing a convenient check of our

proposed technique. Ar38 has a much more com-

plicated potential energy surface topography due

to the larger number of degrees of freedom. The

global minimum is known to be a truncated oc-
tahedron fcc structure but an icosahedral structure

is almost degenerate in energy and has a much

larger catchment basin accessible from higher en-

ergy [15]. Ar38 is presented here as a demonstration

of the efficiency of the proposed technique and of

the detail in the topography map which can be

obtained.

Our technique employs a hybrid algorithm
consisting of a global, �symbiotic� variant [19] of
the genetic algorithm [20], followed by a local

conjugate gradient relaxation [21]. The conjugate

gradient relaxation (analogous to fast quenching

in the molecular dynamics scheme) is initiated if,

after a fixed number of generations of the global

genetic optimization, the lowest energy obtained

for the system has not changed [19]. Since the in-
terest is normally in the lowest energy minima and

saddle points, those with significant representation

at 300 K for example, for large systems the search

algorithm can be tuned to find only these sta-

tionary points by prolonging the global part of the

search. However, for the case of Ar7 where the

system is relatively small, and to demonstrate the

completeness of our approach, we tune the algo-

rithm to find also higher energy stationary points.

The distribution in energy of stationary points,

and the number of times each was found in 860 000

distinct runs of the global algorithm for Ar7 is
plotted in Fig. 1. In section (a) of the figure, the

convergence criterion, K � jDV =V j, for stopping
the conjugate gradient refinement was set very

tight, K ¼ 10�12 per iteration, meaning, as ex-
plained below, that the stationary points repre-

sented in large numbers in Fig. 1a are minima. For

example, explicit calculation of the Hessian reveals

that of the 55 points plotted in Fig. 1a only the
four lowest energy points are minima (as found in

[7]), the other 51 points corresponding to saddle

points, inflexion points, or partial cluster minima

with less than 7 atoms (for example, the spike at

�0:207� 10�12 erg corresponds to the octahedral
global minimum of Ar6 plus 1 atom at a large

distance).

The novelty of the approach presented here is
that the ratio of finding saddles to finding minima

may be increased by increasing the value of the

convergence criterion K. Section (b) of Fig. 1
corresponds to the results of the runs with the

same initial conditions but with the convergence

Fig. 1. (a) Energy distribution of the stationary points found for Ar7 in 860 000 runs of the algorithm using a tight convergence criteria

of K ¼ 10�12. (b) The same but for K ¼ 10�8, showing that the algorithm converges more often on points which are not minima (many
of which are saddle points). The number of times the point was found is plotted with logarithmic scale on the y-axis.
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criterion set loose at K ¼ 10�8. The algorithm now
converges with greater probability on stationary

points which are not minima. Explicit calculation

of the Hessian of 80 points chosen at random from

the distribution shows that roughly 64% of these

are saddle points, 11% are inflexion like points or
shallow valleys, while the rest correspond to min-

ima of less than 7 atoms, saddles of minima of less

than 7 atoms, and minima of 7 atoms. The in-

creased probability of converging on a saddle

point when using a larger value of K is due to the
fact that the implementation of the conjugate

gradient minimization is necessarily discrete.

Therefore, unless the discrete displacement in
configuration space is in the direction of the ei-

genvector corresponding to an eigenvalue of the

Hessian which is negative, i.e., on the concave

downward part of the saddle, a larger value of K
leads to a higher probability that the algorithm

will converge if the search is in the immediate

neighborhood of the saddle point. This probability

is related to the number of positive eigenvalues of
the Hessian at the saddle point and to the inverse

of the magnitudes of these. The convergence

probability will be greater for conjugate gradient

minimizations than for steepest decent methods

which tend to follow directly the eigenvectors

corresponding to large negative eigenvalues.

Making the convergence criteria too large leads

to preferential convergence on neither a minimum
nor a saddle point, but somewhere else, for ex-

ample, at some point in the basin of a shallow

valley or at an inflexion like point. Although such

topographical features clearly play an important

role in the dynamics, the immediate interest of this

Letter is to locate either saddle points or minima.

The optimal is thus to converge on as many true

low-energy saddle points as possible while at the
same time avoid converging elsewhere. A value of

K ¼ 10�8 was empirically determined for the LJ
potential, and for the cluster sizes presented here,

to provide the best compromise in this sense. This

rather tight stopping criteria eliminates the possi-

bility of stopping on all slopes which are not al-

most zero on the potential energy surface. To

eliminate inflexion like points from the sample, we
require that the stationary point connects directly

at least two distinct minima. Finally, we require

that the stationary point–minima connections are

found at least three or more times for Ar7, and at

least two or more times for Ar38 where the statis-

tics are less. Since each run of the algorithm is

from a different initial configuration, it is im-

probable that the algorithm will converge at the
same point in energy within a shallow valley in

distinct runs. However, the probability of con-

verging at the same point will be much higher if the

algorithm is lead to that point by the curvature of

the potential energy surface, as in the case of true

saddle points. These three saddle point selection

criteria eliminate, to a great extent, spurious,

shallow valley and inflexion like points.
The algorithm is thus first run with K ¼ 10�8,

and, after recording the energy at which the al-

gorithm converges (with significant probability on

a saddle point), changing the value of K to 10�12

and continuing the optimization. This convergence

criterion is almost always sufficient to allow the

discrete search to leave the saddle point. If the

potential energy then drops by more than 2%, K is
again changed to 10�8, allowing for the possibility

of convergence on a second, lower energy saddle

point. The process is repeated until the conjugate

gradient code converges finally, with K ¼ 10�12, on
what must be a local minimum. Since the algo-

rithm is efficient and can be run hundreds of

thousands, or millions, of times, each starting from

a distinct random initial configuration of the at-
oms, statistics are accumulated concerning the

widths of paths in phase space leading from sad-

dles to minima, or saddle points to saddle points.

The same saddle point may be found on the route

to various different minima. The reconstructed

energy surface thus consists of not only the inter-

connections between saddle points and between

saddle points and minima, but also probabilities
associated to these reaction paths. To the extent to

which the conjugate gradient relaxation is similar

to the relaxation approach taken by Nature, the

calculated probabilities provide an approximation

to the real attraction basin widths in phase space.

It is noted that here we are moving over a surface

defined by an empirical potential fitted to experi-

mental data rather than by a quantum first prin-
ciples calculation incorporating all relevant

degrees of freedom. However, not withstanding
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the much larger CPU costs involved in the latter,

the method is applicable to both approaches.

The detail in the potential energy surface for

Ar7 can be surmised from Fig. 2 which plots the

minima, saddle points, and their interconnections

(saddle point to saddle point connections are not
shown). The connection of a saddle point to a

minimum is drawn only if the point was found to

connect at least two minima and only if the the

connection was found three or more times. Min-

ima were considered to be the same if their ener-

gies were within 0:00001� 10�12 erg and saddle
points were considered to be the same if their en-

ergies were within :0003� 10�12 erg. In Fig. 2, the
horizontal and vertical positions of the minima

correspond to their actual energies. The vertical

positions of the saddle points correspond to their

actual energies while the horizontal positions were

taken to be at the center of the distribution in

energy of all the minima they connect. The width

of the connecting lines in the figure is drawn pro-

portional to the number of times the connection
was found, and represents an approximation to

phase space widths. In total, 305 saddle points

connecting directly two or more minima, and

found three or more times, are shown in the figure.

We did not find any points in Fig. 2 which were

not either saddle points, or minima of 6 atoms

with one atom at a large distance.

Note that the lowest energy saddles connect
isomer 1 with isomers 3 and 4, and not with isomer

2. The number of saddle points which connect

more than two minima is substantial, and these

connect isomer 1 with isomers 3 and 4. Note that

isomer 2, which is the capped octahedron, is fed

only substantially from the Ar6 octahedron plus

one atom (energy �0:207� 10�12). Even though
such a point is not a traditional saddle point,
neither is it an inflexion point (since the potential

energy surface is asymptotically flat in the config-

uration coordinates of the single atom) nor a

shallow valley (since it connects in fact three dis-

tinct minima directly). Its delineation, however, is

important to the thermodynamics of the system.

For example, it predicts that the capped octahe-

dron will be stable with respect to thermal excita-
tion since the only reaction path of substantial

phase space volume consists of essential evapora-

tion of the capping atom (occurring at a rather

high total energy, or temperature).

For Ar38, 100 000 runs of the algorithm were

performed. Here, in order to obtain good statistics

for the different paths leading to the very lowest

energy minima, the results of the global optimi-
zation are augmented by a factor of 10 by applying

light, stochastic perturbations, �shakes�, of the low-
energy configurations found. Local optimization,

with the conjugate gradient relaxation, then pro-

ceeds for each shake in the same manner as de-

scribed above. In Fig. 3 only those saddles which

connect at least two minima of low energy

(< �2:83� 10�12 erg), and found two or more
times, are shown (4803 saddle to minima connec-

tions in total). Note that information used in

Fig. 2. Plot of saddle points and connections to minima for

Ar7. The saddle points were obtained with a convergence cri-

terion K ¼ 10�8 while the minima were obtained with

K ¼ 10�12. Only saddle points which connect at least two
minima, and only connections obtained at least three times are

plotted. The thickness of the connecting lines is proportional to

the number of times the connection was found.
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plotting the figure is, for example, sufficient to

delineate the reaction paths between the global

minimum fcc and icosahedral isomers, and, addi-

tionally, to obtain an approximation of the phase

space widths of these paths. In Fig. 4, all of the

saddle to minima connections for Ar38, found

more than three times, are shown. This figure in-
cludes more than 35,780 of the lowest energy

saddle to minima connections.

3. Discussion and conclusions

Energy surface maps such as the ones given in

Figs. 2–4 contain sufficient information to deter-
mine the dynamics and thermodynamics of these

finite systems at finite temperature. For example,

transition rates between isomers in equilibrium can

be estimated from the energies of the minima and

connecting saddle points, and a measure of the

phase space volume of the local potential wells and

saddle points [22]. The volume is usually obtained

through calculation of the �curvature� of the po-
tential energy surface, obtained from the determi-

nant of the Hessian of the potential energy

function [22] evaluated at the minimum. Such a

description, however, is not very accurate since

the curvature at the site of the minimum is not the

curvature of the potential energy surface near the

saddle point. The statistical approach of enumer-

ating trajectories better approximates the phase
space volume of the actual path from a saddle to a

minimum. All reaction paths along with their re-

spective probability weights can be considered in

the calculation of the transition rate. Such phase

space volumes are also adequate for understanding

out of equilibrium processes such as relaxation or

Fig. 4. Saddle point–minima connections found three or more

times for Ar38. The width of the lines is proportional to the

number of times the connection was found.

Fig. 3. The same as for Fig. 2 but for Ar38. Only saddle points

which connect at least two minima with energies below

�2:83� 10�12 erg, and which were obtained two or more times,
are plotted.
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nucleation, processes from high to low potential

energies. Explicit use of our topography maps to

predict the dynamics and thermodynamics of na-

noclusters will be the subject of a forthcoming

paper.

We have presented a very simple and efficient
technique for determining the low-energy topog-

raphy of the potential energy surface of molecules

and nanoclusters. The technique employs an effi-

cient global algorithm, combined with stochastic

perturbation, which reaches the lowest energy re-

gions of the potential energy surface, and an iter-

ative conjugate gradient local relaxation which can

be biased to converge in the neighborhood of a
saddle point by setting the convergence criterion

loose enough. The technique not only finds the

connections between saddle points and minima, or

between saddle points and saddle points, but also

approximates the phase space volumes of these

paths through statistical sampling.

The approach represents a considerable im-

provement over eigenvector following techniques
in the sense of being more efficient in the deter-

mination of the low-energy topography of the

energy surface, and of providing widths for the

paths in phase space. Most of the reaction paths

leading from one low-energy minimum to another

can be found and characterized, leading to an ac-

curate determination of the dynamical or ther-

modynamical behavior of clusters or molecules, in
or out of equilibrium.
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