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Outline

* Synchrotron Radiation (SR) Primer
* SR definition & properties (brightness, flux, opening angle, polarization, BW, power)
* Generation of SR
- Bend magnets, Undulators and Wigglers

R Thanks to
* Principles of Synchrotrons
+ How to build a synchrotron light source J.B. Murphy
* Performance metrics G. Rakowsky

* Properties of e-beam that affect performance _
* Few generations of synchrotron light sources (LS) F- Sannibale
* Summary
Not Covered (but important)

« Tnje System, Vacuum, RF, power suppties; confrols, etc.
« Beamlines, Deteetors; SR Usesand-Jechniques
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Charged Particle Radiation Processes
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Periodicity in the “structure” yields a repetitive
pulse train in the time domain, resulting in a
spectral narrowing in the frequency domain!
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Synchrotron Radiation

SR is EM radiation emitted Electrons accelerating by
when charged particles running up and down in a
are radially accelerated radio antenna emit radio
(move on a curved path). waves
. ’ ® T Magnetic
. Electrons circulating Field
L ) in a storage ring ,-
R e .

Beam
Collimator

e —
R |
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fem =07
EESS——

Synchrotron Radiation [

Both cases are manifestation of the same physical phenomenon:
Charged particles radiate when accelerated.
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Why Do Particles Emit SR?

7
* A charge moving in free space is “surrounded” % e

by a cloud of virtual photons that indissolubly >
travel with it. //N
/4

 When accelerated, the particle receives a “kick” separating it from the photons

that become real and independently observable.
Lighter particles are easier to accelerate so they radiate photons more efficiently

=> light sources use electrons

Charge at rest: Coulomb field
In a light source electrons follow

curved trajectories in bend magnets
Uniformly moving charge >}< v=const.  and insertion devices. The transverse

acceleration creates e - y separation
generating synchrotron radiation.

Accelerated charge >}< \f/
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SR Angular Distribution

Electron Orbit
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At low electron velocity (non-
relativistic case) the radiation is
emitted in a non-directional
pattern

Acceleration

Cone aperture

v = E/mc2>>1

LV
CasaIl: E=1

When the electron velocity
approaches the velocity of light, the
emission pattern is folded sharply
forward.

Radiation becomes more focused at higher energies.
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SR Bandwidth

Due to the small opening angle the observer sees the electron first when it arrives on its
trajectory at an angle of —1/y with respect to the z-axis and last when this angle is +1/y.
The length of the electromagnetic pulse observed is just the difference in travel time
between the electron and the photon going from the point at —1/y to the point at +1/y,

AT=T -T = 2p  2psin(l/y)

Joyze C
2p p 4p
ﬂc(l ﬂ+6f] ey

The characteristic frequency is then,
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SR Spectrum
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Synchrotron Radiation

To “see” atoms, molecules & nanostructures you need light with
wavelengths comparable to the size of those objects (UV, X-rays)
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SR Geometry

p — orbit radius

¢ — rotation angle

v - out of plane observation angle -~ 2
Q - solid angle , d Q = d¢ dy

A. Hoffmann, CERN-98-04
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SR Polarization & Angular Distribution

Synchrotron radiation observed in the plane
of the particle orbit is horizontally
olarized, i.e. the electric field vector is

h

orizontal
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Observed out of the horizontal plane, the
radiation is elliptically polarized
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v - out of plane observation angle
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Most power in hor. polarization, distribution peaks at y=0, vy, ;s(®)=1/y

Less power in ver. polarization; double peaks around y=0, vy s(®,)=1/y
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Synchrotron Radiation Power
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Half the power is below o, the other half is above
7/8 is horiz. polarization; 1/8 is vertical polarization.
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Bend (Dipole) Magnets

Typical Synchrotron Dipole Magnet NSLS X-ray Ring Dipole
Y
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Fieldingap B=p, NI/ g (typ. 1.4T)
Water-cooled copper coils

p=6.875 m, L=2.7 m, gap=55 mm
At E=2.8 GeV:
g.=7.1keV,B=1.36T, I=1.5 kA

Low-carbon steel C-frame yoke
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Motivation for Having Insertion Devices

* Undulators (K ~ 1)
o quqlers (K>>1) »  Concentrate photons in frequency &

Wavelength shifter to get harder photons, position leading to higher brightness
+ g,=.665 B [T] E2[GeV] *Lower power consumption

* Variable polarization (for some designs)
* Typical parameters: A, =6cm &B=0.2T

*  High Intensity

Tunable, Narrow Spectrum
Natural Vertical Collimation
High Degree of Polarization
High Brightness

* Increased flux = 2N,, (Arc source flux)
* Typical parameters: A, =10cm &B=5T

Undulator

Wiggler

Mgnet
>

D 0,
13

>
>

Intensity

h end Magnet

Intensity
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Wigglers & Undulators:
Arrays of D

Photon flux from N bends =
~ N x flux from single bend;

SN AT

—_— i D

A A

s isall .7

Peak field B =B, exp[-m(9/A)] /~na Wiggler K >> 1;
Deflection parameter K: * Radiation from poles adds

K =0.0934 A [mm] B[T] incoherently, producing a
Resonant wavelengths: broad, dipole-like spectrum

2
A = A (I—I—K , m=1305..
2my’ 2

K In an Undulator K < 3;

* Radiation from poles adds
coherently at resonant wavelengths,
thus a sharply peaked spectrum.

* Spectral peaks are tunable by
Qarying K (i.e., B) by varying the gay

Flux [ph/s/0.1%bw]

Intensity(ph/s/mm * 2/0.1%bw)

Wiggler Spectrum
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1.0E11
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More on Wigglers & Undulators

Halbach Pure-PM Undulator

nELERE

£
Z/ W,_?

Horizontally magnetized
blocks boost on-orbit field

Halbach PM-hybrid Undulator

Iron poles concentrate flux
from larger magnet blocks

In-Vacuum Undulator
(For hard x-rays)

DT TR SRR Y

- REE
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Nigihidingdih
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RHERRE

® Put magnet arrays inside vacuum chamber

* Minimum gap can be reduced to stay-clear required
by electron and photon beams (a few mm)

* Reduce period = more periods > more photons!
* Shorter period = higher photon energies
* Must be UHV-compatible = Ni- or Ti-N-coated

* PM must withstand baking to >100°C without
demagnetizing > Use Hybrid car motor grades of PM
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Mini-Gap In-Vacuum Undulators

NSLS X13 MGU NSLS X25 MGU

NdFeB Magnets:
Installed new "hybrid car —___ W\

motor" grade | s

P

Vanadium
Permendur
Poles

e @ \ Design: =
Lower array @ pulsed wire bench NSLS (magnetic) 5.6 mm gap,
' ADC, Inc (mech.) 7

Installed

*MGUs are one of greatest successes at NSLS Dec. 2005

*Provide hard X-ray photons on the cheap

-Paved the way for Intermediate Energy Light
Sources

*Will be heavily used at NSLS-II




Elliptically Polarizing Wiggler

* Vertical field: PM hybrid
* Horizontal field: Electromagnet
* Hor. array offset by 4 period

* Switching polarity of current
switches helicity (RH & LH) at
up to 100 Hz (typ. 22 Hz)

Varying horizontal field “moves” the
beamline in-and-out of orbit plane
=> time-varying elliptical polarization

NSLS X13 EPW
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APPLE-Il Variable Polarization Undulator

4 Movable PM Arrays

Planned for NSLS-II

Varyg. with g =g, =—g,
Apple IT on the ESRF
Period : 88 mm
Gap : 16 mm,
Power density @ 30m

Linear incline Field & Polar.
10

5

Vertical Field s
Horizontal Traj. & Polar.

Vary g, with p=¢, = o,
Helical Field
Helical Traj. & Circul Polar.

10

]

3 g

5

-10

-0 5 0 5 10

=10
& o LU 0 3 10

Horizontal Field
Vertical Traj. & Polar.

mm

Vertical
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Superconducting Wigglers

*B,=4.2Tesla

* Period =17.5¢cm
°*K =068

*E. =22 keV

crit

NSLS X17 SCW

Provides the
hardest (up to
100 keV) usable
x-rays at NSLS
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Building a Storage Ring Light Source 101

1) Take evacuated beam pipe

ADD:

2) Bends (dipoles ) to form e-beam
trajectory (& as SR sources)

3) Quadrupole magnets to focus
e-beam transversely

4) Sextupoles for achromatic focusing

5) RF to make up for energy loss;
also provides longitudinal
focusing (bunching)

6) Injection system
7) IDs into avail. straight sections

8) Beamlines to deliver photons to
the Users
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Essential Elements of a Light Source

=

8 \/UV Ring Construction
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Beam Brightness

Phase Space

X, angle

X, position

Emittance , €, is the area
occupied in phase space

Number of “fish”/unit time

Brightness is the density in phase space = Phase Space Area x o
xZy
Average Brightness ~ photons/pulse x pulse rate B~ B .
Peak Brightness ~ photons/pulse/pulse time peak S X T e
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Beam Brightness Continued

* brightness is the key parameter of any particle source, incl. SR sources

- brightness is defined as 6-D phase space (x, p,, ¥, p,, , E) density of particles

» The same definition applies to the photon case;
taking into account that the Pauli exclusion principle does not apply to bosons
=> no limitation to achievable photon brightness exists from Quantum Mech.

Brightness = # of photons in given AA/A

sec, mrad 6, mrad ¢, mm?

Source
area, S

Flux = # of photons in given AA/A

secC

O Jaar o |Fcr
Flux = aN = jBrightneSS dS dQ
dA

*For a given flux, smaller emittance (transverse phase space area) sources

have larger brightness
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Brightness (photons / sec / mm?2 / mrad?/0.1% BW)
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NSLS-ll Brightness Curves

—

=1
()
[

—

=1
)
=

—

<
Lo
=]

Spectral Brightness [Ph/s/.1 %bw/mmz/mradz]

%_S_bg‘mrll;l_léll;m 7777777777 - In-Vacuum Undulators: 1§|
: — : ' IVU20: ;=20 mm, K, =1.83,L =3 m (low-B) |1
f 3
; : IVU22: l 22 mm, Kmax =1. 52 L 6 m (h1gh B) |3
| Ay~ 49 mm, L—41n(10W—B) = — , — -
: Kmax lm_ 4.34, Kmax circ 3.69| ?:
: U(IOO) PM Und SCW(60) |

E| L~ 100 mm | Supercond. Wiggler

E L ~ 6 m (high-B) | B~ 35T, A ~ 60 mm

W\ K ~ 196, .~ 21 keV
@%L~1m(mwm

K™ 92

T
1

Rk

DW9O Dampmg W1ggler :

: i
= B=185T, A,=90 mm s == =
K=158,g~=11keV iiiié Three- Pole nggler 3

- £ T S B=114T. s~ 68keV|"
—| Bend Magnet L=7m (hlgh'B) B ~ be __1_1____6 -

E
= B=04T, SC: 2.4 keV
N

-

|,

PSS O 1 NS Y SO O 0 W 1 LI S . S—

10 eV 100 eV 1 keV 10 keV | 100 keV
Photoignergy Dashed — upgrade optionS

Boris Podobedov, Nov. 22, 2010



Equilibrium Beam Sizes in Storage Ring:
Transverse Emittance

For bright source photon beam

emittances need to be small Photon Beam Size at Screen

™ X,Y=257.7 £ 0.1,74.6 £ 0.08 p
Photon beam emittance is due to
convolution of e-beam emittance
and “light emittance” A/4n

250

Vertical Position(pixel)
()
(=)
o

In storage ring LS typically

0.1 nm <c.<100 nm. . =¢<. /100 Black Ellipse is Fitted
) X ) y X 350
rms Photon Beam
Diffraction limited (x-rays) in vert. Size for 2-D Gaussian S. Kramer
plane, but not in the horizontal

Horizontal Position(pixel)

=> electron beam emittance is
important until its <A/4=n

&y =68 £ 3,0.36 £ 0.05 nm
gyl &,~0.53 £ 0.08 %

Emittance is invariant, but beam
sizes vary around the ring, i.e.

cSy =(By (Z)8y )1/2s
26
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Transverse Emittance Cont’d

Emittance in electron storage rings is
due to balance of SR damping (makes
it smaller ) and quantum excitation
(increases it), i.e. =S, 1,

P

2

”E"‘ (Jﬁx”;{'?”x) 1

Sy ~E° jé B? i ds, —~ JE? jﬁ B? ds
X X

\
\\ nominal orbit, E=E,

off-energy orbit, E=Ej-hv

When e emits a photon, it goes on a
different energy orbit => increase in
beam energy spread and beam size.

Emittance generated by SR where
there is dispersion n,.

.. "NSLS-Il magnet cell (DBA)

Modern LS minimize the dispersion =>
many short magnet cells, N>>1, ¢ ~N-3

Vertical emittance is usually due to
coupling from the horizontal.
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Longitudinal Beam Sizes in Storage Ring
and Bunch Train Structure

* RF cavity provides longitudinal E-
field that makes up beam energy
loss/turn due to SR:

o — — ~19ns

Var [\ / /\\VRF(I)~COS(2nfRF‘C)
7Y D W ¥ G W I ‘ ‘ ‘ | | ‘ ‘ ‘L
\/ \j micro 2

'V ~10 cm (X)

: bunch f
« Beam arrival and RF phase are o

synchronized => there are maximum .-_-‘ \_-, 10-50 cm (U)
h=f;¢/f.., bunches stored in the ring |

Time structure @ NSLS

« Each electron randomly loses frp=53 MHz = 1/(19 ns)
discrete photons to SR, each h=30 (X-ray)
exciting energy- time oscillations h=9 (VUV)

« Balance of quantum excitation and Longitudinal Bunch
SR radiation damping determines shape is constant

bunch length and energy spread 28 around the ring
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Light Sources: Definition of Generation

* 1st Gen: parasitic synchrotron radiation source from
the dipoles of HEP ring (SPEAR, CESR, etc)

* 2" Gen: dedicated ring for synchrotron radiation,
dipole rad & some undulators; medium brightness

* 31 Gen: dedicated ring optimized for undulator
radiation; high brightness

* 4% Gen: dedicated free electron lasers, IR to X-Ray

NSLS X-ray and VUV rings are (one of the first) 2"d generation LS
NSLS-Il ring will be 3™ generation LS
Recently commissioned LCLS at SLAC is 4t" generation X-ray LS

29
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Synchrotron Light Source Quality Factors

ID Capacity Ave Flux Stability
AX,X',...
NID >> 1] O~1E e < Ahmjt
Ave Brighthess |[Pulse length Cost
. IN, & rep. rate 5 < g
e oh)(c. @k c=1-100 ps < Plimit
( " A)( Y A) (0.1 ps @ low rep. rate)

Try to break new ground on the first 5 without violating the last!

/% = %ﬂ Diffraction limit
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314 & 4" Generation Sources Survey

APS Ring PULSS-SAPPHIRE
Upgra FEL TRAX-IY FEL LSS
APS dth gen |, WIFEL  Arc-en-Ciel . ! FLASH FEL | C- % SPring-8
source \ XFEL
PER-X EIF}HF FHI:ilng PETRA Il Ring
Ring i Cornell pgrade” ——=
AN / EH| EETEE; : = SPring-B
LCLS 11 & 1) SDL SR FEL Ring Upgrade
FEL | FELR&D ALBA A
ALS Ri ng psi FERMI FEL '
FEL FEL R&D Ring ,i' PAL-XFEL
LBNL FEL SPAR-K SDUV-FEL
FEL
Key:

Red - iunded (operational or under construction)
1D 2008 Blue - funded R&D program

e Black - concepts and proposals

Flgurme 5§ 1. Prafased 5wl lazal) e=-ray hghl -E-QB i}:.s. ang &5 fanl - S A e e
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Emittances of Modern Ring Light Sources

20
cLs ® R. Bartolini, EPAC’08
16 |
£
~ 12
s L
SPEARS
E ; MAXIl @ « CANDLE
= 8- - ELETTRA
= SAGALS » T ase
w BESSY-I® [T |aLBA
4 ESRF
4 ' S5 g e saRF *
Saa # Diamond e APs  ® SPringB
P PETRA-II|
; | MoV § sisi *
1 2 3 4 5 i 7 g 9
Energy (GeV)
2 2 B 2
) ﬂux E x — \/O-x +0 ph.e O.x - \/81‘/8;\' + (D.TG&‘)
brightness =
4;2- ZJZIE}Z'L Z — JO- _I_ C!‘. C‘r_]_-' — )\/81/3:_ _|_(D1x O_E)_

Photon beam brightness is determined (mostly) by electron
beam emittance that defines the source size and divergence
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Summary

SR generation and properties: spectrum, BW,
power, polarization, angular distribution, ...

Brightness, emittance and diffraction limit
Benefits of having IDs (wigglers and undulators)
LS Performance Metrics: brightness, flux, Ny, ...

Building blocks of a storage ring: dipoles, quads,
sextupoles, RF system, ...

Emittances and beam sizes in a storage ring:
balance of SR damping and SR quantum excitation

SR lightsources worldwide
33
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