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Interface motion and pinning in small-world networks
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~Received 15 October 2002; published 20 March 2003!

We show that the nonequilibrium dynamics of systems with many interacting elements located on a small-
world network can be much slower than on regular networks. As an example, we study the phase ordering
dynamics of the Ising model on a Watts-Strogatz network, after a quench in the ferromagnetic phase at zero
temperature. In one and two dimensions, small-world features produce dynamically frozen configurations,
disordered at large length scales, analogous to random field models. This picture differs from the common
knowledge~supported by equilibrium results! that ferromagnetic shortcut connections favor order and unifor-
mity. We briefly discuss some implications of these results regarding the dynamics of social changes.
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Small-world networks have received a great deal of att
tion in the past few years, in particular for their realis
description of the topology of the interactions that take pla
among populations in various biological, social, or econo
cal systems@1#. An important feature of small worlds, whic
is not shared either by regular lattices or random network
the interplay that exists between local~or ‘‘ physical’’ ! inter-
actions, e.g., between nearest neighbors, and nonlocal o
involving nodes~or agents! separated by large distances b
connected through shortcuts. Among other outstanding to
logical properties, the effective space dimension of such
works grows linearly with their size@2#, even if the fraction
of sites with shortcuts is very small.

The strong connectivity of small worlds usually enhanc
dramatically cooperative effects, as predicted by epide
models of spreading of diseases@4#, or of propagation of
conventions or rumors in social systems@5#. Naturally, many
models of social dynamics have been inspired from the Is
model @6#. The Ising model on a small world exhibits ferro
magnetic order at low temperatures even in one dimen
~1D! @7#, while, in higher dimensions, the critical temper
ture is increased compared with that of the regular lattice@8#.
In addition, the fact that the transition is of mean-field natu
agrees with the intuitive argument that each site is effectiv
close to a large number of sites due to the shortcuts of
lattice.

However, because of their inherent random topology,
may ask whether in some situations small-world netwo
would not rather exhibit features characteristic of disorde
systems. In this work, we study as a basic example the n
equilibrium dynamics of the Ising model, as observed afte
rapid quench from the high-temperature phase to the fe
magnetic phase. We show that the random~all ferromag-
netic! connections that enhance ordered states at therm
namic equilibrium are responsible in the present case
very slow dynamics and stabilize at large times configu
tions that, instead of being uniform, are spatially hetero
neous. At zero temperature, systems do not perform l
range order dynamically, but remain asymptotically trapp
in metastable states characterized by a finite domain s
These features are reminiscent of nonequilibrium proce
in the random field Ising model~RFIM! @9#, in binary mix-
tures with fixed impurities@10#, as well as in a few socia
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models on regular lattices like the voter model@11#. This has
to be contrasted with the much more efficient phase orde
kinetics of the Ising model on regular lattices~or ModelA in
the lexicon of Hohenberg and Halperin@12#!, where the
mean size of ordered domains grows with time ast1/2 @13#.
Our present analysis focuses on the motion of domain w
between ‘‘ up’’ and ‘‘ down’’ domains, and shows evidenc
of competing effects between surface tension and pinning~or
localizing! effects.

We use a standard model of small-world network@14#
consisting of a regular square lattice~or a chain in 1D! com-
posed ofN nodes connected to their nearest neighbors.
each site, we then establish with a probabilityp an additional
connection, or shortcut, linking the considered site to anot
site chosen at random in the lattice.~We do not remove the
nearest neighbors connections.! For p50, the lattice is regu-
lar, while for p51, the network is strongly disordered. Her
we will consider only the so-called ‘‘small-world’’ limit,
which corresponds to the casep!1, where connections ar
mainly local and only long ranged for a small fraction
nodes.

On a fixed network, we then assign to each node a s
like variableSi561: it represents a social convention, in
tially chosen at random for each node. At each time st
each node updates its convention in order to reach a b
consensus with the nodes it is connected to. In other wo
the system follows a zero-temperature Glauber dynam
with the HamiltonianH52(^ i , j &Ji j SiSj , where the sum is
performed over all possible pairs of nodes.Ji j 51 if sites i
and j are connected,Ji j 50 otherwise. At each step, a spin
thus chosen at random and flipped. IfH decreases, does no
change, or increases, the new configuration is accepted
probability 1, 1/2, and 0, respectively.

In regular networks (p50), the system evolves toward
minimum ofH ~all Si ’s equal to11 or 21). Transient con-
figurations are characterized by the presence of growing
competing ordered domains of ‘‘ up’’ and ‘‘ down’’ spins
The large time dynamics is controlled by the motion a
annihilation of interfaces~or domain walls! that separate
these domains. As for many other systems ordering in pha
with broken symmetries, its time evolution is self-simila
The two-point correlation function,C(r ,t)5^Si(t)Si 1r(t)&,
obeys a scaling relationC(r ,t)5 f „r /j(t)…, wheref is a scal-
©2003 The American Physical Society02-1
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ing function, whilej, the domain size, grows ast1/2 @13#.
On the contrary, in small-world networks (pÞ0, p!1)

one observes after some time that the typical domain siz
ordered spins saturates to a finite value, which decre
when the density of shortcuts~p! increases. For a one dimen
sional chain~of lengthL5105), we plotj(t5`) as a func-
tion of p in Fig. 1. The correlation length is determined fro
the half width ofC averaged over ten networks and initi
conditions. A behaviorj(t5`)}1/p can be observed. 1/p
represents the characteristic size of the one dimensional
work, i.e., the average distance between two nodes that
long range connections~or ‘‘influent’’ nodes!.

Influent sites strongly affect the motion of interfaces.
low p, most of these nodes are characterized by one a
tional connection. In Fig. 2~a!, two nodes far apart,A andB,
are connected, andSA52SB . Any interface I passing
through nodeA leftward cannot jump back toward the righ
since it is energetically unfavorable. Therefore, at la
times, through interface motion, influent nodes will tend
be ~irreversibly! connected to nodes that have the same s
~a situation analogous to assortative mixing, as observe
some real life networks@3#!.

FIG. 1. Asymptotic correlation lengthj0 in lattice spacing units
as a function of the reconnection probabilityp, in 1D and 2D.
L2/L` is the interface characteristic length in 2D.

FIG. 2. Up and down domains. Domain wallsI n become local-
ized in 1D.
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This argument can be extended to a succession of
mains. Figure 2~b! illustrates a typical large time configura
tion. In this example, interfaceI 1 stands between two influ
ent nodesA and B with opposite spins: for the reaso
mentioned above,I 1 cannot jump to the left ofA, nor to the
right of B. The interface is then localized, i.e., restricted
perform a random walk within the interval@A, B#. Interface
I 1 is therefore unable to annihilate with interfaceI 2, which is
localized betweenC and D. Hence, the two disjoint black
domains cannot merge to form a bigger one, what wo
happen in the standard Ising model. The domain size
correlation lengthj, does not exceed the distance, of ord
1/p, that separates influent unlike~antagonist! successive
nodes.

We also find that the structure of frozen configuratio
obeys a scaling relation withp, i.e., that they are statistically
independent ofp via proper length rescaling. The asymptot
correlation functionC(r ,t5`) is plotted in Fig. 3 as a func-
tion of the reduced variabler /j`(p), for various values ofp.
Data collapse rather well on a single curve. At short tim
the kinetics is not affected by the small-world structure of t
lattice, and thatj(t) starts growing ast1/2. When interfaces
become localized, the structure can be roughly seen as
one given by the standard Glauber dynamics of the one
mensional Ising model stopped at a time (1/p)2. Since that
problem obeys dynamical scaling, frozen configurati
should scale with parameterp. However, this picture is no
quantitatively correct, as the scaling functions in both pro
lems slightly differ.

Finite, low-temperature effects are quite subtle in one
mensional small worlds since they do not destroy the fer
magnetic order observed atT50, unlike in usual Ising
chains. One can interpret here the order-disorder transi
temperatureTc as the temperature where ordering via inte
face jumps over localizing barriers~which enable further do-
main merging! and no longer overcomes disordering happe
ing within domains ~subdomain creation!. In Fig. 2~b!,
interfaceI 2 ~or I 1) can jump in interval@B, C# at a rater a
5exp(22/T). Besides, the rate at which any spin among

FIG. 3. Two-point correlation function in 1D~dotted lines! and
2D ~solid lines! as a function ofr /j` , for variousp.
2-2



is
e

t
be

itia
s

it

th

d
a

rk

in
th

-

b
a

lt

ul-
a

n
t

t

a-

n

p-

ch
two

this

ich

e
ed

t

d

of

RAPID COMMUNICATIONS

INTERFACE MOTION AND PINNING IN SMALL-WORLD . . . PHYSICAL REVIEW E67, 035102~R! ~2003!
p21 spins of interval @D, E# would flip is r b5p21exp
(24/T): it is roughly the rate at which a white domain
created and can start to grow. Qualitatively, the ord
disorder transition occurs whenr a5r b . This gives: Tc.
22/ln p, an expression derived~with a } sign! in Ref. @7#
using the replica method. The above relation may be exac
p→0 ~as the numerical prefactors in the different rates
come irrelevant!. Simulation results~not shown! give Tc5
22.3/lnp for p50.03.

In two dimensions, one also observes that random in
configurations freeze at large times. Figure 1 displays a
function of p the asymptotic correlation length~determined
from C(r ,t5`) averaged over eight networks with 15002

spins!, as well as the length associated with interface dens
The latter is defined asL2/L, whereL is the system’s linear
extent andL the total length of all boundaries. Both leng
scales remain proportional to each other when varyingp,
suggesting that frozen configurations can be characterize
one characteristic length scale, referred to as the ‘‘dom
size,’’ R`(p). Numerical results suggest thatR` varies as an
inverse power law ofp, with a nontrivial exponent close to
22/3 over nearly two decades. Surprisingly,R` does not
scale asp21/2, the characteristic length scale of the netwo
@2#. Once again, the spin-spin correlation function att5`
scales rather well asC(r )5 f „r /j`(p)…, see Fig. 3.

Figure 4 shows a typical frozen pattern atp50.05. The
positions of the ‘‘influent’’ spins are marked by dots:
white, those that are connected to another influent spin of
same sign~‘‘like’’ pairs, of number densitynl), in black
those connected to a spin of opposite sign~‘‘unlike’’ pairs,
number densitynu). Initially, nl.nu , but as coarsening pro
ceeds, ‘‘unlike’’ dots turn more easily to ‘‘ like’’ than the
contrary, as in one dimension@Fig. 2~a!#. Once again, mixing
tends to be assortative (nl.nu), but with the increase ofnl ,
at some point, there are no more possible moves toward
ter consensus. We find numerically that coarsening stops
interfaces get pinned whennl.1.86nu .

The finite domain size can be interpreted as the resu
competing effects between surface tension~the driving force
for domain growth! and energy barriers created by the m
tiplication of influent ‘‘like’’ sites. We picture the system as
collection of L2/R2 domains of radiusR, and estimate its
energy change when domains coarsen fromR to R
1dR(dR.0). The usual contribution from surface tensio
is dEI}22L2dR/R2. Meanwhile, the number of influen
nodes that flip spin is proportional to 2pRdR(L2/R2).

FIG. 4. Frozen domains~in gray! for p50.05 (6% of the sys-
tem’s total area!. The white and black dots represent the ‘‘like’’ an
‘‘unlike’’ influent nodes, respectively.
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‘‘ Like’’ nodes turn to ‘‘ unlike’’ ~with an energy cost per spin
of 2!, and reversely~with an energy decrease of -2!. The total
energy difference thus reads

dE}F2
2

R2
1

nl2nu

nl1nu

4p

R GL2dR. ~1!

The second term is positive and dominates at largeR. Hence,
coarsening is arrested whendE50, or R`;p21. This argu-
ment is somehow similar to the~equilibrium! Imry-Ma argu-
ment for the RFIM@15#. Yet, an important difference is tha
here the average magnetic field felt on influent nodes~or
‘‘impurities’’ ! is not zero, but has been biased (nlÞnu) due
to previous spin flips.

The above continuous Imry-Ma-like argument qualit
tively explains frozen states, but overestimatesR` (;p21

instead ofp22/3). The exponent22/3 can be explained as a
effect of the square lattice. As shown in Fig. 5~a!, a single
influent ‘‘like’’ node located at a domain corner can disa
pear through the diffusive motion of a step. Figure 5~b! rep-
resents then the simplest distribution of ‘‘like’’ nodes su
that the hatched domain cannot shrink. It is composed of
right-angle corners$A,A1 ,A2% and $B,B1 ,B2% defining a
squarer 3r . If the other white nodes$D1 , . . .Dn% contained
in the square do not form any right-angle corners, then
region encloses the smallest~or ‘‘ critical’’ ! pinned domain:
any bubble of hatched region contained in the square wh
does not contain both corners$A,A1 ,A2% and $B,B1 ,B2%
will shrink. Any larger bubble will not. We now calculate th
probabilityPfreeze(r ) that a configuration such as represent
in Fig. 5~b! has a sizer, and then identifyr * such that
Pfreeze(r * ) is maximal with the asymptotic domain sizeR`

in the disordered medium.
Given the nodeA located at the origin, the probability tha

there is at least one white dot (A1) on the same line within a
distancer is P1(r )512(12pl)

r , with pl /p5nl /(nl1nu)

FIG. 5. ~a! Free and~b! pinned domains in the presence
‘‘like’’ influent nodes.
2-3
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the fraction of influent nodes that are ‘‘like’’~here, the nu-
merical value of this ratio—close to 0.65—is unimporta
and could be set to 1!. Therefore, Pfreeze(r )
5pl@P1(r )#4P2(r ), with P2 the probability that theDn’s do
not form right-angle corners, i.e., that each nodeDi is at least
located on a line or a column not occupied by an otherD j
@see the dotted lines in Fig. 5~b!#. P2 can be approximated a

P2~r !. (
n50

(r 22)2

~12pl !
(r 22)22npl

nC(r 22)2
n

@12P1~r !#n,

~2!

or P2(r ).@12pl P1(r )# (r 22)2. In the sum~2! we have mul-
tiplied the probability of havingn white dots inside the
square by the probability@12P1(r )#n that n independent
dots have no neighbors on the same line withinr. For n
small, no or few corners can be formed anyway, so that
lation ~2! slightly underestimatedP2, since a small fraction
of empty sites are counted twice (@12P1(r )#n&1). For n
large, on the contrary, relation~2! overestimatesP2, since it
is impossible to locate many dots without forming corne
~while @12P1(r )#n is small butÞ0). We suppose that bot
errors compensate. This factorization enable us to com
the most probable square sizer * analytically. P1(r ) in-
g

D
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creases withr, P2(r ) decreases withr, andPfreeze(r ) has one
single maximum. Assumingp!1, r @1, rp!1, we find that
r * 5pl

22/3}p22/3, in agreement with the numerical results
To summarize, we have shown with an example that

sortative mixing in small-world networks can dynamical
generate frozen metastable states. At large times, some i
ent nodes have simply no immediate interest to evol
These results suggest that long term dynamics in highly c
nected social systems can produce spatial heterogeneitie~or
segregation!, despite that these configurations are not
most desired ones by individual agents. A similar picture,
agreement with some empirical observations, was drawn
cently from antiferromagnetic models on scale-free netwo
@16#. Right after strong political changes~in Eastern Euro-
pean countries in 1989, in Mexico in 2000! the evolution of
reforms can be fast, but social inertia takes over rapidly a
renders further adjustments difficult or null. Physica
speaking, the response of social systems to external forc
~i.e., large-scale policies! is susceptible to exhibit some o
the interesting features known for disordered systems@9#.
While revising the manuscript, we became aware of a sim
study on the voter model on small worlds@17#.

We acknowledge fruitful discussions with G. Cocho,
Viñals, and R. Boyer.
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