Recent Science Highlights at Beamline 10.0.1 of the Advanced Light Source

Wednesday 24 Nov 2010 at 11:00 (01h00')

Beamline 10.0.1 of the ALS has typically a dozen or so of groups per year. These produce an average of 25 refereed papers and 4 articles of high impact (PRL, Nature or Science) per year. The beamtime is equally divided for groups doing condense matter physics and groups from the atomic and molecular community. A selected group of recent science highlights from the research done at this beamline will be presented.

Primary authors : Dr. AGUILAR, Alejandro (LBNL-ALS)

Co-authors :

Presenter : Dr. AGUILAR, Alejandro (LBNL-ALS)

Recent Science Highlights from Beamline 10.0.1 of the Advanced Light Source

Alex Aguilar Scientist Beamline 10.0.1

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Outline

- Beamline 10.0.1
- Condense Matter Physics
 - Angle Resolved Photoemission Spectroscopy (ARPES)
- Atomic and Molecular Physics
 - Velocity Map Imaging Spectroscopy
 - Photoelectron Spectroscopy (Scienta 2000) gas phase
 - Double Ionization Chamber
 - COLTRIMS
 - Photon-Ion Merged Beams Apparatus

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Photon-ion merged beams apparatus

 Photoionization of Se ions; Determination of elemental

abundances in PNe

Sterling et al., accepted JPB (2010)

N.C. Sterling, D. Esteves, A.L. Kilcoyne, E. Red, R.A. Phaneu R.C. Bilodeau, and A. Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Section (Mb Determination of elemental

abundances in PNe

Sterling et al., accepted JPB (2010)

Photoionization of Se ions;

 Photoionization of Ce@C₈₂⁺ Xe@C₆₀⁺; Confinement

resonances.

Quantum computing, Cancer therapy

Müller et al., PRL 101, 133001 (2008) Kilcoyne et al. PRL 105, 213001 (2010)

WRENCE

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

Photon-ion merged beams apparatus

 $Se^+ + \gamma \otimes Se^{2+} + e^{-1}$

N.C. Sterling, D. Esteves, A.L. Kilcoyne, E. Red, R.A. Phaneu R.C. Bilodeau, and A. Aguilar

A. Müller, S. Schippers, M.Habibi, D. Esteves, J.C. Wang, R.A. Phaneuf, A.L.D. Kilcoyne, A. Aguilar and L. Dunsch

Photon-ion merged beams apparatus

Photoionization of Se ions;

Determination of elemental

abundances in PNe

Sterling et al., accepted JPB (2010)

 Photoionization of Ce@C₈₂⁺ Xe@C₆₀⁺; Confinement

resonances.

Quantum computing, Cancer therapy

Müller et al., PRL 101, 133001 (2008) Kilcovne et al. PRI 105, 213001 (2010)

These experiments were only possible due to the high resolution and high photon flux of this beamline.

> WRENCE BERKELE NATIONAL ARNRAT

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

Kilcoyne, E. Red, R.A. Phaneu R.C. Bilodeau, and A. Aguilar

A. Müller, S. Schippers, M.Habibi, D. Esteves, J.C. Wang, R.A. Phaneuf, A.L.D. Kilcoyne, A. Aguilar and L. Dunsch

U10 Undulator

<u>U10 Undulator</u>

- 10.0 cm period, 43 periods
- 12 1500 eV energy range (@ 1.9 GeV)

www-xfel.spring8.or.jp/cband/j/Undulator.htm

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Beamline 10.0.1 Monochromator

Spherical Grating Monochromator

- 3 gratings: 380, 925, and 2100 lines/mm
- 17 340 eV energy range

Grating	Ruling (lines/	Energy Range
Low	380	17 - 75
Medium	925	40 - 170
High	2100	100 - 340

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Three Branch Lines (2 for AMO)

Angle Resolved Photoemission

Experimentally obtain E(k) dispersion & Fermi surface topology

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

-0.8

the many-body

interaction from

spectral lineshapes

-0.4

E-E_p(eV)

Extract information on

0.0

Intensity (arb. units)

Two gaps in the cuprate superconductors

The pseudogap profile along the Fermi arc of La_{1.875}Ba_{0.125}CuO₄ reveals two distinct components.

This debunks a simple precursor scenario of pseudogap, and makes us rethink on the nature of pseudogap state.

Ruihua He et al. Nat. Phys. 5, 119 (2009)

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Iron pnictide superconductors

New type of high Tc superconductors other than cuprates

Wide range of photon energy, polarization control essential to study electronic structure $\Gamma \rightarrow \Gamma$

а Ē(s) 0.0 EB(eV) -0.2 -0.30.0 EB(eV) -0.1 -0.2 -0.3 0.0 EB(eV) -0.1 -0.2 -0.3 0.0 0.5 1.0 k_x (π/a)

Y. Xia et al. PRL 103, 037002 (2009) C. Liu et al. PRL 102, 167004 (2009) P. Vilmercati et al. PRB 79, 220503(R) (2009)

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Topological Insulators

Topology of electronic structure defines non-trivial metallic surface state

Spin can flow on the surface without backscattering

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Topological Insulators

First experimental realization of 3D topological insulator in Sn-doped Bi₂Te₃

November 9, 2010

Alejandro Aguilar

Mechanics of Photoionization

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- Incident photon energy ≥ ionization threshold
- A single electron is ejected without excitation

Photon

- BERKELEY LAB
- Incident photon energy ≥ ionization threshold
- A single electron is ejected without excitation

November 9, 2010

Alejandro Aguilar

- Excitation of an inner shell electron, followed by <u>autoionization</u>

NCE

BERKE

November 9, 2010

Alejandro Aguilar

 Excitation of an inner shell electron, followed by <u>autoionization</u>

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

BERKELEY L

 Excitation of an inner shell electron, followed by <u>autoionization</u>

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

BERKELEY L

- BERKELEY LAB
- Excitation of an inner shell electron, followed by <u>autoionization</u>
- Lifetimes ≈ nanoseconds picoseconds

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- BERKELEY LAB
- Excitation of an inner shell electron, followed by <u>autoionization</u>
- Lifetimes ≈ nanoseconds picoseconds

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- BERKELEY LAB
- Excitation of an inner shell electron, followed by <u>autoionization</u>
- Lifetimes ≈ nanoseconds picoseconds

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- BERKELEY LAB
- Excitation of an inner shell electron, followed by <u>autoionization</u>
- Lifetimes ≈ nanoseconds picoseconds

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- BERKELEY LAB
- Excitation of an inner shell electron, followed by <u>autoionization</u>
- Lifetimes ≈ nanoseconds picoseconds
- Resonances occur at

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- BERKELEY LAB
- Excitation of an inner shell electron, followed by <u>autoionization</u>
- Lifetimes ≈ nanoseconds picoseconds
- Resonances occur at discrete energies

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Direct vs. Indirect Photoionization

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

m

BERKELEY LAB

November 9, 2010

Alejandro Aguilar

November 9, 2010

Alejandro Aguilar

 As photon energy is increased, core electrons are excited to higher <u>discrete</u> energy levels

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

etc.

'n =

n =

= 4/n = .3

- As photon energy is increased, core electrons are excited to higher <u>discrete</u> energy levels
- Higher principal quantum number, n

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

etc.

 $= 4^{n} = .3$

- As photon energy is increased, core electrons are excited to higher <u>discrete</u> energy levels
- Higher principal quantum number, n
- Resonances follow selection real criteria

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

= 4/n = 3

 $n = 5^{4}$

Indirect Ionization & Rydberg Series

18

Indirect Ionization & Rydberg Series

18

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Start with neutral sample

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

m

BERKELEY LAB

Ionize the sample via electron/atom collisions in an Electron-Cyclotron-Resonance (ECR) Ion Source.

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

BERKELEY LAB

Ionize the sample via electron/atom collisions in an Electron-Cyclotron-Resonance (ECR) Ion Source.

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

BERKELEY

Ionize the sample via electron/atom collisions in an Electron–Cyclotron–Resonance (ECR) Ion Source.

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

BERKELEY LAB

Accelerate the Mixed Ions using a high voltage potential difference.

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

m

Select the ion to be studied. The analyzing magnet selects based on the mass-to-charge ratio, magrence Berkeley National Laboratory

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator **Physics: A Light Source**

Select the ion to be studied. The analyzing magnet selects based on the mass-to-charge ratio, magrence Berkeley National LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator **Physics: A Light Source**

BERKELEY LAB

Merge the primary beam with a counterpropagating beam of photons using the merger_spherical_deflector_NAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

Merge the primary beam with a counterpropagating beam of photons using the merger spherical deflector NAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

Monitor the primary beam on the beam Faraday cup.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

Monitor the primary beam on the beam Faraday cup.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

Monitor the photon flux on a calibrated silicon photodiode.

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

Determine the specific interaction region.

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

m

Determine the specific interaction region.

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

m

Count the photo-ions on a single particle channeltron detector.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

Simultaneously measure background using a mechanical photon chopper.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Primary Ion

Se+

Beam

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

<u>Photon Beam</u>

<u>Primary Ion</u> <u>Beam</u> Se+

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

<u>Photon Beam</u>

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

IPB Endstation

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

IPB Endstation

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Experimental Results

Photoionization of Set

Motivations

- Se, Kr, and Xe ions have been observed in several planetary nebulae (PNe, ejected envelopes of low-mass stars).
- Due to their rarity (<= 10-9 the H abundance) only 1-2 ions of these elements are usually observed.
- Their relative abundances are good tracers of neutron-capture nucleosynthesis in evolved stars.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

• Model A

Included $4s^24p^2$, $4s4p^3$ and $4p^4$ configurations(3)

Gives rise to 20 levels from (3) configurations

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

• Model A

Included 4s²4p², 4s4p³and 4p⁴ configurations(3) Gives rise to 20 levels from (3) configurations

• Model **B**

Included in addition several 3d-hole configurations 3d⁹4s²4p³; 3d⁹4s4p⁴; 3d⁹4p⁵ Gives rise to 126 levels from (6) configurations

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

• Model A

Included 4s²4p², 4s4p³and 4p⁴ configurations(3) Gives rise to 20 levels from (3) configurations

• Model **B**

Included in addition several 3d-hole configurations 3d⁹4s²4p³; 3d⁹4s4p⁴; 3d⁹4p⁵ Gives rise to 126 levels from (6) configurations

• Model C

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

• Model A

Included 4s²4p², 4s4p³and 4p⁴ configurations(3)

Gives rise to 20 levels from (3) configurations

• Model **B**

Included in addition several 3d-hole configurations 3d⁹4s²4p³; 3d⁹4s4p⁴; 3d⁹4p⁵ Gives rise to 126 levels from (6) configurations

Model C

Involved a 4d orbital instead of 3d-hole. Adding the configurations $4s^24p4d$, $4s^24d^2$, $4p^24d^2$, $4s4p^24d$ and $4p^34d$

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

• Model A

Included 4s²4p², 4s4p³and 4p⁴ configurations(3)

Gives rise to 20 levels from (3) configurations

• Model **B**

Included in addition several 3d-hole configurations 3d⁹4s²4p³; 3d⁹4s4p⁴; 3d⁹4p⁵ Gives rise to 126 levels from (6) configurations

Model C

Involved a 4d orbital instead of 3d-hole. Adding the configurations $4s^24p4d$, $4s^24d^2$, $4p^24d^2$, $4s4p^24d$ and $4p^34d$

Gives rise to 246 levels from (8) configurations

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Alejandro Aguilar

Physics: A Light Source

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Se+ Photo-ion Spectroscopy

•27 scans

- •1 eV wide each
- Measured one-ata-time

 Can take several hours per-scan

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

rrrr

 Photon energy calibrated to Ar autoionizing resonances

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

rrrr

 Photon energy calibrated to Ar autoionizing resonances

 (side branch gas cell)

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

 Photon energy calibrated to Ar autoionizing resonances

 (side branch gas cell)

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

 Photon energy calibrated to Ar autoionizing resonances

 (side branch gas cell)

 7 absolute crosssection measurements

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

 Photon energy calibrated to Ar autoionizing resonances

 (side branch gas cell)

 7 absolute crosssection measurements

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

 Photon energy calibrated to Ar autoionizing resonances

 (side branch gas cell)

- 7 absolute crosssection measurements
- Complex resonant structure below the ⁴S ground

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 2

Se+ High-Resolution Spectroscopy

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Se+ High-Resolution Spectroscopy

November 9, 2010

Alejandro Aguilar

Se+ High-Resolution Spectroscopy

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

R. MexilenteworkshoptomAccelerMarks Physics: A Light Source

R. Mehienteworksheptemaccelenderks Physics: A Light Source

Physics: A Light Source

.....

 Measurements made at 2X & 3X the energy

• Nothing at 2X

 Matching features at 3X the energy (absolute at 54.56 eV)

 Corresponding features align

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Physics: A Light Source

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 3

rrrr

33

November 9, 2010

Alejandro Aguilar

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 3

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 3

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 3

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 3

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source 3

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Se+ Hi-Res Rydberg Series Analysisme

BERKELEY LAB

m

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar
Se+ Hi-Res Rydberg Series Analysisme

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Se+ Hi-Res Rydberg Series Analysisme

Physics: A Light Source

m

Theoretical Analysis, Se⁺

Theoretical Analysis, Se+

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

 The photon-ions merged beams method is the "cleanest" method (out of two) that allows highly accurate absolute photoionization cross section meassurements for single and multiply charge positive ions as well as negative ions.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

 The photon-ions merged beams method is the "cleanest" method (out of two) that allows highly accurate absolute photoionization cross section meassurements for single and multiply charge positive ions as well as negative ions.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- The photon-ions merged beams method is the "cleanest" method (out of two) that allows highly accurate absolute photoionization cross section meassurements for single and multiply charge positive ions as well as negative ions.
- These cross sections are needed in multiple disciplines and applications. For instance, EUV lithography light source modeling, Tokamak research, Astrophysics, FELs data, etc...

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- The photon-ions merged beams method is the "cleanest" method (out of two) that allows highly accurate absolute photoionization cross section meassurements for single and multiply charge positive ions as well as negative ions.
- These cross sections are needed in multiple disciplines and applications. For instance, EUV lithography light source modeling, Tokamak research, Astrophysics, FELs data, etc...

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- The photon-ions merged beams method is the "cleanest" method (out of two) that allows highly accurate absolute photoionization cross section meassurements for single and multiply charge positive ions as well as negative ions.
- These cross sections are needed in multiple disciplines and applications. For instance, EUV lithography light source modeling, Tokamak research, Astrophysics, FELs data, etc...
- Contrary to popular believe, in many cases (particularly heavy ions) these cross sections are not and can not be calculated yet, with sufficient accuracy for many of the applications. Therefore, these experiments are providing highly-accurate benchmarks for evolving

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- In the case of the absolute photoionization data for Se ions, the data helped on the...
 - 1. Clarification and determination of ionization thresholds
 - 2. Identify resonance features, including Rydberg series resonances
 - 3. Investigate parameters of beamline performance (pushing the beamline capabilities).

*see N.C. Sterling, et al, Pub.Astr. Soc. Australia, 26, 3, 339–344 (2009) LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

- In the case of the absolute photoionization data for Se ions, the data helped on the...
 - 1. Clarification and determination of ionization thresholds
 - 2. Identify resonance features, including Rydberg series resonances
 - 3. Investigate parameters of beamline performance (pushing the beamline capabilities).

none of this would have been possible without a third generation light source.

*see N.C. Sterling, et al, Pub.Astr. Soc. Australia, **26**, 3, 339-344 (2009)

November 9, 2010

Alejandro Aguilar

Photon-ion merged beams apparatus

Photoionization of Se ions;

Determination of elemental

abundances in PNe

Sterling et al., accepted JPB (2010)

 Photoionization of Ce@C₈₂⁺ Xe@C₆₀⁺; Confinement

resonances.

Quantum computing, Cancer therapy

Müller et al., PRL 101, 133001 (2008) Kilcovne et al. PRI 105, 213001 (2010)

These experiments were only possible due to the high resolution and high photon flux of this beamline.

> WRENCE BERKELE NATIONAL ARNRAT

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

Kilcoyne, E. Red, R.A. Phaneu R.C. Bilodeau, and A. Aguilar

A. Müller, S. Schippers, M.Habibi, D. Esteves, J.C. Wang, R.A. Phaneuf, A.L.D. Kilcoyne, A. Aguilar and L. Dunsch

Motivations

- From a single atom to a well structured solid sample.
- Attractive to have (manipulate) atoms isolated from their environment.
 - Building blocks for the qubits of quantum computers.
 - Chemical isolated reactive and poisonous atoms for medical imaging and cancer therapy.

Müller *et al.*, PRL 101, 133001 (2008)

Kilcoyne et al. PRL 105, 213001
While there are almost no experimental(20\$0)ts available for endohedral molecules in the gas phase, theoretical work flourishes without constraints. Clearly, experiments are needed to test and guide the theoretical developments

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Extremely difficult experiment "tour de France"

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Gracias por su atención

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Photoionization of endohedral fullerene ions Ce@C₈₂⁺ in comparison with atomic Ce^{q+} ions (q=2-4)

What is the charge of the atom inside the cage?

November 9, 2010

Physics: A Light Source

BERKELEY

EUV source candidates (13 -14 nm)

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Comparative Xe and Sn Spectra near 13.5 nm

November 9, 2010

Alejandro Aguilar

II Mexican Workshop on Accelerator Physics: A Light Source

m

Photoionization of Low Charged Xe Ions

t = 400 nm

t = 600 nm

 Is photoionization of low-charged ions important for DPP and LPP source models?

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Photoionization of Low Charged Xe Ions

t = 400 nm

t = 600 nm

 Is photoionization of low-charged ions important for DPP and LPP source models?

- The blue lines indicate the 13.5 nm ± 2% (90.0 eV to 93.5 eV) region of interest for EUV lithography
- Strong absorption lines due to 4dnf autoionizing resonances are observed in both LPP and DPP.

LAWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar

Photoionization of Low Charged Xe Ions

Aguilar et al., "Absolute photoionization cross sections for Xe⁴⁺, Xe⁵⁺ and Xe⁶⁺ near 13.5 nm: Experiment and Theory", PRA 73 032717 (2006).

AWRENCE BERKELEY NATIONAL LABORATORY

November 9, 2010

Alejandro Aguilar