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Abstract

Adenine is one of the four principle bases of nucleic acid, the essential molecule of life and evolution. Apparently, only one
configuration of adenine exists in nature giving it unique chemical and biological properties. Using a force field type potential
model with parameters fitted to the nucleic acid bases, proteins and other biological molecules (involving the sum of the
contributions from bond stretching, bond angle bending, torsional angle twisting, and Coulomb and Lennard–Jones terms) we
searched the potential energy surface for other stable isomers of adenine. The search was performed using a genetic algorithm,
an efficient and global technique. The most interesting of the lowest energy minima found in the global search were relaxed
using quantum-mechanical, semiempirical (PM3), and first principles (Hartree–Fock and density functional theory) methods.
These calculations gave similar geometries and energy ordering for the new structures. This work formed part of a larger project
to study the binding of nanoclusters of gold to segments of nucleic acid for possible application in the emerging field of nano-
electronics. The results could also have implications in mutation and transcription of DNA.q 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The microscopic structure of DNA with its phos-
phate, sugar and base pair components is recently
receiving a lot of attention since computing power
and first principles calculations have matured to
such an extent that ab initio calculations with
segments of DNA containing a very large number of
atoms are now feasible [1]. Understanding how the

tertiary structure of DNA affects its chemical and
biological characteristics is a goal of biochemists
now within sight. Also, new DNA handling and
genetic engineering capabilities have given rise to a
host of intriguing possibilities ranging from disease
correction to nano-electronic circuits with transistors
made of metal nanoclusters connected through
segments of DNA [2–5].

Single bases of DNA and their pairing through
hydrogen bonds in their “natural” conformations has
been studied in significant detail through first princi-
ples calculations such as ab initio SCF [6] and density
functional theory [7]. Comparison with the experi-
mental values is, generally, very good. The logical
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next step in this line of investigation is the simulation
of sets of base pairs connected to the phosphate and
sugar backbone, i.e. segments of DNA.

The work presented in this article, however,
has a different focus. We were not interested in
the “natural” configuration but in the possible
isomers of the bases. Are there in fact other
stable isomers of the bases and if so, why is
there apparently only one configuration found
for each base in nature? Or, is this just due to
lack of experimental data? If there are isomers,
how probable are they in nature, and could these
isomers have importance in mutation and tran-
scription? The existence of different isomers of
the bases would also have significance in the field of
nano-electronics where the electrical properties of a
component would be sensitive to the metal cluster–
DNA interface.

Previous works on the bases and their pairs have
thus been concerned with the structural and electronic
properties of only their “natural” configuration.
Experimentally obtained coordinates of the atoms of
the bases were input to ab initio codes and only local
optimization was performed. In this work we perform
a truly global search using the potential model with
the object of finding stable minima which are distinct
from the “natural” configuration. As a starting point,
we study one of the four principle bases of DNA,
adenine.

Because of the extensive CPU time required to
globally optimize with ab initio calculations, we
take the approach of using a potential model to
obtain a quick but “complete” survey of the poten-
tial energy surface using a global genetic search
algorithm. The interesting minima found with this
technique are further studied with a semiempirical
approach, PM3, and two different types of first
principle calculations, Hartree–Fock and density
functional theory.

In the following section we describe the poten-
tial model and in Section 3 the global search algo-
rithm is described. In Section 4 we describe the
PM3, Hartree–Fock and density functional local
optimizations of the interesting configurations
found with the global potential approach. In
Section 5 we give the results and Section 6 presents
the conclusions, implications and future directions of
this work.

2. The force field potential

Over the last 15 years, a large effort has been put
into obtaining analytical forms for potential energy
functions, which can correctly describe the structure,
energetics and vibrational frequencies of complex
biological macromolecular systems. Most of the effort
has been applied to proteins; more recently, potential
functions have been developed for nucleic acids and
have even been employed in dynamical simulations.
The potential energy function we used was developed
by Weiner et al. [8] for the simulation of nucleic acids
and proteins. This function is an extension of a force
field which used a united atom (spherical) representa-
tion of the CH, CH2 and CH3 groups [9]. The potential
energy function allows a general all atom representa-
tion of nucleic acids and proteins and has the follow-
ing form
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whereR, KR andR0 are the bond length, bond stretch
force constant, and equilibrium distance, respectively,
for the covalently bonded atoms;u;Ku; u0 are the
bond angle, angle bend force constant and equilibrium
angle, respectively, for the angles between the cova-
lent bonds of a given atom. A Fourier expansion of the
torsional energy in terms of the dihedral anglef is
implied. Vn=2 is the force constant,n is the multipli-
city of the expansion andg is a phase value. Together,
the first three terms account for variations in the cova-
lent bonding energy of the molecule.

The fourth term is the non-bonded term and repre-
sents the van der Waals (Lennard–Jones) and electro-
static energies. The quantitiesRij ; qi and qj are the
non-bonded distances and the charges, respectively,
for the atom pairi and j. The atom centered charges
qi were derived by Weiner et al. [8] by using quantum
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mechanically derived electrostatic potentials fit to a
point charge model. Charge neutrality was then
enforced by distributing the excess charge to the
same ratios as that found from Mulliken populations
[9]. The factor1 is an effective dielectric parameter,
1 � rij ; which mimics polarization effects in attractive
interactions [10]. The last term is the hydrogen-bond
energy, which provides the union of the relevant base
pair (e.g. Adenine–Thymine and Cytosine–Guanine).
Because we were not interested in the A–T pairing,
we did not include hydrogen bonding. The units ofV
are in kcal/mol withR in angstroms,u and f in
radians, qi in electrostatic units, and 332.17 is a
conversion factor.

For a description of the derivation of the values of
the potential parameters from experimental data, see
Refs. [8,9].

3. The global search

Finding the low energy stable structures of mole-
cules is a difficult global optimization problem. Not
withstanding the recent gains in efficiency with the
maturing of ab initio molecular dynamics, global opti-
mizations with this method are computationally
taxing because of the large number of electronic
degrees of freedom. Approaches employing classical
potentials with parameters adjusted to either experi-
mental data or selected ab initio results are an effec-
tive alternative. Such potentials often include effects
beyond the scope of the formalism [10] and, in any
case, results obtained through the classical optimiza-
tion can be used as configurational input to a full ab
initio or a density functional calculation.

In this work we employ a genetic algorithm with
the force field potential described in Section 2 as the
global search algorithm. The genetic algorithm,
originally proposed by Holland [11], is based on
nature’s efficient problem solving method of evolving
a microscopic genetic code through mutation and
crossover, with selection based on the fitness of the
corresponding individuals. It is an intelligent and
information efficient approach [12] to multi-variable,
global optimization and has been successfully applied
to a large number of complex problems from the
physical sciences [13]. McGrrah and Judson [14]
first applied the genetic algorithm to the molecular

conformation determination of the molecule cyclic
hexaglycine. Judson et al. [15] have looked at the
effectiveness of the GA in finding the ground state
of a 2-D polymer compared to the random and simu-
lated annealing global search approaches. They
arrived at the general conclusion that the larger the
molecule, the greater the effectiveness of the GA
approach over the others. For large systems, we
have demonstrated that a “symbiotic” variant of the
genetic algorithm is still more effective than the
genetic algorithm [16]. A general introduction to
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Table 1
The energy and the number of times encountered of the lowest 34
stationary points found in 13 000 global optimizations of random
initial configurations of the atoms of adenine using the force field
potential with the genetic search algorithm

Energy (kcal/mol) Times encountered

2 550.870860 9365
2 491.505479 9
2 488.269038 76
2 487.294911 8
2 485.160921 19
2 484.583130 18
2 481.849328 7
2 473.464861 1
2 465.108048 1
2 461.526329 103
2 459.704370 94
2 456.300295 71
2 454.158045 73
2 441.794629 152
2 435.671347 705
2 433.984435 722
2 426.316431 1
2 424.762576 1
2 418.752674 7
2 417.338110 1
2 416.453197 3
2 415.427917 1
2 414.639058 1
2 410.058122 1
2 408.055944 1
2 407.597946 2
2 405.867522 2
2 402.139537 1
2 398.501011 1
2 394.758042 1
2 392.648878 1
2 389.522938 16
2 388.604132 30
2 384.637602 12



genetic algorithms can be found in Ref. [17]. For
details on the specific application of the genetic algo-
rithm to atomic systems, see Refs. [18,19].

We begin the genetic global search by generating a
population of distinct random configurations of the 14
atoms of adenine (5 of nitrogen, 5 of carbon, and 4 of
hydrogen). These are generated at random positions
within a sphere of radiusr � 5 �A centered at the
origin of a 3D coordinate system. This relation gives
a radius somewhat larger than that of a sphere enclos-
ing the “natural” adenine structure. A genetic string is
composed for each configuration in the population

[19] by locating the three spatial coordinates of each
atom together, and the sets of coordinates of each
atom are ordered along the string in the order in
which they are generated. An 8-bit binary Gray
coding [20] of the coordinate variables was chosen.

The variables, corresponding to atom coordinates,
are evolved with the standard genetic algorithm tech-
nique [19] employing mutation and crossover, with
selection based on a fitness function for the molecule,
which was the total interaction energy of the system as
defined by Eq. (1). Evolution proceeds until the lowest
energy for the molecule has not changed during seven
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Fig. 1. The geometries of the most interesting (see text) lowest energy stable configurations found for the atoms of adenine in 13 000 global
optimizations starting from random configurations. These results were obtained with the force-field potential described in Section 2.



consecutive generations. At this point the configuration
is in an attraction basin of a low energy local minimum
and a local conjugate gradient optimization of the type
Polak–Ribiere [21] is performed to refine the structural
details of the molecule. The energy of the configuration
was thus locally minimized in an iterative procedure to a
precision of DV=V � 1028

: The stabilities of the
configurations so obtained were then checked by
obtaining and diagonalizing the Hessian to high
numerical precision and discarding those configura-
tions which presented negative eigenvalues.

4. Quantum mechanical calculations

Three distinct quantum calculations, PM3,
Hartree–Fock, and density functional theory were
employed in a local optimization of the interesting
configurations found with the potential model. The
MNDO-PM3 method uses a semiempirical, self-
consistent field-molecular orbitals (SCF-MO)
Hamiltonian [22] parametrized using the standard
heats of formation of a large set of reference mole-
cules [23]. It is designed to reproduce the standard
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Fig. 2. The geometries of Fig. 1 after local optimization using the semiempirical PM3 calculations.



heats of formation from total energies (with inclusion
of accurate experimental atomization heats) for mole-
cular geometries corresponding to the minimal SCF
value. We used a minimum basis set of Slater type
orbitals (STO) to describe the valence electrons in the
frozen core approximation. The method gives reliable
results for the molecular orbitals and electronic affin-
ities. The errors that arise due to the simplifications
related with the MNDO approximations are partially
compensated for by fitting to precise experimental

data from a large set of reference molecules in their
ground states. The MO and energy gradient calcula-
tions were performed with themopac program [24].
Eigenvector following was the method chosen to
search for the minima [25,26].

In the second set of quantum calculations, ab initio
molecular orbital optimizations were carried out with
the all-electron self-consistent-field Hartree–Fock-
linear combination of atomic orbitals (HF-LCAO)
computational scheme, as implemented in the
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Fig. 3. The geometries of Fig. 1 after local optimization using the Hartree–Fock calculations.



Gaussian 94 program [27]. The diagonalization of
the Hamiltonian was performed using a 6-31Gp

basis set. For optimization of the nuclear coordinates
a Berny algorithm [28] was incorporated without
imposing any symmetry constraints on the geometry.
A convergence criterion in which forces were
required to be less than 1024 a.u. was used to stop
the geometry optimization.

The third set of quantum calculations consisted of a
fully self-consistent density functional theory (DFT)
calculation performed to solve the standard

Kohn–Sham self-consistent equations in the local
density approximation (LDA) [29]. These calcula-
tions were performed using the SIESTA code
[30,31]. The core electrons have been eliminated
and replaced by the standard norm conserving
Troullier–Martins pseudopotentials in their fully
non-local (Kleinman–Bylander) form [32,33]. Flex-
ible linear combinations of numerical (pseudo) atomic
orbitals (PAO) are used as the basis set, allowing for
double z polarization orbitals. In order to limit the
range of the pseudoatomic basis orbitals, they are
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Fig. 4. The geometries of Fig. 1 after local optimization using the density functional calculations.



slightly excited by a common ‘energy shift’�dEPAO �
0:02�; and truncated at the resulting radial node [34].
The basis functions and the electron density are
projected onto a uniform real-space grid in order to
calculate the Hartree and exchange-correlation

potentials and matrix elements. The grid fineness is
controlled by the ‘energy cutoff’ (Ecut � 120 Ry� of
the planewaves that can be represented in it without
aliasing [31]. Structural relaxation was performed
using an unconstrained conjugate gradient method
with the DFT-LDA forces described above to a
convergence criteria of 1024 a.u.
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Table 2
Comparison of the geometries of the “natural” configuration as
locally optimized using the potential model, PM3, Hartree–Fock
and density functional calculations with the experimental data
from Ref. [33]. Thex 2 values of the calculations with respect to
the experimental data set are given. The bond lengths are in units A˚

of and the angles are in degrees. See isomer 1 of Fig. 3 for the
labeling of the bonds and angles

Pot. mod. PM3 HF DF Exp

Bond
1–2 1.311 1.433 1.419 1.389 1.312
2 –3 1.409 1.356 1.332 1.338 1.385
3–4 1.379 1.468 1.414 1.457 1.382
4–5 1.391 1.433 1.414 1.375 1.376
5–1 1.393 1.327 1.269 1.343 1.367
1–10 1.143 1.096 1.071 1.098
3–6 1.409 1.423 1.412 1.417 1.409
6–7 1.263 1.395 1.327 1.354 1.349
7–8 1.274 1.337 1.327 1.342 1.338
8–9 1.276 1.389 1.337 1.350 1.332
9–4 1.299 1.327 1.299 1.329 1.342
8–14 1.132 1.099 1.074 1.103
6–12 1.276 1.360 1.340 1.339 1.337
12–11 0.907 0.986 0.993 1.029
12–13 0.903 0.989 0.994 1.027
x 2 0.016 0.025 0.021 0.011 0.000
Angle
1–2–3 104.47 105.13 101.89 102.33 103.9
2–3–4 110.01 108.82 109.94 109.79 110.7
3–4–5 106.81 106.38 107.56 107.64 105.7
4–5–1 105.04 105.93 103.37 103.19 105.9
5–1–2 113.66 113.74 117.24 116.85 113.8
5–1–10 123.67 125.14 123.85 122.09
2–1–10 122.66 121.12 118.91 121.06
9–4–5 128.60 129.59 127.72 131.71
9–4–3 124.59 124.03 124.72 120.24 126.9
4–3–6 116.91 116.12 117.05 117.21 116.9
3–6–7 115.11 118.39 117.80 120.27 117.6
6–7–8 122.47 120.74 118.90 117.92 118.8
9–8–14 115.37 117.63 115.91 116.73
7–8–9 129.27 124.78 128.47 126.18 129.0
8–9–4 111.65 115.95 113.06 117.85 110.8
14–8–7 115.36 117.60 115.62 117.06
7–6–12 121.82 116.04 119.41 119.18 119.0
6–12–13 118.55 120.54 119.15 119.36
6–12–11 120.21 119.31 120.91 118.39
13–12–11 121.24 118.31 119.82 122.21
x 2 0.241 0.535 0.328 1.146 0.000

Table 3
The geometrical parameters of the isomer labeled 2 in Fig. 3 relaxed
with the Hartree–Fock calculations

Bond Å Angle Degrees Torsion Degrees

1–2 1.346 1–2–3 102.64 2–1–5–4 0.00
2–3 1.315 2–3–4 108.64 7–6–3–4 0.00
3–4 1.474 3–4–5 108.46 6–3–4–9 0.00
4–5 1.305 4–5–1 102.98 2–3–4–5 0.00
5–1 1.356 5–1–2 117.28 6–7–8–9 0.00
1–10 1.071 3–6–7 111.27 13–7–6–12 0.02
4–9 1.355 6–7–8 124.55 11–12–6–7 0.00
9–8 1.282 7–8–9 126.51 14–8–7–13 359.95
8–7 1.364 8–9–4 114.92 3–6–7–8 0.00
7–6 1.402 9–4–3 123.24
6–3 1.433 4–3–6 119.51
11–12 1.007 5–1–10 121.38
14–8 1.074 13–7–6 118.10
6–12 1.288 7–6–12 124.89
13–7 0.996 6–12–11 112.41

14–8–7 114.51

Table 4
The geometrical parameters of the isomer labeled 3 in Fig. 3 relaxed
with the Hartree–Fock calculations

Bond Å Angle Degrees Torsion Degrees

1–2 1.355 1–2–3 102.56 1–2–3–4 359.51
2–3 1.304 2–3–4 108.93 2–3–4–5 0.20
3–4 1.465 3–4–5 109.52 4–9–8–7 305.11
4–5 1.295 4–5–1 102.21 6–7–8–12 335.97
5–1 1.370 5–1–2 116.77 13–9–8–14 23.82
1–10 1.070 3–6–7 110.13 11–12–8–7 274.78
4–9 1.360 6–7–8 83.34 3–6–7–8 274.13
9–8 1.454 7–8–9 106.38 13–9–8–7 153.14
8–7 1.479 8–9–4 114.17 4–3–6–7 50.77
7–6 1.421 9–4–3 116.97
6–3 1.484 4–3–6 109.56
11–12 1.004 5–1–10 121.53
12–8 1.478 11–12–8 110.54
13–9 0.996 12–8–7 91.09
8–14 1.079 13–9–8 119.60
6–12 1.473 9–8–14 110.70

3–6–12 107.39



5. Results

In 13 000 runs of the genetic algorithm with the
potential model, starting from completely random
configurations, we found more than 100 stationary
points. The energy and the number of times encoun-
tered of the 34 lowest energy points is listed in Table
1. The number of times these local minima or saddle
points were found is directly related to the size of their
attraction basins. The lowest energy configuration
found indeed corresponded to the well know “natural”
configuration and this configuration was found the
largest number of times, implying the largest attrac-
tion basin for the natural state.

It should be emphasized that the force field poten-
tial was fitted to experimental data from “natural”
configurations. Although the number and types of
molecules fitted was large, it is probable that the
potential provides a good description of nature only
for the natural configurations. Configurations that
differ substantially from this are probably not well
represented by the potential. Those configurations
which therefore proved the most interesting because
of their approximate geometrical correspondence to
the natural state are displayed in Fig. 1. The stability
of these isomers was verified by determining and
diagonalizing numerically the Hessian to high numer-
ical precision. All configurations had purely positive
eigenvalues, with six eigenvalues equal to zero for the
6 degrees of translational and rotational freedom not
removed during the optimization process. Most of the
configurations found had a twin formed by exchan-
ging the hydrogen atoms in the H–N–H bond. This
was an artifact due to the distinct charges assigned to
the two hydrogen atoms and the fact that the charges
were not optimized in the potential model approach.

The atomic coordinates of the configurations of Fig.
1 were used as input to the PM3, Hartree–Fock and
density functional local minimizations. The resulting
relaxed configurations are given in Figs. 2–4, respec-
tively. All configurations converged to within the
required tolerance set for the respective calculations
(see Section 4). The relaxed configurations are similar
for the PM3 and Hartree–Fock and density functional
calculations. There is, however, a slight difference in
the angle of an N–H bond for isomers 3 and 4 of the
density functional calculations, as is evident in
comparing Figs. 3 and 4.

Table 2 gives a quantitative comparison of the
relaxed geometries of the “natural” configuration of
adenine found with the four distinct calculations and
with the experimental results of [35]. Thex 2 compar-
isons of the calculations to the experimental data are
also given in the table. Tables 3–6 list the geometrical
parameters, for the Hartree–Fock calculation, of the
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Table 5
The geometrical parameters of the isomer labeled 4 in Fig. 3 relaxed
with the Hartree–Fock calculations

Bonds Å Angle Degrees Torsion Degrees

1–2 1.355 1–2–3 102.57 1–2–3–4 0.54
2–3 1.304 2–3–4 108.92 3–4–5–1 359.87
3–4 1.464 3–4–5 109.54 4–9–8–12 317.53
4–5 1.295 4–5–1 102.20 3–6–12–8 271.87
5–1 1.370 5–1–2 116.77 4–3–6–7 309.25
1–10 1.070 3–6–12 107.41 9–4–3–6 5.08
4–9 1.360 6–12–8 81.66 4–3–6–12 49.98
9–8 1.453 12–8–9 109.59
8–7 1.480 8–9–4 114.27
7–6 1.421 9–4–3 116.91
6–3 1.483 4–3–6 109.59
13–12 1.004 5–1–10 121.53
12–8 1.477 13–12–8 110.60
11–9 0.996 12–8–7 91.09
8–14 1.079 11–9–8 119.78
6–12 1.473 9–8–14 110.67

3–6–7 110.17

Table 6
The geometrical parameters of the isomer labeled 5 in Fig. 3 relaxed
with the Hartree–Fock calculations

Bonds Å Angle Degrees Torsion Degrees

1–2 1.423 1–2–3 109.47 5–4–12–6 218.09
2–3 1.286 2–1–5 124.19 4–9–8–7 8.16
5–4 1.443 5–4–12 104.70 13–9–8–14 63.12
4–12 1.455 4–12–6 102.93 8–7–6–12 356.09
12–6 1.411 4–9–8 104.91 9–4–12–6 75.11
4–9 1.431 9–8–7 125.82 12–3–2–1 1.91
9–8 1.423 13–9–8 115.01 8–9–4–12 302.27
8–7 1.304 9–8–14 115.68 1–5–4–11 300.51
13–9 1.002 8–7–6 114.75
8–14 1.074 7–6–12 118.57
7–6 1.374 9–4–12 107.22
11–4 1.086 6–12–3 62.59
12–3 1.393 1–5–4 107.13
1–5 1.303 12–4–11 109.48
14–8 1.074 13–9–8 115.01
6–3 1.457 9–4–12 107.22



higher energy isomers found. We verified that the
Hartree–Fock calculations gave positive eigenvalues
for the Hessian for all configurations, indicating that
the isomers are also stable from the viewpoint of this
calculation.

A comparison of the total energy differences
between the lowest energy “natural” configuration
and each isomer, for those isomers listed in Figs. 1–
4 is given in Table 7. Notice that the energy ordering
of the isomers is the same for all four calculations and
that the three quantum calculations are in reasonable
quantitative agreement for the energy differences of
all isomers.

6. Summary and conclusions

We have made global searches for the stable
isomers of adenine using a genetic algorithm
combined with a force field potential. A large number
of stable isomers were found, both planar and non-
planar. Those configurations, which were similar to
the natural configuration and stable were deemed
interesting and were further studied with the PM3,
Hartree–Fock and density functional approaches.
The fact that minima of the potential model calcula-
tion were also geometrically close relatives of minima
of the quantum calculations gives us confidence in the
validity of using the potential approach as a first
approximation for globally searching for isomers of
adenine.

Since the isomers presented here have been found
in four independent theoretical calculations and have
been verified to be stable at both the classical and
quantum level, we conclude that they may be obser-
vable in nature. Such results could have important

implications in the biological activity of adenine and
in the nano-electronic characteristics of adenine tied
to metal nanoclusters and thus appear interesting
enough for further detailed study.

Directions for future research include, calculating
the free energies of the isomers at ambient tempera-
tures, determination of the potential barriers between
the isomers, including the base pair thymine and the
DNA skeleton, applying the same global search to the
other bases and base pairs, studying the binding of
the isomers to metal nanoclusters and investigating
the biological implications of the isomers.
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