General Overview of the Advanced Light Source: A soft x-ray/VUV facility

Tuesday 23 Nov 2010 at 13:10 (00h50')

In this talk, a general overview of the Advanced Light Source (ALS) will be presented. The ALS is a third generation light source optimized for soft x-ray/ VUV science. Beamline 10.0.1 of the ALS is a good example of a VUV/EUV beamline. A detailed description of this beamline will be presented. This high resolution beamline splits in three branches serving two very different communities. One branch is dedicated to photoemission studies of highly correlated materials (solid state physics) and the other two branches are dedicated to photoionization/photoexcitation studies of atomos, molecules and clusters in gas phase. Recent research highlights conducted in all three branches will be presented in a second talk.

Primary authors : Dr. AGUILAR, Alejandro (LBNL-ALS)

Co-authors :

Presenter : Dr. AGUILAR, Alejandro (LBNL-ALS)

General overview of the Advanced Light Source: a soft x-ray/VUV facility

Alex Aguilar LBNL-ALS Beamline Scientist (10.0.1)

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Index

BERKELEY LAB

- Little bit of history
- Parameters
- Bend magnets and Super-bend magnets
- Insertion Devices
 - In Vacuum
 - EPU and QEPU
- Top-Off mode
- Future upgrades
- Beamline 10.0.1
- Summary

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

AWRENCE BERKELEY NATIONAL LABORAT

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

Index

- Little bit of history
- Parameters
- Bend magnets and Super-bend magnets
- Insertion Devices
 - In Vacuum
 - EPU and QEPU
- Top-Off mode
- Future upgrades
- Beamline 10.0.1
- Summary

For more information, contact David Robin (<u>DSRobin@lbl.gov</u>) Christoph Steier (<u>csteier@lbl.gov</u>)

A little bit of history...

Original building completed in 1942.

Designed by Arthur Brown, Jr. (designer of the Coit Tower in San Francisco).

Was built to house <u>Berkeley Lab's</u> namesake <u>E.</u> <u>O. Lawrence's</u> 184-inch cyclotron (Nobel Prize in 1939).

Today, the expanded building houses the Advanced Light Source (ALS), a third-generation synchrotron and national user facility.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

A little bit of history...

Original building completed in 1942.

Designed by Arthur Brown, Jr. (designer of the Coit Tower in San Francisco).

Was built to house <u>Berkeley Lab's</u> namesake <u>E.</u> <u>O. Lawrence's</u> 184-inch cyclotron (Nobel Prize in 1939).

Today, the expanded building houses the Advanced Light Source (ALS), a third-generation synchrotron and national user facility.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

A little bit of history...

Original building completed in 1942.

Designed by Arthur Brown, Jr. (designer of the Coit Tower in San Francisco).

Was built to house <u>Berkeley Lab's</u> namesake <u>E.</u> <u>O. Lawrence's</u> 184-inch cyclotron (Nobel Prize in 1939).

Today, the expanded building houses the Advanced Light Source (ALS), a third-generation synchrotron and national user facility.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

The Advanced Light Source

Lawrence Berkeley National Lab

- 3rd generation <u>synchrotron</u> light source
- Commissioned in 1993, \$99.5 million
 - Operating budget \$25 million
 - 1500 users
- Present (2010)
 - Operating budget \$52 million
 - 2800 users
- 1.9 GeV, 0.5 A electron storage ring
- 40 operating beam lines
- 50 possible beam lines

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Storage ring parameters

Electron beam energy	1.9 GeV
Injection energy	1.0-1.9 GeV
Beam current	500 mA in multi-bunch
Filling pattern	256-320 bunches; possibility of one or two 5-6 mA "camshaft"
Bunch spacing: multi-bunch	2 ns
Bunch spacing: 2-bunches	328 ns
Circumference	196.8 m
Straight sections	12
Insertion devices	11
Beam sizein streight sections (multi-bunch)	310 μm horiz. x 16 μm vert.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

ALS storage ring lattice

- 12 straight sections
- 12 arc-shaped sections
 - Bend magnets (B),
 - Quadrupoles (QFA, QDA, QF, and QD)
 - Sextupoles (SF and SD).
- Three of the arc sections contain superconducting bend magnets (superbends).

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

9 Bending magnets feeding 19 beamlines

Infrared (IR) Spectroscopy	X-Ray Tomography
X-Ray Microscopy	Magnetic Spectroscopy
Materials Science	Diagnostic Beamlines
Atomic and Molecular Physics	Chemical Sciences
X-Ray Fluorescence Microprobe	Small Molecule Crystallography
EUV Lithography Mask Inspection	MicroXAS

3 Super-bend magnets feeding 8 beamlines

Protein Crystallography	Tomography
High Pressure	X-Ray Micro-diffraction

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

What is a super-bend magnet and what is it for?

- Expand the capability and capacity of the facility to serve the Hard X-ray community
- Do not compromise the ability of the facility to serve the UV and Soft X-ray community

Super-bend magnets vs. Bend magnet

rrrr

- Excellent source of hard X-rays up to 40 keV
 - Well suited for protein crystallography and other hard X-ray applications
 - Small beamsize in the center bend ($\sigma_x = 100 \ \mu m$) is a good match for many crystals
- High Capacity

Superbends yield up to 12 beamlineswithout using any straightNovembec biomsAlejandro AguilarII Mexican Workshop on Accelerator
Physics: A Light Source

Installing the first Superbend (Aug. 21, 2001)

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Insertion Devices

1 Wiggler (11.4-cm-period) feeding 3 beamlines

Protein Crystallography

4 Elliptical Polarization Undulators. 3 are 5-cm-period and 1 is a 9-cm-period

Magnetic Spectroscopy	Molecular Environmental Science
High Resolution spectroscopy of complex materials	Photoemission electron microscope and Soft X-ray scattering

7 Undulators. 2 (U3), 2 (U5), 1 (U8) and 2 (U10)

Ultrafast/Femtosecond Dynamics	Surface, Materials Science
Chemical Dynamics	Diffraction Imaging
Correlated Materials	Atomic and Molecular Physics
EUV testing and interferometry	ARPS

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

New Insertion Devices

Quasiperiodic Ellipically Polarizing ID (MERLIN)

In-Vacuum ID (Femtoslicing)

Ellipically Polarizing ID (PEEM-III)

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

In-Vacuum Insertion Device

S. Marks et al.

Specifications Magnetic gap 5.5 mm Period 30 mm No. periods 48 B_o 1.45 T

Smallest ID Gap

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

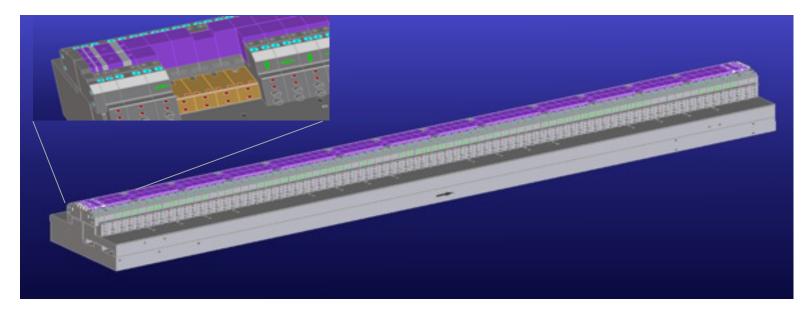
MERLIN QEPU

- Installed in Fall/Winter 2007
- Commissioned in January 2008
- First Light in February 2008

Initial Shimming Results are Very Encouraging

Dynamic Multipole Shimming Close to Optimal

November 9, 2010


Alejandro Agı

AWRENCE BERKELEY NAT

• Why a Quasi periodic Undulator (QEPU)

- For low-energy undulators, the inability of monochrometers to distinguish integral multiples of the fundamental can result in unwanted excitations of electron states.
- A QEPU is an efficient yet simple scheme is proposed that reduces the photon flux at integer multiples of the fundamental

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

rrrrr

Top-off mode

In top-off mode the plan is to run with

- 2 times higher time averaged current
- smaller vertical beam size less than half the present size

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

BERKELEY

Top-off mode

- 2 times higher time averaged current
- smaller vertical beam size less than half the present size

Top-off mode has opened the door to large increases in brightness and improvements in beam stability

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Brightness Before and After Top-off

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Before and After operation in Top-off mode

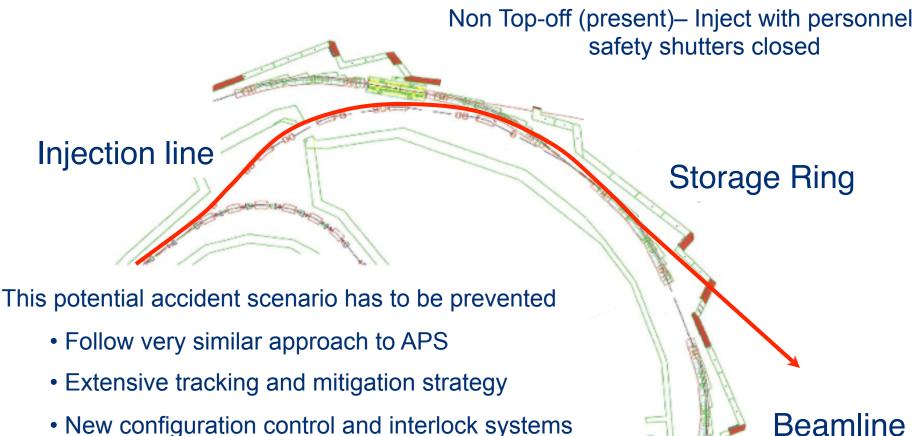
Before Top-Off

- Injection at 1.5 GeV and then ramp
- Inject with insertion devices open
- Average beam current was 250 mA
- Vertical emittance was 150 pm rad
- Lifetime was 8 hours at 400 mA
- Injection period every 2 to 8 hours
 - 1 Hz injection for 4 minutes
 - From 200 to 400 mA
- Photon shutters were closed during injection

After Top-Off

- Full energy injection (1.9 GeV)
- Inject with insertion devices
 closed
- Average beam current is 500 mA
- Vertical emittance is 30 pm rad
- Lifetime is about 3 hours at 500 mA
- Injection period about every 30 seconds
 - 1 pulse
 - From 498.5 to 500 mA
- Photon shutters remain open during injection

AWRENCE BERKELEY NATIONAL LABORATORY


November 9, 2010

Alejandro Aguilar

Top-off Radiation Issues/challenges

Injected e- beam cannot exit the shielding

Large collaboration between Accelerator / Engineering / EHS Staff

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

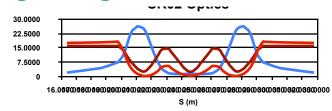
From Tracking to Requirements

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar


Some upcoming upgrades at the ALS

Flexible Bunch Frequency

High Brightness Lattices

Superconducting IDs

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Optimized Lattice Settings

Global Lattice Exploration

LAWRENCE BERKELEY NATIONAL LABORATO

November 9, 2010

Alejandro Aguilar

Ultralow Emittance Lattice

Ultralow Emittance Lattice

Install New Sextupoles

- Horizontal emittance is reduced to 1/3 from 6.3 nm rad to 2.2 nm rad
- Brightness is inversely proportional to emittance

Emittance would be as low as any existing light source

LAWRENCE BERKELEY NATION

November 9, 2010

Alejandro Aguilar

Brightness

- —More than 3 times the brightness for central bend and Superbend beamlines
- —Up to 2 times (with more speculative lattices even more) the brightness for soft x-ray beamlines
- Additional Benefits : Short Pulses

 —500 MHz picosecond pulses at reduced currents
 —Coherent Terahertz Radiation

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Superbend Beamsize

Horizontal Beamsize at Superbends reduced to 30%

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

rrrr

BERKELEY

New sextupoles = increasing the brightness

 Horizontal emittance is reduced by factor of 3 to 2.2 nm rad

Of existing light sources, only PETRA-III has a lower emittance

- Brightness is inversely proportional to emittance
- Project received funding in summer 2009
- Passed comprehensive project review
- Close to awarding contract for magnets
- On track for completion of project by end of FY13

November 9, 2010

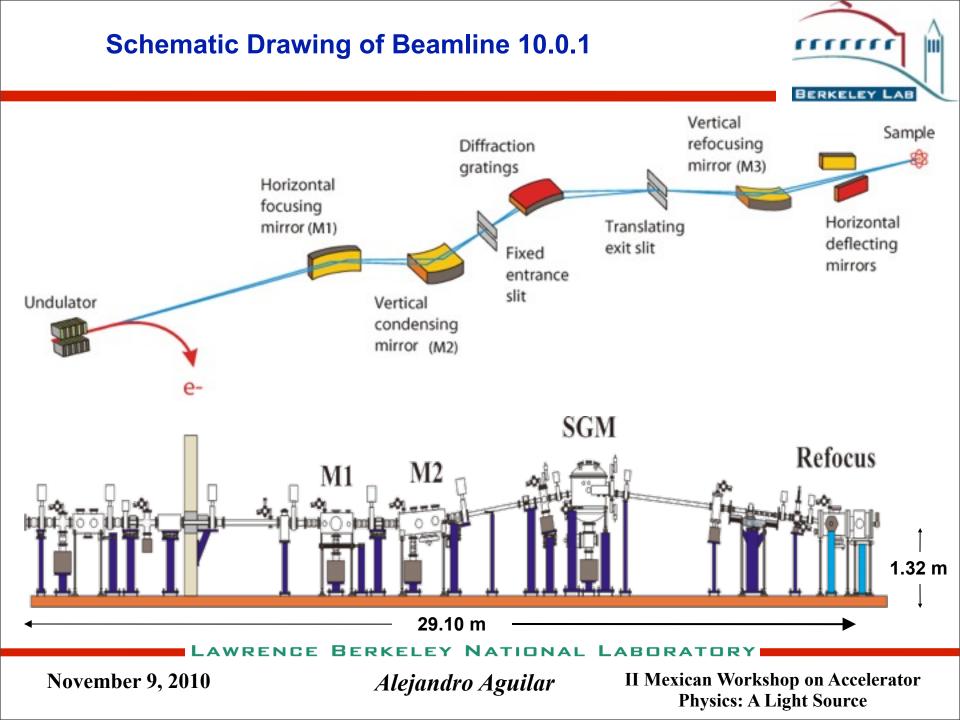
Alejandro Aguilar

% BW mm² mrad²

10

10

present, US0, 4.45 m present, IU30, 1.5 m


ALS upgrade, IU20, 4 m ALS ultimate, IU33, 4.5 m ALS ultimate, IU20, 4 m

48 New Sextupoles

H. Nishimura, et al.- Proceedings of the 2007 PAC Co II Mexican Workshop on Accelerator Physics: A Light Source

Ephoton [eV]

Beamline 10.0.1

www-xfel.spring8.or.jp/cband/j/ Undulator.htm

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Beamline 10.0.1

U10 Undulator

- 10.0 cm period, 43 periods
- 12 1500 eV energy range (@ 1.9

www-xfel.spring8.or.jp/cband/j/ Undulator.htm

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Beamline 10.0.1

U10 Undulator

- 10.0 cm period, 43 periods
- 12 1500 eV energy range (@ 1.9

Spherical Grating Monochromator

Undulator

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATOR

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 30

Beamline 10.0.1

<u>U10 Undulator</u>

- 10.0 cm period, 43 periods
- 12 1500 eV energy range (@ 1.9

Spherical Grating Monochromator

• 3 gratings: 380, 925, and 2100 lines/mar.htm

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 30

Beamline 10.0.1

<u>U10 Undulator</u>

- 10.0 cm period, 43 periods
- 12 1500 eV energy range (@ 1.9

Spherical Grating Monochromator

- 3 gratings: 380, 925, and 2100 lines/mm^{www-xfel.spring8.or.jp/cband/j}
- 17 340 eV energy range

Grating	Ruling (lines/ mm)	Energy Range (eV)
Low	380	17 - 75
Medium	925	40 - 170
High	2100	100 - 340

Energy range	17 eV to 350 eV 11 eV to 350 eV (future)	(73 nm to 5 nm) (112 nm to 5 nm)
Photon flux	From 10 ¹² to 10 ¹⁴ photons/s depending upon resolution	
Resolving power (E/ Δ E)	From 10,000 to 65,000	

LAWRENCE BERKELEY NATIONAL LABORATORY

Nevember 9, 2010 2010

Alejandro Aguilar

Energy range	17 eV to 350 eV 11 eV to 350 eV (future)	(73 nm to 5 nm) (112 nm to 5 nm)
Photon flux	From 10 ¹² to 10 ¹⁴ photons/s depending upon resolution	
Resolving power (E/ Δ E)	From 10,000 to 65,000	

LAWRENCE BERKELEY NATIONAL LABORATORY

Nevender 9, 2010 2010

Alejandro Aguilar

Three Branch Lines (2 for AMO)

Some of the AMO endstations

BERKELEY LAB

Nevember 9, 2010 2010

Alejandro Aguilar

• ALS is a mature 3rd generation light source that stays competitive by constantly having important up-grades.

• Plans to "split" the undulator or beamline 10.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

• ALS is a mature 3rd generation light source that stays competitive by constantly having important up-grades.

- Plans to "split" the undulator or beamline 10.
- Building and operating a beamline in an existing ring for few years?
- Heavy ion storage ring? (non in the US or the Americas)

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Gracias por su atención

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Status of New IDs

- 5 cm EPU (PEEM3)
 - Similar to 3 others that had been installed in the ring already
 - First shimmed for dynamic multipoles
- In-Vacuum ID (Femtoslicing)
 - First in-vacuum device
 - Smallest gap (5mm vacuum)
 - Next smallest gap is 9mm
 - New Lattice for Femtoslicing
 - 12 skew quadrupoles added
- 9 cm QEPU (MERLIN)

Most challenging device to be installed

- First quasiperiodic EPU
- First large period EPU
- Compensation for

C. Steier et al., 2007 Particle Accelerator Conference, Albuquerque, New Mexico, June 2007

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Status of New IDs

- 5 cm EPU (PEEM3)
 - Similar to 3 others that had been installed in the ring already
 - First shimmed for dynamic multipoles
- In-Vacuum ID (Femtoslicing)
 - First in-vacuum device
 - Smallest gap (5mm vacuum)
 - Next smallest gap is 9mm
 - New Lattice for Femtoslicing
 - 12 skew quadrupoles added
- 9 cm QEPU (MERLIN)

Most challenging device to be installed

- First quasiperiodic EPU
- First large period EPU
- Compensation for

C. Steier et al., 2007 Particle Accelerator Conference, Albuquerque, New Mexico, June 2007

Momentum offset = 0.00 %

80.12000

22 0000

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

94.64000

0.25

109.16000