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Abstract

The stability of ecosystems during periods of stasis in their macro-evolutionary trajectory is studied from a non-equilibrium

thermodynamic perspective. Individuals of the species are considered as units of entropy production and entropy exchange in an

open thermodynamic system. Within the framework of the classical theory of irreversible thermodynamics, and under the condition

of constant external constraints, such a system will naturally evolve toward a globally stable thermodynamic stationary state. It is

thus suggested that the ecological steady state, or stasis, is a particular case of the thermodynamic stationary state, and that the

evolution of community stability through natural selection is a manifestation of non-equilibrium thermodynamic directives.

Furthermore, it is argued that punctuation of stasis leading to ecosystem succession, may be a manifestation of non-equilibrium

‘‘phase transitions’’ brought on by a change of external constraints through a thermodynamic critical point.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Our understanding of the evolutionary dynamics of
living systems on all scales has lately developed from one
based solely on gradualist Darwinian evolution through
natural selection at the individual level to one embracing
punctuated equilibrium (Eldredge and Gould, 1972), a
scenario of large periods of stasis punctuated by
episodic evolutionary change, with selection acting not
only at the individual, but also at gene, species, and
possibly higher levels (Gould, 2002). Stasis, once
considered as an uninteresting triviality, now forms an
important focus of evolutionary study at all levels of the
hierarchy of life on Earth (Jackson and Cheetham, 1994;
Cheetham and Jackson, 1995). In fact, paleontologists
and ecologists, impressed by the ubiquity of stasis
(Williamson, 1981; Wake et al., 1983; Gould, 2002) have
argued for the search of an active force of stabilization
(Paul, 1985).
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Stasis and punctuation of stasis is perhaps no better
apparent than at the level of ecosystems. It is known
that from their inception ecosystems go through a series
of successional stages (Goldsmith, 1985), each stage
generally being more diverse, complex, and more stable
than the previous one (Odum, 1963, 1969, 1983;
Margalef, 1963). We also know that the jump between
successional stages occurs in a relatively short time span,
and that most of the time, most ecosystems may be
found in stasis, or in what is generally referred to as
ecological steady states. In these states, species popula-
tions are either fixed or oscillate regularly, or perhaps
even chaotically, but always about some fixed point in
population space which is surprisingly stable to external
perturbations. Every so often, however, rapid extinc-
tions and speciations give rise to succession, instigated
perhaps by either a critical change in the external
conditions or by intrusion of a new species into the
ecosystem. The lack of ‘‘missing links’’ between species,
and between successive ecosystems, in the fossil record is
an empirical fact, now taken as evidence of stasis
punctuated by episodic change, prevalent at all levels of
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living systems and to the earliest times of life on Earth
(Gould, 2002).
At the species level, punctuated equilibrium may be

described (Gould, 2002) from within Darwinian theory
of selection of the individual by allowing for Mayr’s
(1963, 1971) theory of allopatric speciation. Small
populations of a particular species which become
isolated geographically or otherwise from the main
population are no longer subjected to dilution of their
gene pool by the larger parent population and thus have
an opportunity to evolve rapidly, perhaps forming new
species. If such a new species becomes repatriated with
the parent species and has some particular advantage
over it in the same environment, then the new species
may competitively cause the extinction of the parent
species. Links between the two species are missing in the
fossil record simply because rapid evolution occurred on
a small population which was also geographically
limited.
Going up the hierarchy of living systems however, it

becomes increasingly difficult to explain the macro-
evolutionary dynamics of stasis and punctuation from
within Darwinian theory. This because the individual
units become further and further removed from the
traditional Darwinian objects of selection and reproduc-
tion, their numbers dwindle so competition looses
significance, and an appropriate target of selection
becomes elusive. This limitation of the traditional theory
has since been emphasized by Swenson (1997) who has
labeled it the problem of the evolution of a population of

one. At these scales, the macro-evolutionary dynamics of
living systems is thus an enigma, indicating a need for a
more encompassing theory, one which might be effective
at all levels of the hierarchy of living systems.
A more encompassing framework might be grounded

in non-equilibrium thermodynamic theory for a number
of reasons: (1)Thermodynamic laws are the most
universal of all laws and they work on all scales in
similar ways, allowing for a unified hierarchical descrip-
tion. (2)The study of the macroscopic behavior of
whatever complex system benefits from a reduction in
the number of variables to a smaller number of effective
variables. Such a reduction is missing in traditional
ecological theory and has lead to an impasse in
accounting for macro-evolutionary patterns. Thermody-
namics, on the other hand, was developed in the physical
sciences specifically out of this need to find a reduced
number of relevant variables to describe macroscopic
phenomena. (3)Stasis and punctuation have intriguing
analogues in the form of non-equilibrium thermodynamic
stationary states and phase transitions. (4)The problem of
an elusive target of selection at higher than the species
level, or, more specifically, the problem of the evolution
of a system of a population of one, is solved because it
can be reduced to a number of thermodynamic directives
involving the entropy production.
A shift in ecosystem analysis from a descriptive
paradigm to one based on physical laws began with
the seminal work of Lotka (1922) concerning the flow of
energy through an ecosystem. The possibility of framing
ecology within a quantitative non-equilibrium thermo-
dynamic paradigm, however, was first recognized by
Schrödinger (1944) who pointed out that living systems
were under the dictates of thermodynamic law and that
biological structure and processes were maintained by a
continual in-flow of negative entropy, at the expense of
an entropy increase of the environment. Apart from
developing the physical and mathematical ground work
for the description of non-equilibrium phenomena,
Prigogine (1967) has emphasized the remarkable simi-
larity in characteristics that living systems share with
thermodynamic stationary, non-equilibrium states.
Schneider and Kay (1994) have argued, in a qualitative
but convincing manner, for the description of ecosystem
characteristics in terms of non-equilibrium thermody-
namic theory. Zotin (1990), Chakrabarti et al. (1995),
Svirezhev (2000), and Zotin et al. (2001) have advanced
the use of non-equilibrium thermodynamic concepts to
living systems on a number of levels, including
ecosystems, while Swenson (1989, 2000) has addressed
more general evolutionary principles in living systems
from the thermodynamic viewpoint.
The present article may be considered as a continua-

tion of previous work in incorporating living systems,
specifically ecosystems, into a non-equilibrium thermo-
dynamic framework. In particular, we consider the
possibility that thermodynamic directives may be the
basis of the active agent promoting stasis in ecosystems.
In the following section, it is shown that stasis is a non-
trivial problem in the traditional ecological framework
since a simple mathematical analysis shows that any
complex interacting system, whether mechanical, che-
mical, or biological, will have little chance of being
stable unless the interaction strengths between its
component parts are very carefully chosen and con-
tinually maintained. A biological cause of such stabili-
zation, for example through natural selection at the
ecosystem level, however, remains elusive, leading to a
stubborn complexity–stability paradox (May, 1972,
1974; Pimm, 1991; McCann, 2000).
In this article, ecosystems are considered as open

thermodynamic systems subjected to a number of
external constraints imposed by the external environ-
ment. For certain periods, these abiotic constraints may
be considered as being relatively constant and, accord-
ing to classical irreversible thermodynamic theory, such
an ecosystem will necessarily evolve toward a globally
stable thermodynamic stationary state. The irreversible
evolution toward the stationary state is an empirical fact
for all abiotic systems under constant external con-
straints. This must arguably also be the case for biotic
systems if indeed biological processes are under the
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dominion of the same physical laws as chemical,
transport, and mechanical processes. It is thus suggested
that the ecological steady state, or periods of stasis in
ecosystems, is a particular manifestation of the thermo-
dynamic stationary state. Furthermore, it will be shown
that evolution of the species interaction coefficients
leading up to this period is driven necessarily in the
direction of securing and maintaining global stability by
thermodynamic restrictions on the entropy production
and on the rate of change of the entropy production,
independent of the size or complexity of the ecosystem.
The resolution of the complexity–stability paradox in
terms of these non-equilibrium thermodynamic direc-
tives constitutes the basic result of this paper.
The present work on ecosystem stasis can be seen to

fit in well with more general macro-evolutionary
dynamics of ecosystems in the punctuated equilibrium
paradigm. For example, from the thermodynamic
viewpoint, and in the more general case of variable
external constraints, a change in these constraints
through a critical point could cause the ecosystem to
leave its stationary state and rapidly evolve toward a
new, and possibly more stable, stationary state with a
greater internal production of entropy. That this
dynamics does indeed occur in the macro-evolution of
ecosystems is manifest, for example, in the eventual
succession of clear-cut overgrowth to an established
deciduous forest with an undeniable increase in stability
(Odum, 1963) and entropy production, in apparent
agreement with Swenson’s (2000) principle of maximum
entropy production. Such a phenomena is indeed also
observed in the thermodynamics out of equilibrium of
abiotic processes as recognized early on by Prigogine
(1967). A simple example being the Bénard phenomena
of the sudden transformation to convective cooling from
conductive cooling as the gradient of temperature across
a fluid under the force of gravity is increased beyond
some critical value. These non-equilibrium ‘‘phase
transitions’’, induced by changes through a critical
point in the external conditions, may play an important
part in episodic punctuation which, together with stasis,
define the macro-evolutionary dynamics of the ecosys-
tems toward larger, more complex and apparently more
stable systems. In fact, empirical evidence for a
correlation of punctuation of stasis with environmental
variability, particularly through a critical point, has
accumulated (Sheldon, 1996).
The general goal of this article is thus to argue for the

utility of a quantitative non-equilibrium thermodynamic
framework for the description of the stability and
dynamics of ecosystems, while the principle objective is
to offer an explanation of stasis in thermodynamic terms
and thus hopefully provide a convincing resolution of
the complexity–stability paradox.
In the following section, the traditional ecological

framework based on the empirical Lotka–Volterra-type
equations is reviewed and the complexity–stability
paradox is presented. In Section 3, justification for the
application of classical irreversible thermodynamics to
some ecosystems during periods of constant external
constraints is presented. Section 4 presents a thermo-
dynamic framework for ecosystems and compares
results with the empirical approach of classical ecologi-
cal theory based on Lotka–Volterra-type equations.
Section 5 briefly considers those ecosystems far from
equilibrium in the nonlinear regime, providing a logical
alternative to ad hoc nonlinear extensions of Lotka–-
Volterra approaches. Finally, Section 6 presents a
discussion of the results and the conclusions.
2. The traditional ecological framework

Population modeling in the traditional ecological
framework is based on (May, 1974),

dpgðtÞ

dt
¼ F gðp1ðtÞ; p2ðtÞ; . . . ; pnðtÞÞ, (1)

where F g is, in general, some empirically inspired,
nonlinear function of the populations pg of the n species
g. For example, for the popular Lotka–Volterra
equations (which have the stability characteristics of a
much wider class of ecological models employed in the
literature (May, 1974)), F takes the following form:

F g ¼ pg bg þ
Xn

g0¼1

pg0cgg0

 !
, (2)

where bg represents the inherent growth rate of species g
in the absence of all other species, and cgg0 represents the
effect of species g0 on the population growth rate of
species g. Of interest in ecology, because of its frequent
occurrence in nature, is the so-called ecological steady

state in which all growth rates are zero, giving the fixed
point, or steady state, populations p�

g ,

dp�
g ðtÞ

dt
¼ F gðp

�
1ðtÞ; p

�
2ðtÞ; . . . ; p

�
nðtÞÞ ¼ 0. (3)

The population dynamics and stability in the neighbor-
hood of the fixed point can be determined by expanding
Eq. (1) in a Taylor series about the steady state
populations

dxgðtÞ

dt
¼ F gj� þ

Xn

g0¼1

qF g

qpg0

" �����
�

xg0 ðtÞ

þ
1

2

Xn

g00¼1

q2F g

qpg0qpg00

" �����
�

xg0xg00 þ � � � ; ð4Þ

where xgðtÞ ¼ pgðtÞ 	 p�
g and the � denotes evaluation at

the steady state. Since F gj� ¼ 0, and close to the steady
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state the xg are small, only the second term in expansion
(4) need be considered. In matrix notation, this gives,

_xðtÞ ¼ AxðtÞ, (5)

where xðtÞ is a n 
 1 column vector of the population
deviations from steady state values, and the so-called
‘‘community matrix’’ A has the components

agg0 ¼
qF g

qpg0

�����
�

(6)

which represent the effect of species g0 on the rate of
change of population g near the steady state.
The solution of Eq. (5) is

xgðtÞ ¼
Xn

g0¼1

Dgg0 expðlg0 tÞ, (7)

where lg0 are the eigenvalues of the matrix A and the
integration constants Dgg0 are determined from the
initial conditions.
From Eq. (7) it is obvious that asymptotic stability

near the steady state requires that the real parts of all the
eigenvalues of A must be negative. This condition gives
rise to very restrictive relations among the components
agg0 of the community matrix A (May, 1974). For
example, it is easily shown that for an unrealistic but
demonstrative n ¼ 2 species community the following
restrictions are required:

a11 þ a22o0 (8)

and

a11a224a12a21. (9)

For the Lotka–Volterra equations, Eqs. (2), this implies

p�
1c11 þ p�

2c22o0 (10)

and

c11c224c12c21. (11)

For a community of an arbitrary number n of species,
it can be shown that the requirement that the n 
 n

matrix A have all real parts of its eigenvalues negative is
equivalent to the demonstration of the existence of some
positive definite function P ¼ PðxÞ (Lyapunov func-
tion) having its derivative with respect to time negative
definite (Barnett, 1990).
The relations between the components of the com-

munity matrix needed for ensuring stability of the
ecosystem are thus specific. These relations are in fact
more specific the more complex1 the system (May,
1974). Consequently, the probability that a randomly
1Complexity in this ecological context refers to the size and

connectance of the ecosystem. Size is defined as the number of

participating species and connectance as the percentage of non-zero

elements in the community matrix.
constructed community will be stable decreases rapidly
with the size of the ecosystem, becoming practically zero
at an ecosystem size of only about 10 strongly
interacting species (Gardner and Ashby, 1970; May,
1972; Yodzis, 1980). This leads to the complexity-

stability paradox2: Without a mechanism for ‘‘fine
tuning’’ and maintaining the community matrix (for
example in the sense of Eqs. (10) and (11) for an n ¼ 2
species community) there should be little probability of
finding stable complex ecosystems in nature. However,
most ecosystems are very complex and most are
observed in conditions of stability or stasis (Goldwasser
and Roughgarden, 1993; Polis, 1991).
The most plausible mechanism from within the

ecological framework thus far offered for tuning the
parameters of the community matrix is natural selection

(May, 1974). However, this explanation remains in-
complete until the question of how a stable ecosystem
could be the target of evolution through natural
selection is addressed. In other words, it is a version of
the conceptual problem of natural selection working on
the evolution of a system of a population of one (the
ecosystem) (Swenson, 1997).
3. On the applicability of CIT to ecosystems

Before applying classical irreversible thermodynamic
(CIT) formalism to ecosystems, in this section we
acknowledge the general conditions under which CIT
theory is valid and thus identify which ecosystems may
be justifiably treated through CIT theory.
The classical theory of irreversible thermodynamics is

the non-equilibrium thermodynamic theory which has
been the most empirically tested and universally
accepted. The limitations of the theory have been
discussed by Prigogine (1967). Generally, the classical
theory can be applied to any system for which it can be
shown that the Gibbs relation holds locally. For
transport processes it has been demonstrated, through
a statistical-mechanics approach, that this corresponds
to the requirement of linear phenomenological laws
between the generalized forces and flows. However, the
phenomenological coefficients may still be functions of
the state variables. For chemical reactions, it is only
required that the reaction rates are low enough to
maintain a Maxwellian distribution of the velocities of
each reacting component (Prigogine, 1967). Although
these conditions may appear restrictive, they have, in
fact, been shown, both experimentally and theoretically,
to apply to a wide range of real phenomena, particularly
to those to be considered here involving transport
processes (Vavruch, 2002).
2Sometimes, less accurately, referred to as the diversity– stability

debate.



ARTICLE IN PRESS

4Other thermodynamic forces, for example the chemical affinities

K. Michaelian / Journal of Theoretical Biology 237 (2005) 323–335 327
At the hierarchical level chosen for the analysis here,
at which the unit of entropy production and transport
within the ecosystem is the individual, the justification
for the applicability of linear CIT is shown in the
appendix to be obtained by limiting the analysis to
interactions between individuals of the one- and two-
body form only. In this case, the relations between the
generalized forces and the generalized flows (the species
populations and the entropy flows, respectively, see
below) are indeed linear. By considering the individual
as the basic unit of entropy production and exchange
within the ecosystem, the details of all ‘‘lower’’ level
processes can thus be avoided and ecosystem dynamics,
at least to second order in the species interactions, falls
under the dominion of CIT no matter how ‘‘far’’ from
equilibrium the lower level processes may be.
Limiting species interactions to the one- and two-

body terms has in fact been the norm in most ecological
studies, as witnessed by the almost exclusive use of a
two-dimensional community matrix. There is in fact a
conspicuous lack of consideration of three-body and
higher-order interaction terms in the literature, with few
exceptions (de Oliveira and Fontanari, 2000). This may
be somewhat justified on the grounds that higher n-body
interactions are increasingly unlikely since they require
n-body localization in space and time. This lack of
consideration of higher n-body terms is certainly not
valid however for social species where many-body
interactions surely play an important, if not defining,
role. In these cases, specific results from linear CIT can
no longer be used, but we can however invoke a more
general result concerning the negative definiteness of the
sign of the change in the entropy production rate due to
changes in the generalized forces (Prigogine, 1967).
While the limitation to the two-body interactions

gives rise to only fixed-point attractor dynamics in both
the traditional ecological Lotka–Volterra framework
and the proposed thermodynamic framework,3 limit
cycles and even chaotic attractor population dynamics is
allowed through the coupling of irreversible processes in
this more general n-body, approach. This will be briefly
considered in Section 5 while the full development will
be left to a forthcoming article.
Coupling of irreversible processes occurring within an

ecosystem requires that the processes occur within the
same ‘‘macroscopic’’ region. The scale of the macro-
scopic region being determined by the range of the
forces of interaction between ecosystem components.
Since, for example, metabolic rates of herbivores can be
influenced by the mere sight or smell of a predator at
distances of up to kilometers, or days after passage, it is
reasonable to presume that the macroscopic space–time
3Neutral cycles are also allowed in the traditional Lotka–Volterra

framework but, as argued below, these are not representative of real

cyclical phenomena occurring in nature
region available for coupling of irreversible processes
within an ecosystem can be quite large. Stationary state
coupling of irreversible processes (Prigogine, 1967) is a
further possibility.
The importance of ascertaining the validity of CIT

theory for ecosystems is that it contains an inherent
evolutionary principle, valid under constant external
constraints; the natural evolution of an open system
toward a stable thermodynamic stationary state. Such a
principle is obviously a candidate for an active agent
promoting stasis in ecosystems. The condition of
constant external constraints, however, is certainly not
valid for all ecosystems and requires justification for the
rest. Such a condition implies that all thermodynamic
forces over the ecosystem (principally the energy
difference between the incident sunlight and the light
re-emitted by the ecosystem at a lower frequency)4 are
constant in time. This situation may at first considera-
tion not appear to apply to ecosystems which are subject
to short term but pronounced variations, for example,
diurnal variations of the Sun’s photon intensity, or
seasonal variations, such as those experienced at the
very northern or southern latitudes. However, it is noted
that species responsible for bringing energy and material
into the ecosystem, the photosynthesizing plants and
bacteria, have developed characteristic survival times5

which are long compared with the diurnal variations
(that is, plants and cyanobacteria survive day and night
variations) such that the thermodynamic force due to
the energy and materials gradient provided by the
primary producers to the community at large may in
fact be considered to be constant to a good approxima-
tion.
Seasonal variations of the Sun’s photon intensity,

especially at the very northern and southern latitudes,
poses a greater impediment to the applicability of CIT.
It is thus an intriguing possibility that the markedly
different stability characteristics found between tropical
and high-latitude ecosystems may have a thermody-
namic origin (tropical ecosystems with more constant
external constraints are significantly more stable than
high latitude systems with more variable external
constraints, just as would be expected under the
dominion of CIT theory).
Ecosystems recently subjected to a large external

perturbation are very likely to be far from equilibrium
and a linear relation between the flows and forces (see
appendix) cannot be expected. In this case, some results
from CIT in the linear regime cannot be justified.
However, here again we can invoke the more general
depending on the external concentrations of the compounds, and

temperature gradients, can also be argued to be constant for many

ecosystems.
5The robustness of individuals to perturbations of the external

constraints contributes to ecosystem resilience.
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result of the work of Prigogine (1967) which shows that
the change in entropy production due to changes in the
generalized forces is always negative, independent of the
systems closeness to equilibrium. This, along with the
second law of thermodynamics, provides the necessary
and sufficient conditions for the evolution toward
stability. This will be briefly studied in Section 5.
4. The proposed thermodynamic framework

We define the ecosystem as comprising all organisms
usually considered as being alive and having a causal
link to at least one other organism in the system.
Everything else is considered as composing the external

environment. The ecosystem is thus an open thermo-
dynamic system receiving a constant negative entropy
flow derived from the primary producers utilizing
sunlight to produce usable energy through photosynth-
esis. One-body interactions between the individuals and
their external abiotic environment, including the trans-
port of energy and material into, or out of, the system,
and two-body and higher-order interactions internal to
the ecosystem, between the individuals of the species, are
the sources of entropy change and exchange within the
system. Within the framework of classical irreversible
thermodynamics (CIT), and under the condition of
constant external constraints, and if indeed biological
processes are under the dominion of the same physical
laws as chemical, transport, and mechanical processes,
CIT predicts (Prigogine, 1967) that the ecosystem will
evolve toward a thermodynamic stationary state in
which the total entropy S is constant in time. In this
section it will be shown that this generates equations for
the species populations in the neighborhood of the
stationary state which are more general than, but
include, those of Lotka–Volterra.
Additionally, the second law of thermodynamics and

a result from CIT concerning the negative definiteness of
the rate of change of the entropy production, dictate
specific relations among the elements of the two-body
species interaction matrix. These relations give stability
in the thermodynamic framework and are shown here to
be equivalent to those required on the community
matrix for stability in the ecological framework. Under
the conditions enumerated above, the ecosystem is thus
shown to be asymptotically stable and the ecological
steady state (community stability) is suggested to be a
special case of the more general thermodynamic
stationary state.
For ecosystems in which higher n-body (three-body

and higher order) interactions are important, or which
have been significantly perturbed such that the general-
ized thermodynamic flows are no longer linearly
proportional to the generalized forces (see below), it
will be shown that the second law of thermodynamics
and a more general result from nonlinear CIT theory,
concerning the time change of the entropy production
due to the changes in the generalized forces, dictate the
population dynamics and the evolution toward stability
of the system, as long as the external constraints over the
ecosystem remain constant.
The total time change of entropy of the ecosystem (as

for any open system) is a sum of an external term of no
definite sign, and an internal production term of positive
definite sign as required by the second law of thermo-
dynamics,

dS

dt
¼
deS

dt
þ
diS

dt
, (12)

diS

dt
40. (13)

In the spirit of the virial expansion for a thermodynamic
system communicating through n-body interactions, the
total change of entropy of the ecosystem can be written
as a many-body expansion of entropy changes due to
interactions among individuals and among individuals
and their external environment. Such a many-body
expansion is obviously in complete accord with the
extensivity property of entropy.
The entropy brought into the ecosystem or carried out

of it through one-body transport processes can thus be
written as

deS

dt
¼
Xn

g¼1

pgG
e
g, (14)

where the sum is over all n species and pg is the
population of species g. Ge

g represents the average rate of
exchange, or flow, of entropy with the external
environment per individual of species g. For example,
the energy per individual per unit time taken in through
photo-synthesis deg, or the heat dqg per individual
transported to the external environment, and the
components (e.g. nutrients) of type a taken in or given
out by species g, dnga, of chemical potential mga, give for
the rate of entropy exchange per individual,

Ge
g ¼
1

T

deg þ dqg

dt
	
1

T

X
a

mga
dnga

dt
. (15)

Assuming constant external constraints over the
ecosystem, CIT theory predicts that the system
will naturally evolve toward a thermodynamic
stationary state. The thermodynamic stationary state is
characterized by time-independent thermodynamic vari-
ables, in particular dS=dt ¼ 0, and therefore (since
diS=dt40),

deS

dt
¼
Xn

g¼1

pgG
e
go0, (16)
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total internal energy and the total volume are just sums over the

populations of the respective individual quantities. The average

individual internal energies and volumes can be considered constant

in time.
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implying that at least one of the species must bring
negative entropy into the ecosystem, and that the
amount of entropy introduced per unit time must be
of more negative value than that transported back into
the environment by all other species. This crucial role is
of course usually played by the photo-synthesizing
species (the primary producers).
Employing again the spirit of the virial expansion, the

entropy production within the ecosystem itself may be
written in the many-body form

diS

dt
¼
Xn

g¼1

pg Gi
g þ

Xn

g0¼1

pg0Ggg0

"

þ
Xn

g0 ;g00¼1

pg0pg00Ggg0g00 þ Oð4Þ

#
40. ð17Þ

The Gi
g represent the entropy production due to

one-body irreversible processes occurring within the
individual such as; photo-synthesis, evapotranspiration,
respiration, metabolism, etc. The Ggg0 represent the
entropy production and exchange due to two-body
interactions between individuals (e.g. those involved in
predator–prey, competition, symbiosis, mutualism,
etc.); Ggg0g00 correspond to similar but three-body
interactions, and Oð4Þ represents the entropy production
due to four-body and higher-order interactions
(for example, those required for the functioning of
societies).
In this section, Eq. (17) will be truncated at the two-

body terms,

diS

dt
¼
X
g

pg Gi
g þ

X
g0

pg0Ggg0

" #
40 (18)

¼
X
g

pg Gi
g þ

X
g0

pg0
Ggg0 þ Gg0g

2

� �" #
40 (19)

(where the last expression emphasizes the dependence of
the entropy production on only the symmetric part of
the two-body entropy production matrix Ggg0). As
mentioned in Section 3, the justification for this
truncation is that, for most ecosystems, higher-order
n-body interactions will be less probable since they
require n-body localization within a limited space–time
volume. The more general dynamical equations and
stability relations obtained by including the higher-
order terms of Eq. (17) will be briefly considered in
Section 5.
Eq. (19) can be shown to be an equivalent representa-

tion (Katchalsky and Curran, 1975) of the usual
formulation of the entropy production. To see
this we assume that the entropy of the ecosystem
is a function of the populations pg (the state
variables),6 S ¼ SðpgÞ, then,

dS

dt
¼
X
g

qS

qpg

 !
ðpgÞ

dpg

dt
¼ 	

X
g

ng
T

dpg

dt
, (20)

where

ng � 	T
qS

qpg

 !
ðpgÞ

(21)

is analogous to the chemical potential mg and will be
called the biological potential of species g. The ‘ðpgÞ’
implies that all populations other than g are held
constant. The generalized flows in this representation
are the population changes in time dpg=dt and the
generalized forces are 	ng=T .
Again invoking the spirit of the virial expansion to

second order, but this time for the population change
dpg=dt (in fact just the Lotka–Volterra Eqs. (1) with (2)),
Eq. (20) becomes

dS

dt
¼ 	

X
g

ng
T

pg bg þ
X
g0

pg0cgg0

 !" #
(22)

¼
X
g

pg Gg þ
X
g0

pg0
Ggg0 þ Gg0g

2

� �" #
(23)

with

Gg � Ge
g þ Gi

g ¼ 	bg
ng
T
,

Ggg0 þ Gg0g

2
¼ 	cgg0

ng
T

¼ 	cg0g
ng0
T
. (24)

Thus, given relations (24), our representation of the
internal entropy production, Eq. (19), is an equivalent

representation of the internal entropy production in its
more usual form of Eq. (20).
In our representation, Eq. (19), the generalized

internal flows are chosen as

Gi
g þ

X
g0

pg0
Ggg0 þ Gg0g

2

� �
, (25)

describing the net entropy flow to an individual of
species g due to internal irreversible processes and to its
interaction with all other species g0. The generalized
forces are simply the populations pg of the n species
(g ¼ 1; n).
The advantage of our equivalent representation is that

the flows are specifically divided into the entropy
production due to the one-body processes and to the
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7This is also an analogous relation to the positive definiteness of the

specific heat at constant volume Cv, ensuring thermal stability, and to

the positive definiteness of the isothermal compressibility w, ensuring
mechanical stability. Under the local equilibrium hypothesis on which

CIT is based, these relations also hold out of equilibrium since the

specific heat, isothermal compressibility and the chemical potential are

supposed to depend in the same way on the same variables as in

equilibrium (Prigogine, 1967).
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two-body production and exchange processes. The one-
body transport terms with the external environment Ge

g
can, in principle, be determined using Eq. (15) by
measuring the heat flow from an individual to the
environment and by accounting for the entropy content,
through the chemical potentials, of nutrients taken in,
and of waste products given back to the environment.
The one-body internal entropy production terms Gi

g can
be obtained by measuring individual rates of entropy
production of specific irreversible processes necessary
for auto-maintenance (e.g. respiration). The two-body
terms could be determined by measuring the excess
entropy production per unit time due to the species
interactions including the transport and exchange of
matter, energy and heat (e.g. increases in basal meta-
bolic rates). The generalized forces, the species popula-
tions, can of course also be determined empirically.
Thus, our particular choice of the flows and forces
facilitates the analysis by allowing identification with
empirically measurable quantities. As required for
equivalent representations, the entropy production
remains invariant.
Once the ecosystem arrives at the thermodynamic

stationary state, CIT theory says that all net flows will
go to zero

Gg þ
X
g0

p�
g0

Ggg0 þ Gg0g

2

� �
¼ 0. (26)

The � now denotes evaluation at the thermodynamic

stationary state populations. The simple change of
variable, Eq. (24), makes Eq. (26) recognizable as
equivalents of those defining the steady state
populations in the ecological framework obtained
with the Lotka–Volterra equations, Eq. (2) with condi-
tions (3).
The second law of thermodynamics requires that the

internal entropy production must be always greater than
zero

P �
diS

dt
¼
X
g

pgG
i
g þ

X
gg0

pgpg0
Ggg0 þ Gg0g

2

� �
40. (27)

Since the two-body interaction terms can be assumed to
not be directly coupled to the one-body internal
processes, we must also have that

X
gg0

pgpg0
Ggg0 þ Gg0g

2

� �
40. (28)

As an example, for an unrealistic but demonstrative two
species ecosystem ðn ¼ 2Þ, Eq. (28) implies that

G11p21 þ ðG12 þ G21Þp1p2 þ G22p2240. (29)

Since the second law must hold for whatever values of
the populations, this implies that

G1140 and G2240, (30)
and

4G11G224ðG12 þ G21Þ
2. (31)

To see how these conditions can be connected to the
parameters of the Lotka–Volterra equation in the
ecological framework, cgg0 , through relations (24),
consider first the internal entropy production as
obtained from Eq. (20)

P ¼
diS

dt
¼ 	

X
g

ng
T

dpg

dt
	
deS

dt
. (32)

Using a most general result of CIT, that the time change
of the entropy production due to a change in the
generalized forces X (recall that in this representation
the generalized forces are 	ng=T) is always negative
except at the stationary state at which it is zero
(Prigogine, 1967), gives

dXP

dt
¼ 	

1

T

X
gg0

qng
qpg0

 !
ðpgÞ

dpg0

dt

dpg

dt
p0. (33)

Therefore,

X
gg0

qng
qpg0

 !
ðpgÞ

dpg0

dt

dpg

dt
X0. (34)

Eq. (34) is analogous to the equilibrium stability
conditions against diffusion which involve the chemical
potentials mg (Glansdorff and Prigogine, 1971).

7 Because
of its positive semi-definite quadratic form, this equation
implies that

ngg40 and det jngg0 jX0, (35)

where ngg0 � qng=qpg0 . Therefore, the following quadratic
form must also hold for whatever values of the
populationsX
gg0

qng
qpg0

pgpg040. (36)

Assuming (at least up to second order in the species
interactions) that the biological potentials ng are
homogeneous functions of mth order (m40) in the
populations pg we can use Euler’s theorem (Glansdorff
and Prigogine, 1971) to convert Eq. (36) intoX
g

pgng40. (37)
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For example, for the two species ecosystem, using the
substitution of variables (24) this gives

	T
c11p1G11 þ c22p2G22

c11c22

	 

40. (38)

Since this must hold for whatever positive values of the
populations, this condition, along with condition (30)
implies that

c11o0; c22o0. (39)

With the variable substitutions (24), Eq. (31) give also
that

c11c22Xc12c21. (40)

These relations can be recognized as sufficient condi-
tions for stability of the steady state populations in the
ecological framework, Eqs. (10) and (11).8 However, the
important point is that these conditions obtained in this
proposed thermodynamic framework are the result of
non-equilibrium thermodynamic theory and therefore
have a clear physical basis. In the ecological framework
they are required ad hoc for stability and therefore give
rise to the complexity–stability paradox.
The results obtained above may also be derived from a

somewhat different perspective. In the stationary state,
assuming linear phenomenological laws and Onsager’s
reciprocity relations (see Appendix A), the internal
production of entropy P is a minimum with respect to
the generalized forces which are not fixed (Prigogine, 1967).
In general, ifP is a function of n populations, the condition
for it to be a minimum is that the Hessian matrix,

hgg0 ¼
q2P

qpgqpg0

�����
p�gp�

g0

(41)

is positive definite (Barnett, 1990). As an example, for n ¼

2 species, P is a function of two variables, p1 and p2, and
the following two conditions must be satisfied (Swokowski,
1975):

q2P
qp21

����
p�
1
p�
2

40,

q2P
qp21

q2P
qp22

����
p�
1
p�
2

	
q2P

qp1qp2

	 
2�����
p�
1
p�
2

40. ð42Þ

This leads to the following conditions on the interaction
parameters:

Ggg40, (43)

4G11G224ðG12 þ G21Þ
2. (44)
8Note that restriction (39) is in fact stronger than restriction (10).

This is due to the fact that in this thermodynamic analysis the

populations were restricted to positive values while no such restriction

was enforced in obtaining Eq. (10) (Roberts, 1974).
With the variable substitutions introduced above (Eq. (24)),
this leads again to restrictions (39) and (40) on the
Lotka–Volterra parameters of the ecological framework.
For an arbitrary ecosystem size of n species, we now

show that results from linear irreversible thermody-
namics guarantee the stability of the stationary
state populations p�. Consider the internal entropy
production

P ¼
diS

dt
40. (45)

This must always be greater than zero by the second law.
Assuming again linear phenomenological laws and
Onsager’s reciprocity relations (see Appendix A), it
can be shown that the changes in the entropy production
due to changes in the generalized forces X and that due
to changes in the generalized flows J are equal
(Prigogine, 1967)

dXP

dt
¼
dJP

dt
. (46)

Therefore, with Eq. (33), we have also that

dP

dt
¼
dXP

dt
þ
dJP

dt
p0, (47)

where the equality holds at the stationary state
(populations p�). We have thus found the Lyapunov
function P (the internal entropy production) which
establishes the asymptotic stability of the stationary
state populations p�. As mentioned in Section 2, the
existence of a Lyapunov function is equivalent to the
requirement on the ecological community matrix that
the real parts of all eigenvalues are negative definite for
stability. An ecological steady state thus has the dynamic

and stability characteristics of a thermodynamic station-

ary state and it is tempting to consider the former as a

particular case of the latter.
5. Nonlinear ecosystems

In this section, we briefly consider the analysis of
ecosystem dynamics and stability beyond the two-body
interactions. A more detailed analysis will be provided
in a forthcoming article.
The two-body community matrix of the Lotka–Vol-

terra formalism admits solutions for the dynamics of the
populations which are either stable points or neutral
cycles (neutral cycles can be observed to be allowed by
Eq. (7) by considering a community matrix with purely
imaginary eigenvalues). As pointed out by Glansdorff
and Prigogine (1971) for chemical reactions and later by
May (1974) for ecological systems, such neutral stability,
in which the amplitude of oscillation depends on the
initial conditions or on a subsequent perturbation (see
Eq. (7)) is not representative of robust cyclical processes
occurring in nature (for example, the almost constant
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Fig. 1. Cyclic attractor dynamics determined from Eq. (50) using the

species interaction coefficients as given in Appendix B.
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given in Fig. 1.
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amplitude, 11-year period oscillations observed for over
100 years in the Arctic hare and lynx populations (May,
1974)). The thermodynamic formalism presented here in
fact forbids the possibility of neutral cycles since the
existence of a Lyapunov function does not admit closed
orbits. Our formalism including only up to two-body
interactions thus only allows fixed point attractor
solutions in population space.
Including higher-order terms in the formalism, how-

ever, leads to the possibility of cyclic attractor and even
chaotic attractor dynamics (for ecosystems of at least 3
species). Consider the total change of entropy of the
ecosystem in the stationary state, including now higher-
order terms

dS

dt
¼
X
g

pg Gg þ
X
g0

pg0Ggg0

"

þ
X
g0g00

pg0pg00Ggg0g00 þ Oð4Þ

#
¼ 0. ð48Þ

At the stationary state the net flows will go to zero,

Gg þ
X
g0

pg0Ggg0 þ
X
g0g00

pg0pg00Ggg0g00 þ Oð4Þ ¼ 0. (49)

Eq. (49) provides a many-body generalization of Eq.
(26) and a logical alternative to ad hoc nonlinear
extensions of the two-body Lotka–Volterra equations
describing the steady state populations. However,
depending on the values of the entropy production
and exchange coefficients, Gg;Ggg0 , etc., it may now
happen that the steady state populations defined by
Eq. (49) are not stable, or may not even exist. This may
happen because the entropy production P is no longer a
Lyapunov function since the generalized flows are no
longer linearly proportional to the generalized forces
as they were in the truncated two-body case (see
Appendix A) and thus Eq. (47) no longer necessarily
holds. However, a more general result of CIT requires
that the time change in the entropy production due to a
change in the generalized forces X (the populations) is
always negative, except at the stationary state at which it
is zero (Prigogine, 1967),

dXP ¼
X
g

dpg Gi
g þ

X
g0

pg0Ggg0

"

þ
X
g0g00

pg0pg00Ggg0g00 þ Oð4Þ

#
p0. ð50Þ

Since this is not a total differential, the entropy
production P is not a Lyapunov function and closed
orbits are therefore allowed. For example, for an n ¼ 3
species ecosystem, and considering up to fourth order in
the interactions, the entropy production and exchange
coefficients given in Appendix B along with Eq. (50)
describe the cyclic attractor dynamics shown in Fig. 1.
Fig. 2 shows how the populations settle into the
attractor as a function of time. The ecosystem always
settles into the same attractor from whatever locally
confined initial conditions and no local perturbation can
change the amplitude nor the position of the attractor. It
may thus be that this behavior from nonlinear CIT
theory corresponds to the robust cyclical processes
observed in real ecosystems.
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Note that the requirement that the second law of
thermodynamics must be obeyed,

diS

dt
¼
X
g

pg Gi
g þ

X
g0

pg0Ggg0

"

þ
X
g0g00

pg0pg00Ggg0g00 þ Oð4Þ

#
40, ð51Þ

limits the spectrum of responses of the ecosystem to
external perturbation. How the second law, along with
the criterion defined by Eq. (50), determine the evolution
of the perturbed ecosystem will be studied in detail in a
forthcoming article.
6. Discussion and conclusions

Note that to second order in the species interactions
(linear ecosystems) the internal entropy production, and
thus the rest of the dynamic and stability analysis, is
dependent only on the symmetric part of the entropy
production matrix Ggg0 (see Eq. (19)). In other words,
this thermodynamic framework makes it apparent that
the number of independent parameters required to
describe the ecosystem dynamics and stability to second
order is a little more than one-half (considering the
terms on the diagonal) of those usually assumed to be
necessary in the traditional ecological framework. This
is a testable prediction of the theory.
The parameters of the entropy production matrix are

also physically well defined, in contradistinction to the
parameters of the community matrix in the ecological
framework. For example, the term bg (Eq. (2)) in the
ecological framework represents the inherent growth
rate of species g in the absence of all other species (May,
1972). A direct determination of such a parameter is of
course impossible even in principle. Instead, the values
of bg and cgg0 (Eq. (2)) can only be determined by fitting
to population measurements and will therefore provide
little predictive power since the fitting is unlikely to be
unique for realistically large ecosystems and restricted
field samples. In contrast, in the thermodynamic frame-
work proposed here, the analogous term Gg represents
the one-body net flow of entropy per unit time per unit
individual to species g, and Ggg0 represents the effect of
species g0 on the entropy production of species g, both of
which are possible, in principle, to measure directly as
outlined in Section 4.
In conclusion, this paper has considered the stability

of ecosystems from a non-equilibrium thermodynamic
perspective. Although most of the results presented
herein apply to a somewhat restricted class of ecosys-
tems (those with constant external constraints), never-
theless the application of CIT to these systems in the
linear and nonlinear regimes has provided a number of
important results. In general, it has been shown that
ecosystems appear to be amenable to a quantitative
physical approach based on non-equilibrium thermo-
dynamic theory. Specific paradoxes and problems from
within the ecological framework, for example, the
complexity–stability paradox and the problem of the
evolution of a system of a population of one, have a
natural resolution within the proposed thermodynamic
framework. It is simply that the evolution of the
interaction parameters in the direction of securing
ecosystem stability is a natural thermodynamic conse-
quence for an open system under constant external
constraints. The necessary and sufficient conditions,
identified in CIT, are the positive definiteness of the
internal entropy production and the negative definite-
ness of the time change of the internal entropy
production due to changes in the generalized forces
(the species populations). This may be the basis of the
active force of stabilization sought after for explaining
stasis. This also establishes a clear link between
thermodynamics out of equilibrium and natural selec-
tion of species interaction strengths.
For nonlinear ecosystems, it was suggested in Section

5 that the proposed thermodynamic framework admits
cyclic and chaotic attractor solutions for the dynamics.
There is no need to resort to exotic transcendental
functions in ad hoc extensions of the Lotka–Volterra-
type equations, as often encountered in the literature.
Simply extending the interactions to three-body and
higher-order terms is sufficient to obtain this flavor in
the dynamics. Here again, the second law and the more
general result concerning the negative definiteness of the
change in entropy production due to changes in the
generalized forces drive the interaction parameters into
the stability regime. This suggests an interesting relation,
hitherto overlooked, between n-body effects and popu-
lation dynamics. The confinement in space–time of
individuals as a precondition to enabling n-body effects,
coupled with the resulting flavor in the population
dynamics, is the probable generator of the observed
complex spatial and temporal structures of species
populations (May, 1999).
The time local (at constant interaction coefficient)

population dynamics of a locally perturbed ecosystem
under constant external constraints can be determined
by realizing that any change in the generalized forces
(the species populations) must occur in such a manner
that the internal entropy production of the ecosystem is
reduced.
From a more global non-equilibrium thermodynamic

perspective, it is known that biological systems may
posses multiple stationary states (Glansdorff and
Prigogine, 1971). Ecosystems which have suffered a
significant perturbation in their external conditions,
through some critical point, may thus in fact loose
stability and may evolve rapidly from one stationary
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state to another quite different. (Such non-equilibrium
phase transitions are well known in abiotic processes,
for example at the Bénard transition.) This may
correspond to succession in ecosystems. New ecological
steady states are progressively reached in which the
complexity, stability (Odum, 1963), and entropy pro-
duction are usually higher. There is much evidence for
environmental change as a trigger for evolutionary
change (Hoffmann and Parsons, 1997). Episodic punc-
tuation of stasis through non-equilibrium phase transi-
tions at a critical point may therefore provide a means
for ecosystem growth in both size and complexity by
combining it with Swenson’s principle of maximum
entropy production. Swenson (1989, 2000) has argued
that of all possible paths available to a thermodynamic
system after the removal or change of an external
constraint, the system will take the path which increases
the entropy of the system plus environment at the fastest
rate possible given the remaining constraints. Large,
complex ecosystems are more efficient at producing
entropy than are smaller ones, and thus would be
favored by nature if this suggestion were correct.
Finally, a possible thermodynamic explanation for the

enhanced stability of tropical over high latitude ecosys-
tems has been offered by relating the observation to the
degree of constancy of the respective external con-
straints.
Since these thermodynamic directives operate on all

systems at all scales in similar ways, and since each
hierarchical level provides the ecological constraints
(and thus the thermodynamical constraints) for the level
below (Holling, 1998), this work may provide an
explanation for the ubiquity of stasis and episodic
change (Gould, 2002) at all hierarchical levels of living,
and non-living, systems.
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Appendix A

The employment of the condition of minimal internal
entropy production implicitly assumed the linearity of
the phenomenological laws and the reciprocity relations
of Onsager (Prigogine, 1967). Recalling that for the
internal two-body entropy production the generalized
flows and forces can be assigned in the following manner

Jg ¼
X
g0

pg0
Ggg0 þ Gg0g

2

� �
; X g ¼ pg (A.1)

it is obvious that the phenomenological relations are of
the linear form

Jg ¼
X
g0

Lgg0X g0 , (A.2)

where the phenomenological coefficients are,

Lgg ¼ Ggg,

Lgg0 ¼
Ggg0 þ Gg0g

2

� �
. (A.3)

From this and Eq. (43), or the condition following from
Eq. (29), it follows that,

Lgg0 ¼ Lg0g and Lgg40. (A.4)

The reciprocity relations of Onsager and the positive
definite nature of the proper phenomenological coeffi-
cients are thus satisfied to second order in the
interactions.
Appendix B

Consider, as an example, the following set of species
interaction coefficients (see Eq. (50)) for an n ¼ 3 species
ecosystem and including up to four-body terms;

G1111 ¼ 1; G2222 ¼ 1; G3311 ¼ 1;

G1122 ¼ 1; G2211 ¼ 1; G3322 ¼ 1;

G111 ¼ 	30; G222 ¼ 	30; G331 ¼ 	20;

G122 ¼ 	10; G211 ¼ 	10; G332 ¼ 	20;

G112 ¼ 	20; G221 ¼ 	20; G311 ¼ 	20;

G11 ¼ 392; G22 ¼ 392; G322 ¼ 	20;

G12 ¼ 201; G21 ¼ 199; G31 ¼ 400;

G1 ¼ 	1930; G2 ¼ 	1910; G32 ¼ 400;

G33 ¼ 192;

G3 ¼ 	3840:

This set was actually obtained from the following
equation for the change in the entropy production due
to changes in the generalized forces (Eq. (50)).

dXP ¼ dp1½ðp2 	 10Þ þ ðp1 	 10Þððp1 	 10Þ
2

þ ðp2 	 10Þ
2
	 8Þ


þ dp2½	ðp1 	 10Þ þ ðp2 	 10Þ


ððp1 	 10Þ
2
þ ðp2 	 10Þ

2
	 8Þ


þ dp3½ðp3 	 20Þððp1 	 10Þ
2

þ ðp2 	 10Þ
2
	 8Þ
p0. ðB:1Þ
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The cyclic attractor given in Figs. 1 and 2 was then
obtained by starting from the initial values of p1 ¼ 3,
p2 ¼ 8 and p3 ¼ 40, and generating dp1, dp2 and dp3 at
random. Selecting only sets of dp’s which gave a
negative value for dXP, as calculated from Eq. (B.1),
the values of of p1, p2 and p3 were updated until various
orbits of the attractor had been completed.
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