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Abstract. The caloric and specific heat curves for the bimetallic nanoclusters Au7−xAgx (x = 0, 3, 4, 7)
are obtained through a statistical determination of the configurational density of states in the evolutive
ensemble obtained with a genetic algorithm. The effect of the value of x (the relative concentrations) on
the thermodynamics is studied. Three peaks are observed in the specific heat curves for all values of x.
This is interpreted as being due to melting, and fragmentation of the cluster into first two, and then into 3
or more parts. A fourth pre-melting peak is observed for Au4Ag3 and is attributed to a new phenomena
related to the breaking of the degeneracy of the permutational isomers. The melting transition for the
bimetallic clusters is significantly wider than that for the pure clusters. The boiling transition displays a
larger specific heat for the bimetallic clusters.

PACS. 36.40.Ei Phase transitions in clusters – 36.40.-c Atomic and molecular clusters

1 Introduction

Bimetallic clusters have the potential of adding new fla-
vor to the unique properties of materials at the nano di-
mension. This even more so than the analogous alloys of
the bulk because of the strongly size dependent nature
of nanoclusters properties. The investigation of the ther-
modynamic behavior of clusters is crucial because a cor-
rect description of the thermodynamic ensemble leads to
a correct ensemble average of the property under consid-
eration. This is particularly important for binary clusters
since many, almost degenerate, permutational isomers ex-
ist in large numbers, separated by high energy barriers.
Compared with pure clusters, the potential energy land-
scape of binaries is much more complicated and not easily
amenable to standard techniques such as molecular dy-
namics and Monte Carlo.

In this article, we apply a novel ergodic statistical ap-
proach to the determination of the thermodynamic prop-
erties of bimetallic clusters of Au7−xAgx (x = 0, 3, 4, 7),
paying particular attention to the effect on the thermody-
namics of the non-degenerate permutational isomers.

The AuyAgx system has been studied before from the
point of view of their structural and electronic properties
in the density functional approach [1]. However, to the
authors knowledge, there have been no attempts to deter-
mine the thermodynamics.

Thermodynamic properties of the bimetallic clusters
AuxCun−x (n = 13, 14) have been studied by López
et al. [2] using a Gupta potential and molecular dynamics
simulations. They found that the presence of the low lying
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permutational isomers does not affect the gross features
of the melting-like transition, independently of the con-
centrations of the components. However, as will be shown
below, this is not the case for the AuyAgx bimetallic clus-
ters. The discrepancy is most likely due to the difficulty
of molecular dynamics remaining ergodic in the complex
potential energy landscape of the bimetallics.

2 Method

The technique used here and presented in [3,4] is based
on an efficient version [5] of the genetic algorithm [6]
combined with a conjugate gradient final optimization
which can be tuned to find and identify stationary points;
minima, saddle points, valleys, etc., all of which influ-
ence the thermodynamics. The approach is more efficient
and ergodic than traditional approaches because there
is no calculation of the forces, Boltzmann weights, nor
are Newton’s equations of motion solved. Second, there
is no problem with potential barriers separating regions
of phase space which can cause problems with ergodicity.
Third, since evaporation and fragmentation are natural
components of the evolutive ensemble, detailed balance
can be employed to provide the thermodynamic proper-
ties from the solid well into the gas region.

The clusters were modeled with a Gupta many-body
potential [7]. The parameters for the homo-interactions
were taken from Cleri and Rosato [8] obtained by fitting
to the bulk cohesive energy, lattice parameters, and elastic
constants, while the hetero-interaction parameters were
obtained from a simple arithmetic mean of the parameters
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Fig. 1. Energy distribution of the stationary points of
pure Au7 and Ag7 clusters, and binary Au4Ag3 and
Au3Ag4 clusters. Their contribution to the evolutive ensem-
ble is given in logarithmic scale on the y-axis.

related to the distance, and a geometric mean of the pa-
rameters related to the strength.

A very large number of initial configurations gener-
ated at random in a fixed volume are globally optimized
using the genetic algorithm. When the fitness of the pop-
ulation ceases to change from one generation to the next
for 7 consecutive generations, the GA is stopped and the
accumulated resulting configurations at this point collec-
tively define the evolutive ensemble. It can be shown [3]
that this ensemble is similar to a canonical ensemble at
an equivalent “temperature”, defined principally by the
size of the volume in configuration space within which the
initial configurations were generated. Each configuration
of the evolutive ensemble is locally optimized using the
conjugate gradient technique and the resulting stationary
point distribution is then used to calculate the total den-
sity of states using the superposition approach [9]. From
the total density of states, of course, all thermodynamic
properties can be determined.

3 Energetic and structural results

The energy distribution of the stationary points for the
clusters Au7−xAgx (x = 0, 3, 4, 7) are given in Figure 1.
The pure clusters have only four minima with the global
minimum for both elements corresponding to the pentag-
onal bi-pyramid. The four stable isomers are given in Fig-

Fig. 2. Stable isomers
of Au7, Au4Ag3, and
Ag7 with their corre-
sponding energies in eV
from top to bottom. In
the case of Au4Ag3 the
dark atoms are Au and
only the lowest energy
premutational isomer of
each family is given.

ure 2. In the case of the pure Au clusters, it is known
from density functional theory calculations that the global
minimum structures are not three dimensional but planar
structures [1]. That these are not stable isomers of the po-
tential is a result of the fact that the s-d electronic shell hy-
bridization due to relativistic effects in Au and giving rise
to non-isotropic interactions, cannot be modeled correctly
with the isotropic Gupta potential. However, it is empha-
sized that the main results, concerning the effect of the
permutational isomers on the thermodynamics, are rela-
tively independent of the particular form of the isomers.

Figure 1 also shows counts corresponding to cluster
fragmentation into first two-parts starting at energies of
about −19.898 eV for pure Au (a planar trimer plus
a 4 atom pyramid) and then fragmentation into three or
more parts starting at energies of about −17.859 eV for
pure Au (two dimers plus a trimer). Assuming detailed
balance, in which the time reversed process is equivalent
to the evaporation process, these fragmented configura-
tions correspond to the evaporative part of the evolutive
ensemble.

For the case of the binary clusters, with x = 3, 4, there
are 7!/(4!3!) = 35 potentially distinct, non-degenerate,
permutational isomers for each geometrical minimum of
the pure clusters (The possibility exists of completely
novel structures but this has not been found for the cases
studied here.) This number is an upper limit, the real value
depending on the particular symmetries of the configura-
tions. This increase in the density of states and in the
width of the energy distribution of the minima for the
bimetallic clusters can be clearly observed in Figure 1.
The evaporated and fragmented minima also demonstrate
a corresponding increase in their number and in the width
of their distribution in energy.

The global minimum of the bimetallic clusters is also
the pentagonal bi-pyramid. The lowest permutational iso-
mer of each of the geometrical families is given in Figure 2
for Au4Ag3. Note that the energy ordering of the geo-
metrical isomers of Au4Ag3 is different from that of the
pure Au and pure Ag clusters; the tri-capped tetrahedron
(lower right configuration of Fig. 2) is lower in energy than
the bi-capped tetrahedron (lower left of Fig. 2). In fact, a
careful analysis of the structure of each isomer reveals that
for Au4Ag3 the first and second isomers in energy are from
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the pentagonal bi-pyramid family. The third is from the
capped prism, the fourth is from the tri-capped tetrahe-
dron family, the fifth and sixth are permutational isomers
of the pentagonal bi-pyramid, the seventh and eighth are
permutational isomers of the capped prism, while finally
the ninth is from the bi-capped tetrahedron family.

The 11 lowest energy isomers of Au4Ag3 found with
the potential were locally optimized using DFT with
GGA correction [10]. All isomers of the potential were
also stable configurations of the DFT calculations. The
energy ordering of the geometrical isomers was the same
as that of the potential while there was a difference in
the ordering of the permutational isomers at a given ge-
ometry. The DFT calculations favored decreased numbers
of Au-Au bonds while the potential calculations favored
an increase. However, the DFT results are consistent with
the potential results in that there is a mixing of the per-
mutational isomers with the geometrical isomers and a
spread in their energy distribution. Clearly, this behavior
will lead to an important role of the breaking of the degen-
eracy of the permutational isomers on the thermodynamic
behavior.

4 Thermodynamic results

We first calculate the total density of states using the
superposition principle [9], including minima, important
saddle points, and evaporated and fragmented minima.
Note that no harmonic supposition has to be made, nor
is the symmetry of the stationary point required. Instead,
the contribution of each stationary point to the configu-
rational density of states is determined statistically [3].

The total density of states at an energy E is

Ω(E) =
∫ E

V0

ΩC(V )ΩK(E − V )dV, (1)

where the integration is from the energy of the global min-
imum V0 up to energy E. The kinetic density of states can
be shown to be [11]

ΩK(E − V ) = B(E − V )ν/2−1, (2)

where B is a constant and ν is the total number of degrees
of freedom of the system (3N − 6 for comparing results
with the molecular dynamics ensemble).

The configurational density of states ΩC(V ) can be de-
termined from the stationary point distributions {Si,Ni}
(Fig. 1) where Si is the energy of the stationary point
and the Ni is the number of times the point was found. It
can be shown that the evolutive ensemble is similar to the
canonical ensemble at a given temperature T0, giving a
Maxwell-like distribution of the potential energies of the
configurations [3]. T0 is found to be proportional to the
volume used to generate the initial configurations and in-
versely proportional to both the population size and the
number of generations specified to converge the GA.

The configurational density of states is then

ΩC(Si) = Ni exp(Si/kBT0). (3)

For the discrete stationary point distribution {Si,Ni},
equation (1) becomes

Ω(El) =
l∑

i=1

Ni exp(Si/kBT0)(El − Si)ν/2−1, (4)

where the sum is up to the highest stationary point Sl

accessible at El (Sl < El) and we have left out an unim-
portant multiplicative constant.

From the entropy in terms of the density of states

S(E) = kB ln(Ω(E)) (5)

the thermodynamic temperature can be determined as

TT (E) ≡ (∂S/∂E)−1
. (6)

Defining

F0(E, T0) =
∑

i

Ni exp(Si/kBT0)(E − Si)ν/2,

F1(E, T0) =
∑

i

Ni exp(Si/kBT0)(E − Si)ν/2−1,

F2(E, T0) =
∑

i

Ni exp(Si/kBT0)(E − Si)ν/2−2

gives
TT (E) = (1/kB(ν − 1))(F1/F2). (7)

The kinetic temperature, which can be used for comparing
with molecular dynamics results, is

TK(E) = (1/kBν)(F0/F1) (8)

and the specific heat

Cv(E) ≡ 1
kBN

(
∂TK(E)

∂E

)−1

(9)

giving

Cv(E) =
ν

N

[
ν

2
−

(ν

2
− 1

) F0F2

F 2
1

]−1

. (10)

The microcanonical caloric and specific heat curves us-
ing the kinetic temperature obtained in this manner for
Au7−xAgx with ν = 3N − 6 are given in Figures 3 and 4.
Figure 3 focuses on just the melting transition region of
the full caloric and specific heat curves given in Figure 4.
Note that the melting transition is wider for the binary
clusters than for either of the two pure clusters. This is a
result of an increase in the width of the minima distribu-
tion due to breaking the degeneracy of the permutational
isomers (Fig. 1). Second, the Au4Ag3 specific heat curve
shows a small pre-melting peak. Its origin can be ascribed
to a completely new phenomena, breaking of the degen-
eracy of the global minimum and thus the introduction
of a second permutational isomer of the global minimum
of slightly higher energy (also the case for the DFT cal-
culations) and with a slightly larger attraction basin (see
Fig. 1). This now non-degenerate isomer plays a similar
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Fig. 3. Caloric and specific heat curves calculated through
the statistical model in the microcanonical ensemble using the
stationary point distribution for pure Au – long dashed curve,
for pure Ag – short dashed curve, for Au4Ag3 – solid curve,
and Au3Ag4 – points. The peaks in the specific heat curve
correspond to the melting transition.

role to that of the slightly higher energy isomers visited
by a single atom outside a closed shell in the normal pre-
melting found, for example in pure clusters of 14 atoms.

The second peak in the specific heat curves given in
Figure 4 is due to the two-fold fragmentation and is sig-
nificantly higher for the binary clusters than for the pure
clusters. This is due to a relative broadening of the frag-
ment energy spectrum due to breaking the degeneracy of
the fragments (see Fig. 1). The third, 3-fold fragmenta-
tion peak in the specific heat curve for Au4Ag3 also shows
an enhancement with respect to that of the pure clusters.
This is not the case for Au3Ag4, however, which in fact
shows a de-enhancement.

Finally, there is also a small increase in the boiling
temperature for the binary clusters over the pure Au clus-
ters, giving both of them boiling temperatures closer to
that of Ag than to Au.

5 Conclusions

We have studied the thermodynamics of bimetallic clus-
ters using a novel ergodic statistical approach employing
a Gupta potential and confirming the isomer energy dis-
tributions using DFT calculations. In contrast to the re-
sults obtained in [2] for Au-Cu clusters, we find that the
thermodynamics of the bimetallic Au-Ag clusters is signif-
icantly different than that of the pure clusters. First, their
melting transition is wider. Second, pre-melting may occur

Fig. 4. Same as for Figure 3 but on a larger energy scale in
which the fragmentation peaks can be seen in the specific heat
curves.

due to the breaking of the degeneracy and the subsequent
introduction of a permutational isomer of the global min-
imum at only slightly higher energy. Third, the specific
heats are greater at the boiling transition. Fourth, the rel-
ative sizes of the fragmentation peaks in the specific heat
may be significantly different, depending on the energetics
of the degeneracy breaking of the permutational isomers.
These findings required a truly ergodic technique such as
the one presented here for their elucidation.
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