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We address the problem of an elastic wave coherently propagating through a two-
dimensional polycrystal. The main source of scattering is taken to be the interaction with
grain boundaries that are in turn modelled as line distribution of dislocations—a good
approximation for low angle grain boundaries. First, the scattering due to a single linear
array is worked out in detail in a Born approximation, both for longitudinal and
transverse polarization and allowing for mode conversion. Next, the polycrystal is
modelled as a continuum medium filled with such lines that are in turn assumed to be
randomly distributed. The properties of the coherent wave are worked out in a multiple
scattering formalism, with the calculation of a mass operator, the main technical
ingredient. Expansion of this operator to second-order in perturbation theory gives
expressions for the index of refraction and attenuation length. This work is motivated by
two sources of recent experiments: firstly, the experiments of Zhang et al. (Zhang, G.,
Simpson Jr, W. A., Vitek, J. M., Barnard, D. J., Tweed, L. J. & Foley J. 2004 J. Acoust.
Soc. Am. 116, 109–116.) suggesting that current understanding of wave propagation in
polycrystalline material fails to interpret experimental results; secondly, the experiments
of Zolotoyabko & Shilo who show that dislocations are potentially strong scatterers for
elastic waves.
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1. Introduction

The propagation of sound in polycrystals has long been an object of study (for a
review see, for instance, Thompson 2002). Individual grains within a polycrystal
are single crystals, each with its own orientation, separated by grain boundaries.
While the material within each grain is the same, the orientation of the crystal
axes is different and it is this contrast in anisotropy that is at the root of the way
elastic waves will behave in a polycrystal. Following the pioneer works of
Lifshitz & Parkhomovskii (1950), the general approach to study sound
propagation in polycrystals has been to consider a theory in which the elastic
constants of the grains fluctuate. Methods include multiple scattering (Stanke &
Kino 1984), use of a second-order Born approximation on an individual scatterer
(Hirsekorn 1982) and geometrical acoustics (Rokhlin et al. 1991). Recent
experiments of wave propagation in single phase polycrystalline material (Zhang
et al. 2004), however, appear to be quite at variance with current theoretical
modelling, thus suggesting a need to revisit the issue of sound elastic wave
propagation in polycrystals. At the same time, other experiments (Zolotoyabko
et al. 2001; Shilo & Zolotoyabko 2002, 2003) have illustrated that wave scattering
by dislocations can be significant.

Low angle grain boundaries are well described as arrays of aligned edge
dislocations (see figure 1). This is why we propose in this paper to address the
problem of wave scattering by dislocation segments, a problem that has been
disregarded before. To clearly isolate this effect, we do not include in our analysis
the scattering coming from the different elastic properties between grains. We
only consider the grain boundaries as interfaces able to be the sources of the
scattering, while the medium they limit is taken to be the same, namely
homogeneous and isotropic.

The interaction between an elastic wave and a dislocation was first analysed
by Eshelby (1949, 1953) and Nabarro (1951) by use of an electromagnetic
analogy. A different approach has been largely developed by Granato & Lücke
(Granato & Lücke 1956a,b, 1966, 1981; Lücke & Granato 1981) who model the
dislocation as a string driven by a scalar time-dependent stress. Eshelby &
Nabarro noted that the waves are scattered by a dislocation, because their
motion induced by the incoming wave generates the emission of a scattered wave.
Thus, a description of this mechanism involves two steps: the knowledge of the
law of motion of a dislocation in the presence of an incident wave, and a
representation for the elastic field generated by the moving dislocation. As an
integral representation for the velocity field generated by a moving dislocation
was derived from the Navier equations by Mura in 1963, the general framework
to obtain the equations for the motion of a dislocation in the presence of an
incident wave is much more recent (Lund 1988). This is probably why little
about the interaction between elastic waves and dislocations can be found in the
literature. Very recently, we have tackled this problem in a bi-dimensional
configuration. Firstly, we have considered the problem for the interaction
between a single dislocation and an elastic wave (Maurel et al. 2004a). Then, we
have studied the properties of a coherent wave (its refraction index and
attenuation length) propagating in a medium filled with randomly placed
dislocations (Maurel et al. 2004b), the motivation being to extend the ultrasonic
non-destructive evaluation for the detection of flaws and cracks to the ultrasonic
Proc. R. Soc. A (2006)
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Figure 1. (a) Polycrystalline structure, (b) low angle (tilt) grain boundary and corresponding
Burgers vector.
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non-destructive evaluation of dislocation ensembles, thus enabling a non-
intrusive probe for the study of plasticity.

In this paper, we focus on the two-dimensional multiple scattering process
generated by a random distribution of lines that are composed of a line
distribution of edge dislocations within an otherwise homogeneous isotropic
medium. This is our cartoon of a polycrystal. The paper is organized as follows:
in §2, we present the basic relations that lead to an homogeneous wave equation
for the in-plane velocity associated with wave displacement,

½V2 Ck2b Cðg2K1ÞVV:�vðxÞZKVGBðxÞvðxÞ: ð1:1Þ

Equation (1.1) has a classical form: the left-hand side term corresponds to the
usual wave equation whose solutions are two in-plane waves: a transverse wave
with a wavevector of modulus kb, and a longitudinal wave of modulus kaZkb=g.
The right-hand side term describes the interaction between the waves and the
grain boundary (i.e. the scatterer) through the potential VGB that has a matrix
structure. Then, equation (1.1) is used to determine the scattering functions for a
single grain boundary. For in-plane polarized waves, four scattering functions
have to be determined. Sections 3 and 4 treat the coherent propagation of waves
through multiple grain boundaries (let us remind that these multiple grain
boundaries are our cartoon of a polycrystal). In §3, the multiple scattering
formalism is presented. Because of the linearity of equation (1.1), the potential V
for a grain boundary ensemble, each grain boundary being indexed by i, is simply

deduced from the potential VGBi for a single grain boundary through VZ
P

iV
GBi .

The main task here is to derive the so-called modified, or averaged, Green’s
function that is the impulse response of the effective medium, defined as the
average of the media over all realizations of grain boundary ensembles. In §4, the
characteristics of the coherent wave, in terms of velocity and attenuation, are
derived and discussed.

We report in the electronic supplementary material some technical algebra.
2. Scattering mechanism

We recall in this section the main results obtained in Maurel et al. (2004a) to
obtain the potential VD for a scatterer composed of a single dislocation. The

potential VGB for a dislocation ensemble is VGBZ
Ð
LdXirbðXiÞVDi corresponding
Proc. R. Soc. A (2006)
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to a line distribution of dislocations with a line density rbðXiÞ. In the following,
we assume this density to be constant ½rbðXiÞZrb�, i.e. we assume the grain
boundary is formed of a uniform distribution of dislocations. Note that we could
consider VGB as a discrete sum over point dislocations (i.e. a line density made of
delta functions); this latter choice being less tractable mathematically.

We consider a two-dimensional space with the fixed basis ðO; e1; e2Þ.
Dislocations are gliding edge dislocations, i.e. their Burgers vectors b are in-
plane and their motion, described by the dislocation position X, occurs along the
Burgers vector b. The basis attached to the dislocation is ðt;nÞ, with bZbt and
n along the in-plane perpendicular direction. The two types of in-plane waves
interacting with an edge dislocation are: a longitudinal wave with compressional

velocity aZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlC2mÞ=r

p
and a transverse wave with shear velocity bZ

ffiffiffiffiffiffiffiffi
m=r

p
,

where ðl;mÞ are Lamé’s constants and r the density of the elastic medium. We
define gha=b, as in equation (1.1).
(a ) Potential for a single dislocation

In this section, we want to obtain the potential for a single dislocation. Firstly,
equation (2.1) is the starting relation to do that. It corresponds to the integral
representation for the particle velocity vh _u (u is the displacement field in the
elastic medium and the dot denotes the time derivative) produced by a moving
dislocation located at position X. Secondly, equation (2.3) is the equation of
motion of a gliding edge dislocation in the presence of an incident wave.

The integral representation

vmðx; tÞZ ekncijkl

ð
dt 0bl _Xnðt 0Þ

v

vxj
G0

imðxKX; tKt 0Þ; ð2:1Þ

is derived from the wave equation

r€uiðx; tÞKcijkl
v2

vxj vxk
ulðx; tÞZ 0; ð2:2Þ

with boundary conditions

½ui�SðtÞ Z bi; cijkl
vul
vxk

nj

� �
SðtÞ

Z 0;

where SðtÞ is a time-dependent line abutting at the dislocation point (in two-
dimensional) and the brackets denote the difference above and below SðtÞ.
A derivation of the integral representation has been performed in Mura (1963)
and is detailed in electronic supplementary material-1. Similar derivation can be
found in Lund (2002) for a vortex loop configuration. In equation (2.1), the
indexes j; k;n. take the value 1 or 2, and ekn hekn3 (the usual completely
antisymmetric tensor). G0

imðx; tÞ is the elastic Green function in two dimensions.
In the local basis ðt;nÞ introduced earlier, the equation of motion for a gliding

edge dislocation reads

m €X ðtÞZ ~s12b; ð2:3Þ
where ~s12 is the stress tensor expressed in the local basis ðt;nÞ taken at the
position XðtÞ of the dislocation and where m is the effective mass of an edge
Proc. R. Soc. A (2006)
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dislocation

m Z
1

4p

1Cg4

g4
rb2ln

d

d0
; ð2:4Þ

with d and d0 the long- and short-distance cut-off lengths, respectively.
This equation, valid in the subsonic case (dislocation velocity small compared

with a;b), corresponds to an edge dislocation with mass m submitted to the usual
Peach–Koehler force (Peach & Koehler 1950). For the derivation of this
equation, see for instance Lund (1988).

Equations (2.1) and (2.3) can be combined into the following wave equation
written in the frequency domain (u denotes the frequency and kb hu=b)

½V2 Ck2b Cðg2K1ÞVV:�vðxÞZKVDðxÞvðxÞ; ð2:5Þ

where the right-hand side of this equation is a two-component vector ‘potential’
given by

VDðxÞvðxÞh
stðxÞ
snðxÞ

 !
Z

mb2

mu2
ðvnvt CvtvnÞjX

vn

vt

 !
dðxKXÞ; ð2:6Þ

in the local basis ðt;nÞ and with vavjX denoting ðvv=vaÞðXÞ (vt represents the
space derivative along the tangent t, not to be confused with a time derivative
(dot symbol)). A detailed derivation of this equation can be found in electronic
supplementary material-2.

Introducing the matrix JZ
0 1

1 0

 !
, one can express the components ~V

D
of

the operator in the local basis as

stðxÞ
snðxÞ

 !
ZK~V

DðxÞ
vtðxÞ
vnðxÞ

 !
; with ~V

DðxÞZ mb2

mu2
J~VdðxKXÞ~VT

jXJ;

where ~Vh
vt
vn

� �
and ~V

T
jX is the operator (acting on any function f ðxÞ) defined as

~V
T
jX f ðxÞh

vtf ðXÞ
vnf ðXÞ

� �
. Superscript T denotes the transpose.

Expressing all quantities in the basis ðe1; e2Þ, the operator VD finally reads

VDðxÞZ mb2

mu2
R2q0JVdðxKXÞVT

jXR2q0J; ð2:7Þ

with q0hð de1; bÞ and Ra h
cos a Ksin a

sin a cos a

 !
the rotation matrix of angle a. We

have used RaJZJRKa.
(b ) ‘Potential’ for a grain boundary

A grain boundary is represented by a segment L of length L, containing
NZrbL dislocations (figure 2). The N dislocations have the same orientation,
perpendicular to L and the same Burgers vectors b. Possible interactions
between dislocations are not considered, except in the term of mass, as
Proc. R. Soc. A (2006)
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Figure 2. Grain boundary represented as a line L, of length L and containing a density rb of gliding
edge dislocations with Burgers vector b. Xc denotes the centre of L and Y the position along L.
ðt;nÞ is the basis associated with L, making an angle q0 hð de1; bÞ.

A. Maurel and others2612
discussed in §3c. The potential VGB associated with the grain boundary is
obtained by summing over dislocations

VGBðxÞZ mb2

mu2
rb

ð
L
dXR2q0JVdðxKY ÞVT

jYR2q0J; ð2:8Þ

where YZXcCX, with Xc an origin point on L and X oriented along L.
(c ) Scattering functions of a single grain boundary

In this section, we derive the scattering functions for a single grain boundary
in the first Born approximation. Xc is set equal to 0 without loss of generality
ðYZXÞ.

Within the first Born approximation, the integral representation for the
solution of equation (2.5) is

vsðxÞZ
ð
dx 0G0ðxKx 0;uÞVGBðx 0Þvincðx 0Þ; ð2:9Þ

where VD has been replaced by the grain boundary potential VGB introduced in
equation (2.8), and v has been replaced in the right-hand side term by vinc (the
velocity displacement of the incident wave). This assumes weak scattering since
the total velocity vZvincCvs is assumed to be equal to vinc at leading order (the
wave scattered by the rest of the grain boundary on one dislocation is neglected).

In the case of polarized waves, one has to distinguish the amplitudes Aa and
Ab of the longitudinal and transverse incident waves, respectively,

vincðxÞZAae1 e
ikax1 CAbe2 e

ikbx1 : ð2:10Þ

The incident wave propagates along the e1-axis, so that the velocity of the
longitudinal wave is along e1 and the velocity of the transverse wave is along
e2 (figure 3). In the following, vsaðxÞ ½vs

bðxÞ� denotes the solution of equations
(2.9) and (2.10) with AbZ0 (AaZ0, respectively).

Because equation (2.9) is linear, the full solution is simply the superposition
vsZvs

aCvsb. We present in the following the detailed derivation of the
scattered wave vs

aðxÞ. The derivation of vsbðxÞ is performed in a similar way.
We first express the components of vsaðxÞ (respectively, vsbðxÞ) in

cylindrical components: the first component corresponds to the projection of
Proc. R. Soc. A (2006)
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Figure 3. Scattering of an incident wave with longitudinal and transverse polarizations (Aa and Ab,
respectively) by a grain boundary L. At an observation angle q and at large distances x from L, the
scattered field is composed of a longitudinal wave (with scattering functions faa and fab because of
mode conversion) and of a transverse wave (with scattering functions fba and fbb).
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vsaðxÞ along the position vector x, with qhð de1;xÞ and the second component is
the azimuthal component. In this local basis, we use two remarkable properties:
(i) the Green function ~G

0ðx;uÞ, defined by G0
ijðx;uÞZRq;ik

~G
0
klðx;uÞRKq;lj , is

diagonal and independent of q (x denotes the magnitude of the position vector x);
(ii) the polar components of vs are directly related to the scattering functions
faaðqÞ and fbaðqÞ. In these notations, fabðqÞ is the a-component of the scattered
wave, for a given incident b-wave. That is, in the limit kx[1,

vsa;t

vsa;n

 !
ZAa

faaðqÞ
eikaxffiffiffi

x
p

fbaðqÞ
eikbxffiffiffi
x

p

0BBBB@
1CCCCA; resp:

vsb;t

vsb;n

 !
ZAb

fabðqÞ
eikaxffiffiffi

x
p

fbbðqÞ
eikbxffiffiffi
x

p

0BBBB@
1CCCCA: ð2:11Þ

The scattering functions fba and fab quantify mode conversions, i.e. the
transverse wave generated from scattering of a longitudinal incident wave, and
vice versa.

Using equation (2.8) and setting AbZ0, AaZ1, the integral representation
(2.9) reads

vs
aðxÞZ

rbmb
2

mu2

ð
dx 0
ð
L
dX G0ðxKx 0;uÞR2q0JV

0dðx 0KXÞV0T
jXR2q0Je1 e

ikax
0
1 : ð2:12Þ

In the integral above, we have

V0T
jXR2q0Je1 e

ikax
0
1 Z ikae

T
1R2q0Je1 e

ikaX1 ZKika sin 2q0 e
ikaX1 ; ð2:13Þ

and the integral over x 0 isð
dx 0G0ðxKx 0;uÞR2q0JV

0dðx 0KXÞ
� �

T

ZVTR2q0JG
0ðxKX;uÞ: ð2:14Þ
Proc. R. Soc. A (2006)
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We now use, for x[X (x, X denote the magnitude of the position vectors x, X ),
the asymptotic form of Green’s function in two-dimensional free space,

G0ðxKX;uÞ $$%
x/N

eip=4

2
ffiffiffiffiffiffiffiffi
2px

p Rq

eika½xCX sinðq0KqÞ�ffiffiffiffiffi
ka

p
g2

0

0
eikb½xCX sinðq0KqÞ�ffiffiffiffiffi

kb
p

0BBBBB@

1CCCCCARKq: ð2:15Þ

We have used XZXRq0
e2: with XcZ0;X is along the direction of the

dislocation line, perpendicular to the Burgers vector (b is along Rq0
e1).

In general, VZvxðRqe1ÞCð1=xÞvqðRqe2Þ. At leading order in x, the terms
coming from the derivation with respect to q can be neglected, so that we
formally write VZRqvxe1 that involves the leading order terms. We get for the
cylindrical components

vs
a;tðxÞ

vsa;nðxÞ

 !
ZRKq

vs
a;1ðxÞ

vs
a;2ðxÞ

 !

Z
rbmb

2

mu2

eip=4

2
ffiffiffiffiffiffiffiffiffiffiffi
2pjxj

p sin 2q0ka

ð
L
dX eikaX1

ffiffiffiffiffi
ka

p

g2
eika½xCX sinðq0KqÞ�sin 2ðqKq0Þffiffiffiffiffi

kb
p

eikb½xCX sinðq0KqÞ�cos 2ðqKq0Þ

0B@
1CA;

where we have used R2q0KqJRqe1Z
sin 2ðqKq0Þ
cos 2ðqKq0Þ

 !
. We finally obtain

vs
a;tðxÞ

vsa;nðxÞ

 !
Z

mNb2

mu2

eip=4

2
ffiffiffiffiffiffiffiffi
2px

p sin 2q0ka

!

ffiffiffiffiffi
ka

p

g2
eikaxsincfkaL=2½sinðq0KqÞKsin q0�gsin 2ðqKq0Þffiffiffiffiffi

kb
p

eikbxsincfkbL=2½sinðq0KqÞKsin q0=g�gcos 2ðqKq0Þ

0B@
1CA:

ð2:16Þ
The case of the transverse incident wave can be treated using the same route as

in §2a: In equation (2.12), the term V0T
jXR2q0Je1 e

ikax
0
1ZKika sin 2q0 e

ikaX1 has to

be replaced by V0T
jXR2q0Je2 e

ikbx
0
1Z ikb cos 2q0 e

ikbX1 . We deduce

vsb;tðxÞ
vs
b;nðxÞ

 !
ZK

mNb2

mu2

eip=4

2
ffiffiffiffiffiffiffiffi
2px

p cos 2q0kb

!

ffiffiffiffiffi
ka

p

g2
eikaxsincfkaL=2½sinðq0KqÞKg sin q0�gsin 2ðqKq0Þffiffiffiffiffi
kb

p
eikbxsinc½kbL=2ðsinðq0KqÞKsin q0Þ�cos 2ðqKq0Þ

0B@
1CA:

ð2:17Þ
Proc. R. Soc. A (2006)
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Figure 4. Scattering functions of a grain boundary (in plain lines). The direction of the Burgers
vector is indicated by the arrow, the incident wave has the direction qZ0.
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The scattering functions are then written by identifying equations (2.16) and
(2.17) with equation (2.11),

faaðqÞZ
mNb2

mu2

k
3=2
a

2
ffiffiffiffiffiffi
2p

p
g2

sin2q0 sin2ðqKq0Þsinc½kaL=2ðsinðq0KqÞKsinq0Þ�eip=4;

fbaðqÞZ
mNb2

mu2

kak
1=2
b

2
ffiffiffiffiffiffi
2p

p
g2

sin2q0 cos2ðqKq0Þsinc½kbL=2ðsinðq0KqÞKsinq0=gÞ�eip=4;

fabðqÞZK
mNb2

mu2

kbk
1=2
a

2
ffiffiffiffiffiffi
2p

p cos2q0 sin2ðqKq0Þsinc½kaL=2ðsinðq0KqÞKgsinq0Þ�eip=4;

fbbðqÞZK
mNb2

mu2

k
3=2
b

2
ffiffiffiffiffiffi
2p

p cos2q0 cos2ðqKq0Þsinc½kbL=2ðsinðq0KqÞKsinq0Þ�eip=4:

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;
ð2:18Þ

The polar plots of the scattering functions are shown in figure 4. As expected,
for wavelengths large compared to L, the scattering functions tend to those
Proc. R. Soc. A (2006)
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obtained for a single dislocation with Burgers vector BhNb and mass M hNm
(see Maurel et al. 2004a).
3. The multiple scattering mechanism for the modified Green function

(a ) Principle of the calculation

The multiple scattering formalism we use is based on the calculation of the
modified Green function hGiðkÞ with k the wavevector that comes from the
Fourier transform of GðxÞ. The modified Green function describes the elastic
medium filled with scatterers randomly distributed (here, the segments L
representing grain boundaries) in terms of an effective medium. The
averaging process over disorder realizations involves averages over the
lengths L of the segments, over the dislocations densities rbZ1=d held by
each segment (d denotes the distance between two dislocations), over the
Burgers vectors b of the NZrbL dislocations held by the segments, and over
the positions and orientations of the segments ðXc; q0Þ (figure 2). The
modified Green function is given by the Dyson equation (see, for instance,
Sheng 1995),

hGiðkÞZ G0K1

ðkÞKSðkÞ
h iK1

; ð3:1Þ

where G0 is the free space Green function and SðkÞ the so-called mass
operator. When the properties of the coherent wave differ little from the
waves in the homogeneous medium, SðkÞ can be perturbatively expanded in
powers of a small parameter e (for a discussion/definition of e, see §3c):
SðkÞZS1ðkÞC S2ðkÞC/. In the present case, we need to compute at least
the first two terms, because the imaginary part of the leading term S1ðkÞ
vanishes. These terms are given by

S1ðkÞZn
Ð
dx dC eKik$xVGBðxÞeik$x ;

S2ðkÞZn
Ð
dx dx 0 dC eKik$xVGBðxÞG0ðxKx 0ÞVGBðx 0Þeik$x 0

;

9=; ð3:2Þ

where n denotes the number density of scatterers (grain boundaries) per unit
area and the integral over C corresponds to averages over all relevant
parameters. Here, dCZpðbÞdbpðLÞdLpðrbÞdrbðdXc=VÞðdq0=2pÞ, where pðXÞ
denotes the probability distribution function of the quantity X (in the
following, we note hXiZ

Ð
dXXpðXÞ). In equation (3.2), we have assumed that

the scatterers are not spatially correlated.
The (complex) poles of hGiðkÞ give the wavenumbers Ka and Kb of the

coherent waves that can propagate in the effective medium. Their real part is
related to the index of refraction whereas their imaginary part is related to the
attenuation length.

We report in §3b the derivation of SðkÞ at order 1. The derivation at order 2,
that involves similar calculations, is detailed in electronic supplementary
material-3.
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(b ) Derivation of the mass operator

(i) Order 1

We start from the expression (3.2) for S1ðkÞ;

S1ðkÞZn

ð
dx pðbÞpðLÞpðdrbÞdb dL drb

dq0
2p

dXc

V eKik$xVGBðxÞeik$x : ð3:3Þ

Using equation (2.8), we get

S1ðkÞZn
m

u2

rbb
2

m

� �ð
dxpðLÞdL dq0

2p

dXc

V

!

ð
L
dX eKik$xR2q0JVdðxKY ÞVT

jYR2q0J eik$x :

By using VT
jYeik$xZ ikTeik$Y and integrating by part

Ð
dx eKik$xVdðxKY Þ

Zik eKik$Y , we obtain

S1ðkÞZKn
m

u2

rbb
2

m

� �ð
pðLÞdL dq0

2p

dXc

V

ð
L
dXR2q0Jk

TkR2q0J

ZKn
m

u2

rbLb
2

m

� �ð
dq0
2p

R2q0Jk
TkR2q0J:

ð3:4Þ

We now focus on the matrix R2q0Jk
TkR2q0J whose average over q0 has to be

taken. With kZkRxe1 (i.e. xhð de1; kÞ), and using P1heT1 e1 and P2 heT2 e2
ZJP1J, it is easy to see that R2q0Jk

TkR2q0JZk2Rð2q0KxÞP2RKð2q0KxÞ. Changing the
variable q0/q0Kx=2, we obtain

S1ðkÞZK
mn

2pu2

Nb2

m

� �
k2
ð
dq0R2q0P2RK2q0

ZK
mn

2u2

Nb2

m

� �
k2

1 0

0 1

0@ 1A:

ð3:5Þ

For a single grain boundary, the total Burgers vector is BhNb and the total
mass is M hNm. Expression (3.5) is actually the same as obtained for a random
distribution of isolated dislocations of Burgers vector B and mass M (Maurel
et al. 2004b),

S1ðkÞZK
1

2

mn

u2

B2

M

� �
k2

1 0

0 1

 !
: ð3:6Þ

This result shows that there is no effect of the line distribution of dislocations
along the segments L at this order: grain boundaries are seen as spatially
uncorrelated (‘fat’) single dislocations.
Proc. R. Soc. A (2006)



A. Maurel and others2618
(ii) Order 2

The calculation of S2ðkÞ is similar to that presented earlier and is detailed in
the electronic supplementary material-3. We obtain

S2ðkÞZ
i

16

mn

u2

� 	2 N 2b4

m2

� �
1Cg4

g4

k2b
n
k2Rx

I1ðkLÞ 0

0 I2ðkLÞ

 !
RKx; ð3:7Þ

with

I1ðkLÞZ
1

p2hL2ið1Cg4Þ

ð
pðLÞL2 dL dq0 dz sin

22q0

!fcos22zf ðkaL; kL; q0; zÞCg4sin22zf ðkbL; kL; q0; zÞg;

I2ðkLÞZ
1

p2hL2ið1Cg4Þ

ð
pðLÞL2 dL dq0 dz cos

22q0

!fcos22zf ðkaL; kL; q0; zÞCg4sin22zf ðkbL; kL; q0; zÞg;

and

f ðqL; kL; q0; zÞZ sinc2½ðk sin q0Kq sin zÞL=2�;
where sincðxÞhsinðxÞ=x. It is easy to see that IaZ1;2 goes to unity as kL tends to
zero. Hence, the limit of expression (3.7) at long wavelengths is the same as that
obtained for a random distribution of single dislocations of Burgers vector B and
mass M,

S2ðkÞZ
i

16

mn

u2

� 	2 B4

M 2

� �
1Cg4

g4

k2b
n
k2

1 0

0 1

 !
: ð3:8Þ

Using

G0ðkÞZRx

g2ðk2Kk2aÞ 0

0 ðk2Kk2bÞ

 !
RKx; ð3:9Þ

the modified Green function finally reads

hGiK1ðkÞZRx

g2ðk2Kk2aÞ 0

0 k2Kk2b

 !
C

1

2

mn

u2

B2

M

� �
k2

1 0

0 1

 !"

K
i

16

mn

u2

� 	2 N 2b4

m2

� �
1Cg4

g4

k2b
n
k2

I1ðkLÞ 0

0 I2ðkLÞ

 !#
RKx: ð3:10Þ
(c ) Discussion

Let us comment on expression (3.10). For the sake of clarity, we take all grain
boundaries with the same number of dislocations, so that N 2ZhNi2ZhN 2i.
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Relation (2.4) can be written as mxrb2=e, where eh1=lnðd=d0Þ is the small
parameter in multiple scattering by single dislocations. We have B2=MxNe=r
and we define

e0 h
n

k2b
; ð3:11Þ

so that we can write, for kZke1 (i.e. xZ0),

hGiK1ðkÞZG0K1

ðkÞ

Ce0k2
1

2
Ne

1 0

0 1

 !
K

i

16

1Cg4

g4
ðNeÞ2

I1ðkLÞ 0

0 I2ðkLÞ

 !" #
: ð3:12Þ

The weak scattering limit corresponds to
(i) e0 finite, that is no vanishing value of kbLc, with Lcx1=

ffiffiffi
n

p
;

(ii) Ne/1, with ex1=lnðd=d0Þ.

The first condition introduces a cut-off length Lc for the ultrasonic wavelength
that can be used. As the interaction strength between the wave and a dislocation
increases with increasing wavelength, this condition corresponds to a non-
divergence of the scattering strength. This condition introduces a characteristic
length that is relevant in the forthcoming expressions of the refraction indices
(4.2) and of the attenuation lengths (4.4). Note that in a recent experiment
(Zolotoyabko et al. 2001; Shilo & Zolotoyabko 2002, 2003), high-frequency
ultrasonic waves have been used in a LiNbO3 crystal, corresponding to kbLcx10,
thus fulfilling condition (i).

Condition (ii) involves properties of the medium itself. For an isolated
dislocation, the long cut-off length d is given by the size of the sample and the
short cut-off length d0xb. In grain boundaries, the upper cut-off length d can be
chosen as the distance d between dislocations (Shockley & Read 1949). For a tilt
boundary, L, N and b are linked through LZNd, with dZb=qb and qb the (small)
misorientation angle. We thus obtain the condition

NeZ
ðL=bÞ
lnðd=bÞ qb/1:

With L[b, this condition gives a restriction on the angle qb of the grain
boundary.
4. Characteristics of the coherent waves

The wavenumbers Ka and Kb of the coherent longitudinal and transverse waves,
respectively, are given by the poles of hGiðkÞ. In equation (3.10), the first
diagonal term of hGiK1ðkÞ gives the longitudinal wave (directed along k);
the second diagonal term yields the transverse wave, in the direction
perpendicular to k. In the weak scattering approximation, Ka is expected to be
close to ka (and Kb close to kb). In equation (3.10), we thus replace I1ðkLÞ by
Proc. R. Soc. A (2006)



A. Maurel and others2620
I1ðkaLÞ (and I2ðkLÞ by I2ðkbLÞ). Thus, the coherent wavenumbers read

Ka Z ka 1K
1

4g2

mn

u2

Nb2

m

* +
C i

1Cg4

32g4

mn

u2

 !2
N 2b4

m2

* +
k2a
n
I1ðkaLÞ

" #
;

Kb Z kb 1K
1

4

mn

u2

Nb2

m

* +
C i

1Cg4

32g4

mn

u2

 !2
N 2b4

m2

* +
k2b
n
I2ðkbLÞ

" #
:

9>>>>>=>>>>>;
ð4:1Þ

At first-order, this expression reduces to the results obtained following Foldy’s
approach (see §4c).

(a ) Index of refraction and attenuation length

We define the index of refraction as na ha=Va (respectively, nb hb=Vb),
where VaZReðu=KaÞ denote the phase velocities in the presence of grain
boundaries (recall that a and b are the phase velocities in the absence of grain
boundaries). From equation (4.1), we obtain

na Z 1K
1

4g2

mn

u2

Nb2

m

* +
;

nb Z 1K
1

4

mn

u2

Nb2

m

* +
:

9>>>>>=>>>>>;
ð4:2Þ

As observed for a distribution of isolated dislocations (Maurel et al. 2004b):

(i) the effective phase velocity is larger than its value in the absence of
scatterers. The group velocity is however smaller;

(ii) the index of refraction decreases with increasing wavelength.

As first observed byNabarro (1951) and confirmed in our calculations, this result is
due to the particular interaction between an elastic wave and a dislocation (e.g. in
equation (2.3)). The scattering waves actually occur from the motion of the
dislocation driven by the incident wave. The equation ofmotion (Lund 1988) shows
that the amplitude of dislocation motion increases with increasing wavelengths,
which also increases the scattered energy. Of course, no divergence of the index
occurs since the difference of na;b to unity is of orderNee0.With the condition that e0

remains finite, values of wavelengths have an upper limit given by the cut-off length
Lc. By considering identical grain boundaries, equation (4.2) reads

na Z 1K
1

4g2

mnB2

Mu2
Z 1K

1

4g4

Ne

ðkaLcÞ2
;

nb Z 1K
1

4

mnB2

Mu2
Z 1K

1

4

Ne

ðkbLcÞ2
:

9>>>>=>>>>; ð4:3Þ

(b ) Attenuation lengths

The attenuation length La is given by the imaginary part of the wavenumber:
La h1=ImðKaÞ. It corresponds to the loss of coherence due to scattering away
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from the forward direction. From equation (4.1), we obtain

La Z
32g4

1Cg4

a4

nm2

m2

N 2b4

* +
ka

I1ðkaLÞ
w

32g8

1Cg4

1

ðNeÞ2
kaLc

I1ðkaLÞ
Lc;

Lb Z
32g4

1Cg4

b4

nm2

m2

N 2b4

* +
kb

I2ðkbLÞ
w

32g4

1Cg4

1

ðNeÞ2
kbLc

I2ðkbLÞ
Lc;

9>>>>>=>>>>>;
ð4:4Þ

where the symbol ‘w’ can be replaced by an equality if all grain boundaries are
identical. The attenuation lengths are plotted in figure 5 as a function of
wavenumber. Note the presence of a linear and a quadratic regime, with a cross-
over between both behaviours occurring at wavelengths of the order of the
average grain boundary length. The linear regime coincides with the results
obtained with single dislocations (Maurel et al. 2004b) with the total Burgers
vector B and the total mass M. Increasing the wavelength decreases the
attenuation length La;b, an unusual behaviour for waves propagating in random
media. Conversely, waves do not attenuate at very small wavelengths (as the
refraction index tends to one), a limit where the medium looks to be disorder-free.
Recall that the expressions in equation (4.4) are not valid for large wavenumbers
because of the condition that e0 remains finite.

Note also that, in the calculation presented here, the internal damping has
been neglected in the equation of motion. Sources of dislocation damping can be
multiple (Nabarro 1987), and are important at low frequencies. In spite of this
limitation, the predictions discussed earlier could be further tested experimen-
tally in a frequency range where damping forces are still small.
(c ) Remark on the Foldy approach

An adaptation of the Foldy approach (Foldy 1945) can be found in Maurel
et al. (2004b) for two-dimensional polarized waves. It was found, for an ensemble
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of isolated dislocations, that hfabiCð0ÞZhfbaiCð0ÞZ0 (in that case, we had
CZðb; q0Þ). This property, that is the averaged cross-coupled scattered waves
vanish, is also verified for the present case. Indeed, it can be seen from equation
(2.18) that the average over q0 makes hfa;biCðqÞ and hfb;aiCðqÞ (here, we have
CZðb;L; rb;Xc; q0Þ) vanish at qZ0.

Thus, the effective wavenumber Ka, with aZa;b, can be written as a function
of the averaged scattering functions

Ka Z ka Cn

ffiffiffiffiffiffi
2p

ka

s
hfaaiCð0ÞeKip=4: ð4:5Þ

This relation leads to the same value for the modified wavenumber as in equation
(4.1) at first-order. This is because the scattering functions have been calculated
in the first Born approximation.
5. Concluding remarks

We have derived the dispersion relation of a two-dimensional continuous elastic
medium filled with gliding edge dislocation arrays randomly distributed and
oriented in space. It has been found that sound attenuation increases with
wavelength, an effect probably due to the two-dimensional nature of the problem.

The present analysis is aimed to evaluate the plastic contribution to the
multiple scattering of elastic waves that propagate through polycrystals and it is
the first time, to the best of our knowledge, that the structure at the grain
boundary is considered. Most of the studies have considered the variations
between grains in the elastic constants, and mainly the change in anisotropy, as
the source of scattering. Both effects may superpose in polycrystals, so including
possible contribution of the dislocations could be helpful to obtain a better
modelling of sound propagation in polycrystals.

This work was supported by the Consejo Nacional de Ciencia y Tecnologı́a (CONACYT, Mexico)
grant number 40867-F, by the CNRS/CONICYT in the framework of a French/Chilean
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