Accelerator physics, hardware, and operations at NSLS and NSLS-II.

Wednesday 24 Nov 2010 at 12:15 (00h55')

Primary authors : Dr. PODOBEDOV, Boris (BNL)

Co-authors :

Presenter : Dr. PODOBEDOV, Boris (BNL)

II Mexican Workshop on Accelerator Physics

Principles of Synchrotron Radiation and Storage Ring Light Sources

Boris Podobedov

boris@bnl.gov November 22, 2010

Outline

- Synchrotron Radiation (SR) Primer
 - SR definition & properties (brightness, flux, opening angle, polarization, BW, power)
 - Generation of SR
 - Bend magnets, Undulators and Wigglers
- Principles of Synchrotrons
 - How to build a synchrotron light source
 - Performance metrics
 - Properties of e-beam that affect performance
- Few generations of synchrotron light sources (LS)
- Summary
- Not Covered (but important)
 - Injection System, Vacuum, RF, power supplies, controls, etc.
 - Beamlines, Detectors, SR Uses and Techniques

Thanks to

J.B. Murphy

- G. Rakowsky
- F. Sannibale

Charged Particle Radiation Processes

Synchrotron Radiation

SR is EM radiation emitted when charged particles are radially accelerated (move on a curved path).

Electrons accelerating by running up and down in a radio antenna emit radio waves

Both cases are manifestation of the same physical phenomenon: Charged particles radiate when accelerated.

Why Do Particles Emit SR?

• A charge moving in free space is "surrounded" by a cloud of virtual photons that indissolubly travel with it.

• When accelerated, the particle receives a "kick" separating it from the photons that become real and independently observable.

•Lighter particles are easier to accelerate so they radiate photons more efficiently => light sources use electrons

Charge at rest: Coulomb field

Uniformly moving charge

Accelerated charge

In a light source electrons follow curved trajectories in bend magnets and insertion devices. The transverse acceleration creates $e^{-} - \gamma$ separation generating *synchrotron radiation*.

SR Angular Distribution

Radiation becomes more focused at higher energies.

SR Bandwidth

Due to the small opening angle the observer sees the electron first when it arrives on its trajectory at an angle of $-1/\gamma$ with respect to the z-axis and last when this angle is $+1/\gamma$. The length of the electromagnetic pulse observed is just the difference in travel time between the electron and the photon going from the point at $-1/\gamma$ to the point at $+1/\gamma$,

SR Spectrum

To "see" atoms, molecules & nanostructures you need light with wavelengths comparable to the size of those objects (UV, X-rays)

SR Geometry

A. Hoffmann, CERN-98-04

SR Polarization & Angular Distribution

Synchrotron Radiation Power

Total Power & Spectral Power Loss/turn $\frac{dP}{d\omega} = \int \frac{d^2P}{d\omega d\Omega} d\Omega = \frac{P_0}{\omega_0} \left[S_\sigma \left(\frac{\omega}{\omega_0} \right) + S_\pi \left(\frac{\omega}{\omega_0} \right) \right]$ $P_0 \sim \gamma^4 / \rho^2 \sim \gamma^2 B^2 \sim E^2 B^2$ 100 $S=S_{\sigma}+S_{\pi}$ **Rises fast with beam energy !** S $U_0(KeV) = 88.5 E^4(GeV) / \rho(m)$ 10^{-1} S_{π} **Electron energy loss per turn** $\sim (\omega/\omega_c)^{1/3}$ 10-2 $P_{total}(kW)$ =88.5 E⁴(GeV) I(A)/ $\rho(m)$ for beam current I $\sim (\omega/\omega_c)^{1/2} \exp(-\omega/\omega_c)$ $\int_0^1 S\left(\frac{\omega}{\omega_c}\right) d(\omega/\omega_c) = 0.50 \qquad \mathcal{O}_c = \frac{3c\gamma^3}{2\rho}$ 10^{-3} 10-2 10^{-3} 10^{-1} 10^{0} 10^{1} ω/ω_{c} Half the power is below ω_{c} , the other half is above 7/8 is horiz. polarization; 1/8 is vertical polarization.

SR power sharply falls down at $\omega >> \omega_c$

Bend (Dipole) Magnets

Field in gap $B = \mu_0 NI / g$ (typ. 1.4 T) Water-cooled copper coils Low-carbon steel C-frame yoke

NSLS X-ray Ring Dipole

ρ= 6.875 m, L=2.7 m, gap=55 mm At E=2.8 GeV:

 ϵ_c =7.1 keV, B=1.36 T, I=1.5 kA

Motivation for Having Insertion Devices

<u>Wigglers (K >> 1)</u>

- Wavelength shifter to get harder photons,
- ε_c = .665 B [T] E² [GeV]
- Increased flux $\approx 2N_w$ (Arc source flux)
- Typical parameters: $\lambda_w = 10 \text{ cm } \& B = 5 \text{ T}$

<u>Undulators (K ~ 1)</u>

- Concentrate photons in frequency & position leading to higher brightness
- Lower power consumption
- Variable polarization (for some designs)
- Typical parameters: $\lambda_u = 6 \text{ cm } \& B = 0.2 \text{ T}$
 - High Intensity
 - Tunable, Narrow Spectrum
 - Natural Vertical Collimation
 - High Degree of Polarization
 - High Brightness

More on Wigglers & Undulators

Halbach Pure-PM Undulator

Halbach PM-hybrid Undulator

In-Vacuum Undulator (For hard x-rays)

- Put magnet arrays inside vacuum chamber
- Minimum gap can be reduced to stay-clear required by electron and photon beams (a few mm)
- Reduce period \rightarrow more periods \rightarrow more photons!
- Shorter period \rightarrow higher photon energies
- Must be UHV-compatible \rightarrow Ni- or Ti-N-coated
- PM must withstand baking to >100°C without demagnetizing \rightarrow Use Hybrid car motor grades of PM

Mini-Gap In-Vacuum Undulators

IV

NSLS X13 MGU

NSLS X25 MGU

•MGUs are one of greatest successes at NSLS

- •Provide hard X-ray photons on the cheap
- •Paved the way for Intermediate Energy Light Sources
- •Will be heavily used at NSLS-II

Elliptically Polarizing Wiggler

NSLS X13 EPW

- Vertical field: PM hybrid
- Horizontal field: Electromagnet
- Hor. array offset by 1/4 period

• Switching polarity of current switches helicity (RH & LH) at up to 100 Hz (typ. 22 Hz)

Varying horizontal field "moves" the beamline in-and-out of orbit plane => time-varying elliptical polarization

APPLE-II Variable Polarization Undulator

Superconducting Wigglers

- B_o = 4.2 Tesla
- Period = 17.5 cm
- K = 68

NSLS X17 SCW

Provides the hardest (up to 100 keV) usable x-rays at NSLS

Building a Storage Ring Light Source 101

1) Take evacuated beam pipe

ADD:

- 2) Bends (dipoles) to form e-beam trajectory (& as SR sources)
- 3) Quadrupole magnets to focus e-beam transversely
- 4) Sextupoles for achromatic focusing
- 5) RF to make up for energy loss; also provides longitudinal focusing (bunching)
- 6) Injection system
- 7) IDs into avail. straight sections
- 8) Beamlines to deliver photons to the Users

Essential Elements of a Light Source

21

Beam Brightness

Beam Brightness Continued

• brightness is the key parameter of any particle source, incl. SR sources

• brightness is defined as 6-D phase space (x, p_x , y, p_y , t, E) density of particles

• The same definition applies to the photon case;

taking into account that the Pauli exclusion principle does not apply to bosons => no limitation to achievable photon brightness exists from Quantum Mech.

Flux = # of photons in given
$$\Delta\lambda/\lambda$$

sec $Flux = \frac{d\dot{N}}{d\lambda} = \int Brightness \, dS \, d\Omega$

•For a given flux, smaller emittance (transverse phase space area) sources have larger brightness

Flux, F

How Bright Are We?

NSLS-II Brightness Curves

Equilibrium Beam Sizes in Storage Ring: Transverse Emittance

26

- For bright source photon beam emittances need to be small
- Photon beam emittance is due to convolution of e-beam emittance and "light emittance" $\lambda/4\pi$
- In storage ring LS typically
 0.1 nm <ε_x<100 nm, ε_y=ε_x /100
- Diffraction limited (x-rays) in vert.
 plane, but not in the horizontal
- => electron beam emittance is important until its <λ/4π
- Emittance is invariant, but beam sizes vary around the ring, i.e. $\sigma_y = (\beta_y (z) \epsilon_y)^{1/2}$,

here $\beta_{v}(z)$ is periodic β -function

$$\epsilon_{x,y} = 68 \pm 3$$
, 0.36 \pm 0.05 nm
 $\epsilon_y / \epsilon_x \sim 0.53 \pm 0.08$ %

Transverse Emittance Cont'd

• Emittance in electron storage rings is due to balance of SR damping (makes it smaller) and quantum excitation (increases it), i.e. $\varepsilon_x = S_x \tau_x$

$$S_x \approx E^5 \oint B^3 \frac{\eta_x^2 + \left(\beta_x \eta_x' - \frac{\beta_x'}{2} \eta_x\right)^2}{\beta_x} \, ds, \quad \frac{1}{\tau_x} \approx J_x E^3 \oint B^2 \, ds$$

- When e emits a photon, it goes on a different energy orbit => increase in beam energy spread and beam size.
- Emittance generated by SR where there is dispersion η_x .
- Vertical emittance is usually due to coupling from the horizontal.
- Modern LS minimize the dispersion => many short magnet cells, N>>1, ε_x~N⁻³

Longitudinal Beam Sizes in Storage Ring and Bunch Train Structure

 RF cavity provides longitudinal Efield that makes up beam energy loss/turn due to SR:

- Beam arrival and RF phase are synchronized => there are maximum h=f_{RF}/f_{rev} bunches stored in the ring
- Each electron randomly loses discrete photons to SR, each exciting energy- time oscillations
- Balance of quantum excitation and SR radiation damping determines bunch length and energy spread 28

f_{RF}=53 MHz = 1/(19 ns) h=30 (X-ray) h=9 (VUV)

Longitudinal Bunch shape is constant around the ring

Light Sources: Definition of Generation

- <u>1st Gen</u>: parasitic synchrotron radiation source from the dipoles of HEP ring (SPEAR, CESR, etc)
- <u>2nd Gen</u>: dedicated <u>ring</u> for synchrotron radiation, dipole rad & some undulators; medium brightness
- <u>3rd Gen</u>: dedicated <u>ring</u> optimized for undulator radiation; high brightness
- <u>4th Gen</u>: dedicated <u>free electron lasers</u>, IR to X-Ray

NSLS X-ray and VUV rings are (one of the first) 2nd generation LS NSLS-II ring will be 3rd generation LS Recently commissioned LCLS at SLAC is 4th generation X-ray LS

Synchrotron Light Source Quality Factors

Try to break new ground on the first 5 without violating the last!

$$\frac{\lambda}{2} \equiv \frac{\lambda}{4\pi}$$
 Diffraction limit 30

3rd & 4th Generation Sources Survey

Figure 5-1. Proposed and Juncebix-ray light apgides and H&C facilities around the world.

Emittances of Modern Ring Light Sources

Summary

- **SR generation and properties**: spectrum, BW, power, polarization, angular distribution, ...
- Brightness, emittance and diffraction limit
- **Benefits of having IDs** (wigglers and undulators)
- **LS Performance Metrics**: brightness, flux, N_{ID}, ...
- Building blocks of a storage ring: dipoles, quads, sextupoles, RF system, ...
- Emittances and beam sizes in a storage ring: balance of SR damping and SR quantum excitation
- SR lightsources worldwide

References

For primers and further information, link to www.lightsources.org

Good reviews of synchrotron radiation and electron storage ring physics •A. Hoffmann: in CAS - CERN Accelerator School : Synchrotron Radiation and Free Electron Lasers, Grenoble, France, 22 - 27 Apr 1996, pp.1-44, search for report CERN-98-04 at http://cdsweb.cern.ch/ •M. Sands: http://www.slac.stanford.edu/pubs/slacreports/slac-r-121.html

Review of present state-of-the art and future directions in LS world
Scientific Needs for Future X-Ray Sources in the U.S. http://www.slac.stanford.edu/pubs/slacreports/slac-r-910.html

SLAC-R- \$10 LENL-109DE

Jacob on a study group co-drained by Roger Filcone and Josehim Stérr, and nambers: Uwe Bergeram, John Carlett, John Galagia, Jeny Hastings, Rabot Hottal, Arbib Hussain, Jamas Krz. Bill McGurdy. Tr Bautenholmer, Formardo Samibala, John Souman, Z.-K. Shen, Robot Schoenisin, and Acxandor Zindanta.

> Lastrance Borkeley National Laboratory SLAC National Accelerator Laboratory