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Grain boundary pinning and glassy dynamics in stripe phases
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We study numerically and analytically the coarsening of stripe phases in two spatial dimensions, and show
that transient configurations do not achieve long ranged orientational order but rather evolve into glassy
configurations with very slow dynamics. In the absence of thermal fluctuations, defects such as grain bound-
aries become pinned in an effective periodic potential that is induced by the underlying periodicity of the stripe
pattern itself. Pinning arises without quenched disorder from the nonadiabatic coupling between the slowly
varying envelope of the order parameter around a defect, and its fast variation over the stripe wavelength. The
characteristic size of ordered domains asymptotes to a finite valueRg;l0e21/2exp(uau/Ae), wheree!1 is the
dimensionless distance away from threshold,l0 the stripe wavelength, anda a constant of order unity. Random
fluctuations allow defect motion to resume until a new characteristic scale is reached, function of the intensity
of the fluctuations. We finally discuss the relationship between defect pinning and the coarsening laws obtained
in the intermediate time regime.
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I. INTRODUCTION

The motion of topological defects in two dimension
smectic phases is studied at a finite distance from thresh
We focus on the Swift-Hohenberg model of Rayleigh-Be´nard
convection and related amplitude equations to address
role that nonadiabatic effects play in domain coarsening
modulated phase, defect pinning, and the appearanc
glassy behavior.

Topological defects are often the longest lived modes o
nonequilibrium system, with their motion determining th
longest relaxation times of the structure. Phenomenolog
models of defect motion that are based on a mesoscopic
scription have been known for some time@1,2#. Such a de-
scription, valid for distances much larger than the def
core, typically involves time-dependent Ginzburg-Land
equations or their generalizations. A few cases have b
studied extensively, including domain coarsening inO(N)
models@3,4#, in nematics@5–8#, and in smectic phases a
effectively encountered in models of Rayleigh-Be´nard con-
vection or lamellar phases of block copolymers@9–15#. In
the case of modulated phases, the motion of a single de
has been widely studied within the well-known amplitu
equation formalism. This method describes the spatiotem
ral evolution of the envelope of a base periodic or modula
structure @16–20#. The amplitude equation description
valid only close to bifurcation points where the spatial sc
of variation of the amplitudes is large or ‘‘slow’’ compare
with the ‘‘fast’’ period of the base pattern and, in the prese

*Present address: Instituto de Fı´sica, Universidad Nacional Au
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case, with the extent of the defect core as well.
Far enough from the bifurcation threshold of the mod

lated phase, the separation between slow and fast scale
longer holds, and corrections to the amplitude equations
pear because of the coupling between both scales. These
rections are generically referred to as nonadiabatic effe
One manifestation of nonadiabaticity is that a defect t
would be expected to move at constant velocity from
amplitude equation analysis may instead remain immobile
pinned @21–23#. We argue below that nonadiabatic effec
and defect pinning have important consequences for dom
coarsening of modulated phases in two dimensions, and
responsible for the formation of glassy configurations.

Our results complement recent research on glassy pro
ties of stripe phases. It has been suggested that system
which long ranged order is frustrated by repulsive inter
tions ~the latter often leading to the formation of strip
phases or other patterns in equilibrium! may in fact exhibit
the properties of structural glasses. An example are
glassy states, recently, observed in doped semiconducto
a stripe phase@24#. Coarse grained models with competin
interactions of the type used here~and also used to stud
block copolymer melts in lamellar phases! have been rein-
troduced to describe the formation of glasses in superco
liquids @25#. Additional equilibrium studies of the same mod
els in three dimensions based on replica calculations@26# or
Monte Carlo simulations@27# have been used to argue for th
existence of an equilibrium glass transition. Structu
glasses form spontaneously at low temperature without
presence of any quenched disorder, and their properties
main, in general, poorly understood. It is noteworthy th
coarse grained models exhibiting glassy behavior in the
sence of disorder are rare, whereas examples of discrete
tems are known~e.g., Ising models with next-nearest-neig
©2002 The American Physical Society19-1
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DENIS BOYER AND JORGE VIÑALS PHYSICAL REVIEW E 65 046119
bor interactions@28,29#!. We present here atwo-dimensional
study that indicates a dynamical route to the formation
glassy configurations in stripe phases.

We first analyze the motion of a particular type of defe
namely, a grain boundary separating two domains of dif
ently oriented stripes. Earlier asymptotic work near on
~i.e., in the limite→0, wheree is the dimensionless distanc
away from threshold! is extended to the region of small bu
finite e. In Sec. II, grain boundaries are shown to move in
effective periodic potential of wavelengthl0/2 ~wherel0 is
the periodicity of the stripe modulation! and of magnitude
that increases very quickly withe. Grain boundaries asymp
totically pin as the driving force for grain boundary motio
decreases. It is argued that for any finitee an infinite size
system will not achieve macroscopic long range order
namically following a quench. Rather, the characteristic s
of a domain will not exceed typical valueRg that is propor-
tional to l0 e21/2exp(uau/Ae), wherea is a constant of orde
unity.

In Sec. III, we incorporate the effect of random fluctu
tions and derive the corresponding amplitude equations v
for fluctuations of small amplitude. The asymptotic moti
of a grain boundary can be recast as an escape proble
which the effective activation barrier is seen to be prop
tional to the grain boundary perimeter.

Our approach must be considered only qualitative in
ture because of the scope of the description employ
Ginzburg-Landau equations, and more generally amplit
or order parameter equations~of which the Swift-Hohenberg
model described below is but one example! are only
asymptotic, large length scale approximations to the phys
system they model in the immediate vicinity of a bifurcati
point. Therefore, any short scale phenomena involved in
description of nonadiabatic corrections clearly falls beyo
their range of validity, at least in a systematically quantifia
way. It is nevertheless not unreasonable to expect that n
diabatic effects of the sort encountered in order param
equations will also occur in the physical systems that th
model. Furthermore, our results also provide insights i
many existing numerical studies of these order param
models, as described below.

In Sec. IV, we address the consequences of pinning on
domain coarsening that occurs in the intermediate time
gime following the quench. This subject has been the fo
of several numerical studies@10–15# and, more recently, o
experimental studies in block copolymer thin films@30# and
in electroconvection in nematics@31#. The results of Secs. I
and III provide a possible interpretation of conflicting resu
in the literature. Previous studies of this problem@10–15#
addressed the existence of self-similarity during dom
coarsening and attempted to quantify the time dependenc
the linear scale of the coarsening structure. The statis
self-similarity hypothesis asserts that after a possible tr
sient, consecutive configurations of the coarsening struc
are geometrically similar in a statistical sense. As a con
quence, any linear scale of the structure~e.g., the average
size of a domain or grain of like oriented stripes! is expected
to grow as a power law of timel (t);t1/z, with z a charac-
teristic exponent. Self-similarity is a well-known feature
04611
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systems that order in uniform phases of broken symme
@32,33#. However, the determination ofz has been problem
atic for stripe phases. Its value appears to depend on
quench depth~the value ofe), whether or not fluctuations ar
included in the governing equations, on the thermal hist
of the system, and on the particular linear scale analyze

Recent work in the limite→0 showed that coarsening i
self-similar and thatz53 @15#. The valuez53 in that limit
can be justified by a dimensional analysis of the law of gr
boundary motion. We focus here on the case of finitee ~in
practicee>0.1 for the Swift-Hohenberg model!, and report a
slowing down of phase ordering dynamics with increasinge,
in agreement with the literature. We attribute this behavior
partial pinning of defects that becomes increasingly imp
tant at long times as the driving force for coarsening d
creases. At even longer times, coarsening stops altoge
and the system reaches a glassy state as the linear scale
structure reaches the critical valueRg(e) computed in Sec.
II. When random fluctuations are incorporated in the mod
we show that, sufficiently close to onset, the value ofz re-
mains independent of the intensity of the fluctuations, th
verifying the universality implied in the self-similarity hy
pothesis in that region. At largere, we find that fluctuations
accelerate ordering kinetics, also in agreement with the
erature, and that, as expected, defect motion is allowed
yond the scale given byRg . At even later times the system
orders very slowly, possibly logarithmically in time.

II. NONADIABATIC CORRECTIONS AND GRAIN
BOUNDARY PINNING

We consider the Swift-Hohenberg model of Rayleig
Bénard convection@34# as a prototypical model of a modu
lated phase. The numerical results presented below h
been obtained from a direct numerical solution of the mod
The analytic results, on the other hand, follow from the c
responding amplitude equation, and hence are expected
of somewhat wider generality. The model equation stud
here is

]c

]t
5ec2

1

k0
4 ~k0

21¹2!2c2c3, ~1!

where c is a dimensionless order parameter related to
vertical fluid velocity at the midplane of a Rayleigh-Be´nard
convection cell, e is the reduced Rayleigh number (R
2Rc)/Rc!1 (Rc is the critical Rayleigh number for insta
bility !, andk052p/l0 is the roll wave number~in Appendix
A we outline the connection between this model and ot
coarse-grained models with long range repulsive interacti
@35#!.

For 0,e!1, the leading order approximation to the st
tionary solution of Eq.~1! is a sinusoidal function of wave
numberk0. We focus in this section on a configuration th
contains an isolated grain boundary separating two such
tionary solutions with mutually perpendicular wave vecto
~Fig. 1!. The reason for studying this perpendicular orien
tion is the expectation that a 90° grain boundary is that
lowest energy, and hence the prevalent boundary angle i
9-2
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GRAIN BOUNDARY PINNING AND GLASSY DYNAMICS . . . PHYSICAL REVIEW E 65 046119
extended system that evolves spontaneously from an init
disordered configuration@see, for example, Figs. 3~a!, 3~b!#.
It is known that a planar grain boundary separating two
gions of uniformk0 is stationary@19,20#. However, we found
in Ref. @36# that a slightly perturbed boundary undergoes
net translation with a speed that is a function of the curvat
of the rolls ahead of it. We address in this section the ext
sion of the asymptotic results given in that reference to sm
but finite e, and show how corrections obtained lead
boundary pinning.

Near threshold, a 90° grain boundary configuration is
approximate solution of Eq.~1! of the form

c~x,y,t !5 1
2 @A~XA ,YA ,T!eik0x1B~XB ,YB ,T!eik0y1c.c.#,

~2!

where slow variables are denoted by capital letters and
defined as@19,20#

XA5e1/2x, YA5e1/4y; XB5e1/4x, YB5e1/2y; T5et.
~3!

~The coordinatex is directed along the normal to the refe
ence planar boundary.!

We recall first some known results for a planar and s
tionary grain boundary in the limite→0, a case that was
extensively studied in Refs.@19,20#. The stationary ampli-
tudes$A0 ,B0% are a function only ofx. A0, the amplitude of
the rolls parallel to the interface, vanishes as exp(xAe/l0)
whenx→2`, and saturates to (4e/3)1/2tanh(xAe/l0) when
x→1`. The behavior of the amplitude of the rolls perpe
dicular to the interface is slightly different:B0(x)
2(4e/3)1/2}exp(xAe/j0) when x→2` and there exists a
location x* such thatB0(x.x* ).0 to a good approxima
tion. Hence, the grain boundary region has a thickness
portional tol0 /Ae. It is important to note that at smalle the
location of the grain boundary decouples from the phase
the stripes of domainA. Thus, the configuration obtained
invariant under any translation of the grain boundary by
distancex0 ~the phase of the stripes remaining unchange!.

We next derive two coupled equations for the amplitud
A andB that take into account the possible coupling betwe

FIG. 1. Schematic grain boundary configuration separating

domains of stripesA and B of the same periodicity (ukW0u5ukW08
u5k0). The stripes of domainA are weakly curved by a transvers
modulation of wave numberq!k0 . dx0 represents the magnitud
of the phase modulation.
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these amplitudes and the phases of the stripes. This coup
becomes significant at a finite value ofe, and hence when
there is a large but finite separation between the sc
$XA,B ,YA,B% and $x,y%. We follow an approach similar to
that used in Ref.@23# to study the motion of a planar fron
between a hexagonal and a uniform phase, or betwee
hexagonal and a stripe phase. The first step is a multis
analysis, and is standard@16#. Equation~1! is expanded in
power series ofe, as well as the solutionc5e1/2c1/21ec1
1e3/2c3/21•••. The leading order solutione1/2c1/2 is given
by Eq. ~2!. At order e3/2, the solvability conditions for the
existence of a nontrivial solution forc3/2 yield the relations
that A andB must satisfy,

E
x

x1l0
l0

21dx8E
y

y1l0
l0

21dy8@L~c1/2!2c1/2
3 #e2 ik0x850,

~4!

E
x

x1l0
l0

21dx8E
y

y1l0
l0

21dy8@L~c1/2!2c1/2
3 #e2 ik0y850,

~5!

with the linear operatorL512]T2k0
24(]XB

2 1]YA

2 12]y]YB

12]x]XA
)2. In the limit e→0 the functionsA andB remain

constant over one spatial periodl0, and therefore, the only
nonvanishing contribution to the integrals come from t
terms proportional toeik0x8 ~resp.eik0y8) within brackets in
Eq. ~4! @resp. Eq. ~5!#. This standard set of couple
Ginzburg-Landau equations follows@16,19#. It is known,
however, that additional nonperturbative contributions a
ing from the termc1/2

3 appear in Eqs.~4! and ~5!. We focus
next on these contribution and their effect on the relaxat
of a slightly perturbed grain boundary.

Integrals of the type*x
x1l0dx8 eimk0x8AnBp in Eqs. ~4!

and~5! ~wherem, n, andp are integers! will not integrate to
zero if the thickness of the grain boundary profiles along
x direction is finite.~Contributions from the direction trans
verse to the grain boundary,*y

y1l0dy8 eimk0y8AnBp, will be
neglected. They are typically of the order ofB2]y

2A and,
hence, always smaller than the leading analytical terms
the amplitude equations.! Terms proportional toeimk0x8 will
contribute to Eq.~4!, and terms proportional to exp@imk0x8
1ik0y8# to Eq. ~5!. If we only retain the lowest order term
e1/2c1/2 as given by Eq.~2!, we find that onlyA3 (m53)
contributes to Eq.~4!, while 3A2B (m52), as well as 3Ā2B

(m522, with Ā the complex conjugate ofA), to Eq. ~5!.
Reintroducing the original unscaled variables, the gene
ized amplitude equations read

]A

]t
52

dFgb

dĀ
2

1

4l0
2Ex

x1l0
dx8

3E
y

y1l0
dy8 A3~x8,y8,t !ei2k0x8, ~6!

o

9-3
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]B

]t
52

dFgb

dB̄
2

3

4l0
2Ex

x1l0
dx8E

y

y1l0
dy8

3@A2Bei2k0x81Ā2Be2 i2k0x8#, ~7!

where Fgb5*drWFgb is the standard Lyapunov functiona
corresponding to the 90° grain boundary. Its variational
rivatives satisfy@19,20#

2dFgb /dĀ5eA1
4

k0
2 S ]x2

i

2k0
]y

2D 2

A2
3

4
uAu2A2

3

2
uBu2A,

~8!

2dFgb /dB̄5eB1
4

k0
2 S ]y2

i

2k0
]x

2D 2

B2
3

4
uBu2B2

3

2
uAu2B.

~9!

The last terms in the right-hand sides of Eqs.~6! and ~7!
depend on both fast and slow spatial scales, and they em
the so-called nonadiabatic coupling between the two. A
lyzing the effects of these two terms on the relaxation o
perturbed grain boundary is the subject of the remainde
this section.

We now introduce a small perturbation to the plan
boundary as shown schematically in Fig. 1. The phase of
stripes of domainA is distorted by a uniform perturbation o
wave numberq!k0 ~and of amplitudedx0!l0) in the di-
rection transverse to the stripes. As shown in Ref.@36#, ap-
proximate solutions to Eqs.~6! and ~7! are given by

A5A0@x2xgb~ t !#exp@ ik0dx0cos~qy!#, ~10!

B5B0@x2xgb~ t !#, ~11!

wherexgb(t) represents the time-dependent position of
grain boundary~averaged overy). As already discussed in
that reference, perturbations to the phase ofB are of higher
order in e. In order to derive a law of motion forxgb it is
simpler to neglect the linear relaxation of the perturbed ro
and hence, assume thatdx0 is constant. The amplitudedx0
relaxes exponentially with time but the relaxation time of t
perturbation is proportional toq24 and usually much longe
than the characteristic time associated with grain bound
motion, l0 / ẋgb . Furthermore, as was shown in Ref.@36#,
explicitly considering stripe relaxation does not change
law of motion forxgb in any quantitative way.

Multiply Eq. ~6! @resp. Eq.~7!# by ] tĀ ~respectively] tB̄),
add the results and integrate the real part over the sys
area. By using Eqs.~10! and~11! and integrating by parts th
nonadiabatic terms, we obtain the following law of motio
for the grain boundary,

ẋgb5
e

3k0
2D~e!

k22
p~e!

D~e!
cos~2k0xgb1f!, ~12!

wherek5dx0q2 is proportional to the mean curvature of th
stripes of domainA, f is a constant phase, and
04611
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D~e!5E
2`

`

dx@~]xA0!21~]xB0!2#, ~13!

p~e!5max
u

H 3

4E2`

`

dx A0
3~x!]xA0~x!cos~2k0x1u!

1
3

2E2`

`

dx@2A0B0
2]xA01A0

2B0]xB0#

3cos~2k0x1u!J . ~14!

Equation ~12! without the oscillatory term was derived i
Ref. @36# in the limit e→0. The coefficientD(e), with di-
mensions of an inverse length, represents a friction term
depends on the static grain boundary profile$A0 ,B0%, while
the term ek2 in the numerator is proportional to
*0

Ldy@Fgb(x5`,y)2Fgb(x52`,y)#/L, where Fgb is the
free energy density implicitly defined by Eqs.~8! and ~9!.
The numerator can be understood as the leading contribu
~in e and k) from an external force acting on the gra
boundary. This force results from the difference in the fr
energy densityFgb between curved stripes on one side, a
straight stripes on the other side of the boundary. Note
unusual dependence ofẋgb on a even power of the curvatur
thus indicating that the motion of the grain boundary is su
that curved parallel rolls of higher energy are always
placed by straight perpendicular rolls.

The last term in the right-hand side of Eq.~12! is the
dominant contribution arising from the nonadiabatic terms
Eqs.~6! and ~7!. The dimensionlessquantity p(e) plays the
role of the amplitude of a periodic potential of periodl0/2
within which the grain boundary moves. The major cont
bution top(e) comes from the integral that contains the te
]xB0 in Eq. ~14! since the profileB0(x) has a steeper varia
tion thanA0(x) @19#. Given that both amplitudesA0 andB0

are approximately of the formAe f (Aex/l0), it is easy to
show from Eq.~14! that

p~e!;e2e2uau/Ae, ~15!

whereuau is a constant of order unity, corresponding to t
pole of the envelopes closest to the real axis in the comp
plane. Hence,p behaves nonanalytically at smalle, and in-
creases extremely quickly withe. Qualitatively similar re-
sults were reported in Refs.@22,23# for one dimensional
fronts between conductive and convective states, or betw
different convective states.

Equation ~12! shows that for any finitee.0 a planar
grain boundary (k50) can have only two stationary pos
tions per period of the stripe patternl0. This effect had been
observed numerically and reported in Ref.@36#, with similar
findings also given in Ref.@20#. Equation~12! also implies
that there exists a critical curvaturekg below which the grain
boundary will remain immobile. This critical curvature
given by,
9-4
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kg5
1

Rg
5k0S 3p~e!

e D 1/2

, ~16!

whereRg is the associated radius of curvature that diver
nonanalytically near onset@see Fig. 5~a!#

Rg;l0e21/2expS uau

2Ae
D . ~17!

These results have been verified by direct numerical s
tion of the Swift-Hohenberg model with reasonably sm
values of e. The numerical algorithm used has been d
scribed in Refs.@15,36#. Briefly, Eq. ~1! is discretized on a
square grid of mesh sizeDx51 with 5122 nodes (2562 for
e50.5), and the wavelength is set tol058Dx. A semi-
implicit spectral method is used to iterate in time. The init

FIG. 2. Glassy configurations obtained by numerical solution
the Swift-Hohenberg model with random initial conditions. Dime
sionless times shown are~a! t510 000 and~b! t520 000. Heree
50.5 and the system has 2562 grid nodes.
04611
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condition for c is a white and Gaussian random field wi
zero average and variance^c2&5e. Typical long time con-
figurations that are stationary for all practical purposes
shown in Figs. 2~a! and 2~b!. These figures show the fieldc
in gray scale. Many topological defects including disloc
tions, 11/2 disclinations, and several 90° grain boundar
can be identified. Figure 2 corresponds toe50.5 and two
different timest5104 andt523104, showing that the order
parameter does not change beyondt5104. Figure 3~a! cor-
responds toe50.4, and the configuration shown remai
practically constant beyondt52.33105.

To further quantify these observations we have compu
the probability distribution function of stripe curvature

f FIG. 3. ~a! Near stationary configuration obtained after a quen
at e50.4 and in the absence of fluctuationsF50 ~the time shown is
t52.33105, and the system size includes 5122 nodes!. ~b! New
structure obtained after taking the configuration shown in~a! as an
initial condition and further integrating the model equations w
F50.00 318 for a period of 105 time units. At this time, any bound
ary motion is very slow.
9-5
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DENIS BOYER AND JORGE VIÑALS PHYSICAL REVIEW E 65 046119
P(k,t). The stripe curvature is defined ask5u¹W •n̂u, wheren̂
is the unit normal to the lines of constantc. The curvaturek
is a slowly varying quantity away from defect cores, a
only these regions are used to computeP(k,t) by the filter-
ing method described in Ref.@15#. Figure 4 shows our result
for e50.4 ande50.5. In both cases the distribution co
verges at long times towards a limiting curve of finite widt
thus indicating that asymptotic configurations contain ma
curved stripes and are disordered at large or ‘‘glassy’’ sca
This behavior is to be contrasted with that of a coarsen
system in whichP(k,t→`) would approach ad function at
k50. We takeP(k50,t→`) as a measure of the linea
scale of the structure or typical domain size and compare
value with the pinning radiusRg given in Eq.~16!. Figure
5~b! shows the numerical results together withRg multiplied
by a ~fitted! scale factor approximately equal to 4. The pi
ning radiusRg increases extremely quickly with decreasi
e, in agreement with the numerical calculations for the ran
of e, we can study~computational constraints on syste
sizes have prevented us from investigating the regione
,0.30). We have checked that the glassy configuration
long times do not result from numerical pinning; the resu
are not modified when the grid spacing is halved toDx
5l0/16.

Although other types of defects~e.g., dislocations and
11/2 disclinations! may also become pinned, and thus co
tribute to the overall stability of glassy configurations, t
predominance of grain boundaries over other defects se
to be a generic feature of the Swift-Hohenberg model@see
Figs. 2~a!, 2~b!, 3~a!, 3~b!, and Ref.@15##. Furthermore it is
likely that a similar dependence between the speed of
defect ande will hold for the motion of other topologica
defects~except for dislocation climb!. Hence, we argue that

FIG. 4. Probability distribution function of stripe curvature
P(k,t), after a quench ate50.5 ~dotted lines! and e50.4 ~solid
lines!, averaged over 10 and 6 independent runs, respectively.
e50.5 the figure shows the curves obtained at timest5104, 5
3104, and 105, and fore50.4 at timest563104, 1.23105, and
2.33105.
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defected configuration of stripes does not macroscopic
order following a quench to a finite value ofe. Asymptotic
long time configurations appear to exhibit a labyrinthic a
partially disordered structure with many immobile defec
that do not anneal away. These disordered configurations
semble those of a structural glass at zero temperature
lack long range order~translational or orientational!. They
become spontaneously trapped in metastable configura
that are very different from the configuration of lowest fr
energy~all stripes parallel to each other, or a ‘‘crystalline
state!.

Not all grain boundaries in a glassy configuration are 9
boundaries. However, we expect that grain boundaries wi
different orientation would be pinned less efficiently@i.e.,
would have a higher value ofuau in Eq. ~15!#. The reason is
that their stationary planar profile is smoother than that o
90° grain boundary, and therefore, nonadiabatic effects
expected to be weaker.

We finally mention that if bothe and kl0 are not small
compared to one, both adiabatic and nonadiabatic terms
contain higher-order analytic corrections that we have
calculated.

III. MOTION AT FINITE TEMPERATURE

Given the results of Sec. II, it is natural to study the effe
of random fluctuations added to Eq.~1!. Small amplitude
fluctuations will allow activated motion of grain boundarie
and in general, unpinning. We consider in this section
stochastic Swift-Hohenberg model

]c

]t
5ec2

1

k0
4 ~k0

21¹2!2c2c31h~rW,t !, ~18!

or

FIG. 5. Characteristic asymptotic grain size following a quen
as a function ofe. ~a! Estimate given by Eq.~16!. ~b! Numerical
value of P(k50,t5`) ~symbols! compared also with Eq.~16!
multiplied by one fitted scale factor~solid line!.
9-6



ea

em
a

ul
h
t

rs

d
er
e

n
y
-

r

g
n

so

se

,

dary

qs.

r

tua-
for
eir
vi-

the

e
f a
e

d at
f
a
f
em

GRAIN BOUNDARY PINNING AND GLASSY DYNAMICS . . . PHYSICAL REVIEW E 65 046119
whereh is a Gaussian and white random noise of zero m
and variance

^h~rW,t !h~rW8,t8!&52Fd~rW2rW8!d~ t2t8!. ~19!

The noise intensityF is proportional to the~dimensionless!
temperature according to the fluctuation-dissipation theor
In what follows,F ande are considered as independent p
rameters, although they might be related in some partic
physical systems. The stochastic Swift-Hohenberg model
been used to study hydrodynamic fluctuations near onse
Rayleigh-Bénard convection@37#, and thermal fluctuations
of molecular origin in lamellar phases of diblock copolyme
@38#.

The stationary states of Eq.~18! in two spatial dimensions
have been studied in Refs.@11,39#. Above a critical noise
intensity Fc ~that depends one), the system is disordere
~lacks both translational and orientational long ranged ord!.
Below Fc a stripe phase with long ranged orientational ord
but no translational order was found. Only atF50 the sys-
tem was seen to exhibit both translational and orientatio
long ranged order. In what follows we focus on defect d
namics in the range 0,F!Fc , so that the local stripe pat
tern is not very distorted.

We first derive the stochastic amplitude equations fo
90° grain boundary. Following Graham@40#, we approxi-
mate the effect of the noise on the amplitudes by projectin
along the two slow modes of the deterministic equation a
neglecting any contribution arising from couplings and re
nances between noise and fast variables@41,42#. We start by
writing the random function as,

h~xW ,t !5 1
2 @eik0xh̃A~XA ,YA ,T!1eik0yh̃B~XB ,YB ,T!1c.c.#,

~20!

where the slow variablesX(Y)A,B are given by Eq.~3!, and
h̃A and h̃B are two independent complex random proces
that satisfy the relations,

^h̃A&5^h̃B&50, ^h̃A
2&5^h̃Ah̃B&5^h̃Ah̃B* &50,

^h̃Ah̃A* &5^h̃Bh̃B* &52Fd~xW2xW8!d~ t2t8!.

It is implicit in the decomposition thatF is small enough so
that well-defined stripes exist locally. On the other handF

has to be large enough so thath̃A and h̃B are not negligible
in the solvability conditions at ordere3/2 @43#. Given both
assumptions, Eqs.~6! and~7! straightforwardly generalize to

]A

]t
52

dFgb

dĀ
2

1

4l0
2Ex

x1l0
dx8

3E
y

y1l0
dy8A3~x8,y8,t !ei2k0x81h̃A , ~21!
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]B

]t
52

dFgb

dB̄
2

3

4l0
2Ex

x1l0
dx8

3E
y

y1l0
dy8@A2Bei2k0x81Ā2Be2 i2k0x8#1h̃B .

~22!

We can now estimate the escape rate of a grain boun
over the potential barrier of Eq.~12!. In order to do so, we
need to estimate the projection of the noise intensity in E
~21! and ~22! on the coordinatexgb(t) implicitly defined by
Eqs.~10! and~11!. A rough estimate that is sufficient for ou
purposes can be obtained by using Eqs.~10! and~11! as the
trial solution of Eqs.~21! and ~22!. Focusing onxgb alone
ignores possible boundary broadening because of fluc
tions, or roughening. Both phenomena will be important
grain boundary motion above the pinning point, but th
contribution is probably less important in the immediate
cinity of the pinning transition. By substituting Eqs.~10! and
~11! into Eqs.~21! and ~22!, we find

ẋgb5
e

3k0
2D~e!

k22
p~e!

D~e!
cos~2k0xgb1f!1h̃, ~23!

with h̃ a ~real! random white Gaussian noise satisfying,

^h̃&50, ^h̃~ t !h̃~ t8!&52F8d~ t2t8!,

F85F/@2D~e!Rgb#, ~24!

whereRgb is the grain boundary perimeter. As expected,
intensity of the fluctuations on the global coordinatexgb is
proportional to 1/Rgb . Equation ~23! is a straightforward
generalization of Eq.~12!, and is formally analogous to th
equation that describes the one-dimensional motion o
Brownian particle in a periodic potential of amplitud
2p(e)/@2D(e)k0#.

Equations~23! and ~24! can be recast as

ẋgb5S k0F0

2D DRgk22S k0F0

2D D 1

Rg
cos~2k0xgb1f!

1
1

A2D
S F

Rgb
D 1/2

j. ~25!

The random termj is such that^j&50 and ^j(t)j(t8)&
52d(t2t8). We have also used Eq.~16! to eliminatep(e)
from Eq. ~23!, and we have defined

F05
2e

3k0
3Rg

. ~26!

Consider the situation where grain boundaries are pinne
F50. Sincek,kg , the first term of the right-hand side o
Eq. ~25! is not dominant and the potential barrier that
pinned defect of sizeRgb has to overcome is of the order o
F0 /Rg . The stochastic problem is now an escape probl
9-7
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DENIS BOYER AND JORGE VIÑALS PHYSICAL REVIEW E 65 046119
over this potential barrier given the intensity of the no
term in Eq.~25!. The Kramers rate of escape is given by

r;expS 2
F0

F

Rgb

Rg
D . ~27!

Therefore, a noise intensity

F5Rgb

F0

Rg
;Rgbk0

21e2e2uau/Ae ~28!

is required to unpin a grain boundary of lengthRgb .

IV. SLOW COARSENING DYNAMICS: DEPENDENCE
ON TEMPERATURE AND QUENCH DEPTH

We use here the results of Secs. II and III to provide
possible interpretation of conflicting results concerning d
main coarsening of stripe phases. We recently studied
issue by numerically solving thenoiselessSwift-Hohenberg
equation @Eq. ~1!# in the limit e→0 @15#. Our numerical
results suggested that the characteristic scale of the stru
~or the typical size of ordered domains! increases ast1/z, with
z53. That value of the exponent was interpreted to follo
from the dominant motion of grain boundaries through
background of curved stripes. In disordered configuratio
the curvature of stripes is set by a distribution of large
immobile11/2 disclinations. According to Eq.~12!, the mo-
tion of grain boundaries is driven by stripe curvature, a
acts to reduce the overall curvature by replacing regions
curved stripes by straight ones of a different orientation
also reduces the disclination density whenever their core
gion is swept by a moving grain boundary. In the limite
!1 we computed several measures of the linear scale
cluding moments ofP(k,t), moments of the structure facto
of the order parameter, and the average distance betw
defects. They were all found to become proportional to e
other, and to grow as a power law of time with an expon
1/3.

Grain boundary motion as described in Sec. II was use
provide an interpretation for the valuez53. Since11/2 dis-
clinations generate roughly axisymmetric patterns of stri
around them, the characteristic stripe curvature in any gi
configuration is proportional to the inverse characteristic d
tance between disclinations. Under the self-similarity h
pothesis, the distance between disclinations is proportion
the grain sizel (t), hencek;1/l (t). If grain boundaries are
the class of defect, the motion of which controls asympto
coarsening, then the coarsening exponent can be inferre
dimensional analysis of Eq.~12!. In the limit e→0, the os-
cillatory term in the right-hand side of Eq.~12! can be ne-
glected and we simply havedl/dt} l 22 or l (t);t1/3, in
agreement with the numerical solution of Eq.~1!.

Equation~12! shows that this result changes qualitative
further from onset. Ase increases the pinning potential e
ergy barrierp(e) increases extremely fast, and importa
corrections to scaling are to be expected. For finitee and
short times many defects are present, therefore, the cha
teristic curvature of the stripes is very large, and the fi
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term in the right-hand side of Eq.~12! dominates. As coars
ening proceeds, the characteristic curvature decreases u
reaches the critical valuekg given by Eq.~16!. At that point
the typical velocity of a grain boundary vanishes, althou
the system is still disordered. Therefore, one would exp
that coarsening would stop whenl (t) is of the order ofRg .
This is precisely the result shown in Fig. 5~b! with only one
adjustable parameter@a scale factor relatingRg given by Eq.
~16! to l (t) determined numerically from the distribution o
stripe curvatures#.

When random fluctuations are considered@F.0 in Eqs.
~18! and ~19!#, some of the grain boundaries in a froze
configuration are expected to resume motion. We argue
the structure will continue coarsening until the average
main size reaches a new characteristic sizel F.Rg that can
be estimated as follows. We write a general phenomenol
cal evolution equation for the domain sizel (t) directly from
Eq. ~25!:

dl

dt
5S k0F0

2D DRg

l 2
2S k0F0

2D D 1

Rg
cos~2k0l 1f!1

1

A2D
S F

l D 1/2

j,

~29!

where we have assumed that, prior to pinning, the vari
length scales remain approximately proportional to ea
other. Recall from Eq.~27! thatF5F0 is required to unpin a
configuration obtained in the absence of noise, for wh
Rgb; l (t);Rg . According to Eq.~29!, coarsening proceed
if F.F0 until a new characteristic pinning size is reach
given byF0l F /(FRg)51 or

l F5Rg

F

F0
;k0F

euau/Ae

e2
. ~30!

After reaching the scalel F , domains are expected to coars
very slowly by thermal activation. When a grain bounda
overcomes one pinning barrier, the linear extent of the c
responding domain typically increases by an amount of or
l0/2. Hence,dl/dt;l0r , wherer is given by Eq.~27! with
Rgb replaced byl. Hence, domains are expected to gro
logarithmically in time according to

l ~ t !;F ln~ t/F ! for l @ l F . ~31!

A numerical solution of Eq.~18! yields results qualita-
tively consistent with those presented above. Figure 3~a!
shows a configuration of the order parameter fieldc obtained
for F50 ande50.4 starting from random initial conditions
The configuration shown corresponds to very late timet
52.33105 at which point all defects are practically immo
bile, and domain growth has stopped. We then setF
50.003 18, and the integration is continued. The order
rameter configurationt5105 time units later is shown in Fig
3~b!. The average domain size has increased substant
Many grain boundaries have a 90° orientation@such as in
Fig. 3~a!#, and roughening is limited or nonexistent. We ha
determined the average domain sizel from the probability
distribution function of the quantityz5c21(¹W c)2/k0

2. Fig-
ure 6 shows the probability distribution function correspon
9-8
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GRAIN BOUNDARY PINNING AND GLASSY DYNAMICS . . . PHYSICAL REVIEW E 65 046119
ing to a perfectly ordered configuration, as well as to p
tially disordered configurations. The inverse linear scalel ,
proportional to the defect densityrd , is extracted from the
difference between these curves, as detailed in Appendi
As shown in Fig. 7 domain growth is very slow, possib
logarithmic, although a precise check of this behavior
problematic.

Figure 8 displays the evolution of the defect densityrd(t)
as a function of time, starting from random initial configur
tions. For reference we also show the caseF50. Increasing
the value ofe leads to smaller effective exponents, where

FIG. 6. Probability distribution function ofz defined by Eq.
~B1! with c the solution of Eq.~18! for F50.00 636 ande50.4.
The dotted line corresponds to a single plane wave with supe
posed fluctuations, while the solid line correspond to disorde
configurations obtained from random initial conditions~at timest
553103, 104, and 105, respectively!.
04611
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increasingF has the opposite effect. For sufficiently smalle,
we findz53 independent of the value ofF. The two bottom
curves correspond to systems that are close enough to o
and hence eitherRg or l F is very large compared with the
linear size of the system. We show our results fore50.04
~averaged over 40 independent runs! and fore50.15 ~aver-
aged over 15 independent runs!. The solid line closest to
these two curves has a slope of21/3. The downward devia-
tion from linearity at long times ate50.04 is a typical mani-
festation of finite size effects~this long time behavior and its
dependence on the system size was studied in detail in
@15#!.

With increasinge and/or decreasingF, pinning becomes
more pronounced as evidenced the lower effective slope
the three upper curves in Fig. 8~the results are averages ov
six independent runs, each curve corresponding to the s
valuee50.4). The top curve corresponds to a system wi
out fluctuations for whichrd was computed with the metho
described in Ref.@15#. The density starts decaying roughly a
an inverse power law, with an effective exponent mu
smaller than21/3 ~the top solid line has a slope of21/5),
and after a crossover saturates at long times indicating
ning. When small amplitude noise is added~curve below
denoted by diamonds!, the initial behavior is similar to tha
of F50, and the decay rate also slows down considerabl
long times@where we would predict logarithmic growth, i.e
rd;1/ln(t)#. The curve below, denoted by plus signs, cor
sponds to a noise intensity three times larger than the pr
ous case. Its initial decay is slightly faster~it can be fitted
with an effective exponent 1/ze f f.20.23 as shown with the
solid line in the figure!, and the upwards deviations at lon
times are less pronounced. This behavior is in qualitat
agreement with the the expectation that defects overco
pinning barriers more readily at higher noise intensities a
pinning is postponed to longer times whenl; l F . However,

-
d

c-

un
FIG. 7. Characteristic domain size as a fun
tion of time ate50.4 andFÞ0 as indicated in
the figure. The initial condition at timet50 is a
glassy configuration obtained from a previous r
with F50.
9-9



a

ith
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FIG. 8. Defect density in arbitrary units as
function of time for several values ofe and F.
The straight solid lines are guides to the eye w
slopes, from bottom to top,20.33, 20.33,
20.23, and20.20.
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the effective initial decay is slower thant21/3, which we
interpret as a crossover effect resulting from nonadiabatic

In summary, our results for largee are in agreement with
earlier numerical results performed ate50.25, showing that
coarsening laws are very slow and depend on the presen
thermal fluctuations. We argue here that a coarsening e
nent can be properly determined only in the smalle limit,
where the phase ordering kinetics is self-similar. Our res
support that the exponentz53 is independent ofF for suf-
ficiently small e, when pinning effects are negligible (Rg
much larger than the linear size of the system!.

V. CONCLUSIONS

We have shown that the Swift-Hohenberg model
Rayleigh-Bénard convection exhibits glassy properties
spatially extended systems. In the absence of fluctuati
and following a parameter quench across threshold, ran
initial configurations do not evolve into completely order
states, a single plane-wave or crystalline state. Instead,
reach disordered metastable configurations in which to
logical defects, mainly grain boundaries and disclinatio
fail to annihilate and remain with finite density. It appea
that the formation of these glassy configurations in
quenched disorder-free system can be accounted for by
finite separation between ‘‘fast’’ length scales of the struct
~associated with stripe periodicity!, and ‘‘slow’’ scales~asso-
ciated with the extent of defect envelopes!. Since at a finite
distance from threshold the ratio between these two scal
finite, nonadiabatic effects lead systematically to defect p
ning in an infinite system. Fluctuations allow unpinning a
a certain amount of ‘‘crystallization,’’ albeit through an a
ymptotically slow activated motion of grain boundaries a
other defects.

The present framework is far too simple to be used in
prediction of a glass transition temperature, if such a tra
tion exists. In some respects, the situation just describe
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instead very similar to that of domain growth in rando
fields in dimension larger than two@44,45#. There, domain
walls separating magnetized domains are pinned by fi
impurities and evolve by thermal activation to other mo
favorable configurations. The phenomenological pinning
ergy of a domain of sizeR grows asYRu, wereu depends on
the problem considered, yielding an escape rate given br
;exp(2YRu/kBT) equation that is formally analogous to E
~27! with u51. Two crucial differences are that our syste
is glassy even in two dimensions, and that defects do
need any disorder to become pinned.

The consequences of defect pinning on the intermed
time regime corresponding to domain coarsening have
been investigated. A universal coarsening exponent can
determined close to threshold only, where we obtainz53.
Coarsening stops when the linear size of the system is la
than the characteristic domain size for pinning. In this situ
tion, an intermediate crossover regime is anticipated w
lower effective coarsening exponents, as is observed in
merical solutions of the model. Crossover effects induced
pinning can be reduced by either increasing the intensity
the fluctuations or approaching threshold.

We note that some of our conclusions as well as our
terpretation of the numerical results are based on the ana
of a particular type of defect, namely, a grain boundary se
rating two domains with differently oriented stripes. W
think it is likely that similar nonadiabatic corrections to d
fect motion will appear for dislocation glide or disclinatio
motion, leading to similar nonperturbative corrections ine to
the speed of the defect.

We believe more generally that pinning through nonad
batic effects is likely to be a feature of a wide variety
pattern forming systems, and is not limited to the particu
model treated here. Block copolymer melts, for instan
provide an interesting case in which the results obtain
could have practical implications~see Appendix A for a sum-
9-10
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GRAIN BOUNDARY PINNING AND GLASSY DYNAMICS . . . PHYSICAL REVIEW E 65 046119
mary of the relevant equations and their relationship with
model studied here!. We also mention here that results qua
tatively similar to ours have been reported for a model w
competing interactions~describing ferromagnetic films!, that
is, defined by the equations of Appendix A with a differe
form of the Green’s functionG @46#. There, frozen polycrys-
talline configurations of stripe patterns were observed
deep quenches as well, whereas the system could reac
ordered state for shallow quenches. This same model
also able to predict the formation of a frozen phase co
posed of polydisperse droplets with a near-hexagonal
rangement@47#, as previously observed in experiments on
Langmuir monolayer@48#. However, the pinning mechanism
involved in this last case is probably different than the o
discussed in the present paper since the patterns ar
longer locally periodic. Nevertheless, we would expect t
our main conclusions can be readily extended to other
tems with periodic structures such as hexagonal patt
@47,49#.
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APPENDIX A: MEAN-FIELD MODEL OF A SYMMETRIC
BLOCK COPOLYMER MELT

We briefly recall in this appendix known results about t
relationship between the mean-field description of a blo
copolymer melt, and the amplitude equation for Swi
Hohenberg model@Eq. ~1!# at first order ine. The dynamics
of microphase separation of block copolymers is often m
eled by a time-dependent Ginzburg-Landau equation fo
conserved order parameter@35,50#,

]c~rW,t !

]t
5M¹2

dF

dc~rW,t !
, ~A1!

where

F5E drWS 2
r

2
c21

u

4
c41

K

2
~¹W c!2D

1
B

2E E drWdrW8c~rW,t !G~rW,rW8!c~rW8,t !. ~A2!

G is the Green’s function of the Laplacian operat
¹2G(rW,rW8)52d(rW2rW8) and M a constant mobility or On-
sager coefficient. The scalar order parameterc is the local
monomer concentration difference between the two chem
species. Following Ref.@51# we setr 521e,u51,K51/k0

2,
and B5k0

2. Two independent parametersk0 and ~small! e
remain. Equation~A1! reduces to

1

M

]c

]t
5¹2F2~21e!c1c32

1

k0
2
¹2cG2k0

2~c2c`!,

~A3!
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wherec` is the boundary condition at infinity. In most stud
ies, it is customary to setc`5^c&, the spatial average ofc
over the sample. We introduce the amplitudeA of slightly
modulated waves through,

c~rW,t !5 1
2 @A~rW,t !eik0x1c.c.#. ~A4!

A multiscale analysis of Eq.~A3! in the limit e!1 was con-
ducted by Shiwa@51#. SettingM51/k0

2, the resulting equa-
tion for the amplitude is

]A

]t
5eA1

4

k0
2 S ]x2

i

2k0
]y

2D 2

A2
3

4
uAu2A, ~A5!

which is identical to the amplitude equation of the Swi
Hohenberg model. Note that the only effect of the conser
tion law on the local part of the free energy@the Laplacian
operator in front of the square bracket in Eq.~A3!# is a
renormalization of the mobilityM. The quantitiese and k0
defined above play the same role as the same coefficien
the Swift-Hohenberg model~i.e., the dimensionless distanc
to threshold and the dominant wave number of the struct
respectively!.

APPENDIX B: CALCULATION OF THE DEFECT
DENSITY IN THE PRESENCE OF FLUCTUATIONS

Computation of the domain size from the probability d
tribution of stripe curvature is delicate in the presence
noise. We have used a different method than that used
F50. We introduce an effective squared amplitudez(rW,t) by

z5c21~¹W c!2/k0
2 . ~B1!

For a perfectly ordered system consisting of a plane-w
solution of the Swift-Hohenberg equation andF50, the
probability distribution function ofz is a d function atz`

54e/3. WhenF.0 the probability distribution function ofz
even for a plane wavep`

(F)(z) is broader because of ‘‘pho
non’’ excitations. The functionp`

(F) is plotted in Fig. 6~with
dotted lines!, and is then used as a reference curve for a fix
F. In a partially disordered configuration, the presence
defects and curved stripes further broadens the probab
distribution function top(F)(z,t) ~solid lines of Fig. 6!. The
difference between the two curves is related to the degre
disorder beyond small fluctuations away from a perfec
ordered structure. We define the defect density byrd(t)
5max$p`

(F)(z),z%2max$p(F)(z,t),z%. Since grain boundaries
are seen to be the major contribution to defect density,
can introduce a characteristic length scalerd

21 , which is fur-
ther identified with the characteristic size, or domain sizel.
In Fig. 7, l has been normalized so thatl (t50)5Rg ~at the
beginning of the heating process! where Rg is computed
from the probability distribution function of stripe curvature
at F50.
9-11
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