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Scale-free foraging patterns are widespread among animals. These may be the outcome of an optimal

searching strategy to find scarce, randomly distributed resources, but a less explored alternative is that this

behaviour may result from the interaction of foraging animals with a particular distribution of resources.

We introduce a simple foraging model where individual primates follow mental maps and choose their

displacements according to a maximum efficiency criterion, in a spatially disordered environment

containing many trees with a heterogeneous size distribution. We show that a particular tree-size frequency

distribution induces non-Gaussian movement patterns with multiple spatial scales (Lévy walks). These

results are consistent with field observations of tree-size variation and spider monkey (Ateles geoffroyi )

foraging patterns. We discuss the consequences that our results may have for the patterns of seed dispersal

by foraging primates.
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1. INTRODUCTION
Many animal species, including albatrosses (Diomedea

exulans; Viswanathan et al. 1996), jackals (Canis adustus;

Atkinson et al. 2002) and spider monkeys (Ateles geoffroyi )

(Ramos-Fernández et al. 2004) move in their environment

along apparently erratic trajectories which can be accu-

rately described as Lévy walks. These are random walks

composed of a sum of independent steps (or sojourns),

but with markedly non-Gaussian statistics due to a

diverging mean square of the step length. That is, the

probability distribution P(l ) for the length l of each

sojourn is broadly distributed and self-similar over a wide

range of scales. Normal (Brownian) random walks are

characterized by steps with finite mean square length,

which contribute by roughly the same amount to the

overall displacement, giving rise to Gaussian diffusion. In

contrast, Lévy walks generate anomalous (namely, faster)

diffusion as they are dominated by very large, though

infrequent, steps (Bouchaud & Georges 1990; Shlesinger

et al. 1993; Klafter et al. 1996). Recently, we have

determined the distribution of the sojourns made by

fruit-eating spider monkeys foraging in a semi-evergreen

tropical forest in Yucatan, Mexico (Ramos-Fernández

et al. 2004). The results show power-law behaviour

PðlÞwlKa, with an exponent az2:2, which suggests that

these foraging movements may indeed be described by

Lévy walks (for Lévy processes, 1!a%3). Similar scaling
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laws, with a also close to 2, have been reported for other

animals (Viswanathan et al. 1999), and even, more

recently, for human travels (Brockmann et al. 2006).

Lévy foraging behaviour may be the outcome of an

optimal searching strategy to find scarce, randomly

distributed resources (Viswanathan et al. 1999; Bartu-

meus et al. 2005). A less explored alternative is that this

behaviour may be the outcome of the distribution of

resources themselves. It is well known that many animals

(bees, rodents, primates) do not forage randomly but rely

instead on cognitive maps to navigate their environment

(Collett et al. 1986; Garber 1989; Dyer 1994). These

maps may contain information on the location of different

targets and the geometric relationships between them

(Kamil & Jones 1997). Animals are also able to evaluate

the amount of food present at different locations within

their environment (Shettleworth et al. 1988; Janson 1998)

and in some cases integrate this information with their

spatial knowledge ( Janson 1998). In the field, we have

observed that spider monkeys follow regular routes to

travel between feeding sites within a limited area of

approximately 2 km2 (Ramos-Fernández & Ayala-Orozco

2003; Valero 2004).

Here, we introduce a novel foraging model, in which

the territory is composed of many targets (food patches)

with varying sizes and in which the spatial structure can be

varied; foragers know the location and size of the targets

and adhere to a simple foraging strategy (i.e. maximizing

food intake in a minimum travelled distance). We use the
q 2006 The Royal Society
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model to explore the conditions that lead to Lévy foraging

patterns. Our numerical simulations show that a particular

target size frequency distribution, similar to the tree-size

frequency distribution measured in the field, induces the

most non-Gaussian trajectories. The corresponding step

length distribution is a Lévy law with aZ2, in agreement

with the collected foraging data (Ramos-Fernández et al.

2004). The results are also consistent with the observed

distribution of waiting times, i.e. the time spent feeding in

trees between two moves (Ramos-Fernández et al. 2004).

We discuss the relevance of our findings for understanding

seed dispersal patterns by frugivorous primates.
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Figure 1. (a) Normalized step length distribution Pb for
various resource exponents b, obtained from simulations
with NZ106 targets in a square domain, and averaged over
10 independent environment realizations (in each run, the
number of visited sites is small compared with N ). The
length l0ZNK1=2 is the average distance between two nearby
targets. The curves bZ3 and 4 are translated upward for
clarity. Solid lines are inverse power laws lK2 and lK3. The
filled squares correspond to the monkeys’ foraging patterns
collected in the field. (b) Spatial map of a trajectory
performed by a spider monkey in the field (detail; see
Ramos-Fernández et al. (2004) for details on the field
study).
2. THE BASE MODEL
We model the foraging environment as a two-dimensional

square domain of area, set to unity for convenience,

containing N point-like targets (N[1). In a first

approximation, targets are randomly and independently

distributed in space (Poisson process). The size of the

system can be thought of as the size of the territory of a

group of monkeys. Targets represent the trees with fruits

that monkeys eat; we assign to each target i a random

integer kiR1 representing the target’s size, or fruit

content. Recent work (Enquist & Niklas 2001; Niklas

et al. 2003) has found that in many tropical and temperate

forests, the probability p(k) of observing a tree of size k

(estimated as the diameter at breast height (DBH); see

more discussion on this in §3) falls as an inverse power law.

Thus, we assume that ki is distributed according to a

inverse power-law probability distribution

pðkÞZCkKb; C Z1=
XN

kZ1

kKb; ð2:1Þ

where C is the normalization factor and 1!b!N is a

fixed exponent characterizing the environment, being the

only parameter of themodel. If the exponent b is close to 1,

p(k) decays slowly with k, implying that the range of target

size is very broad, with essentially all sizes present. In

contrast, when b[1, practically all targets have the same

size kiZ1 and the probability of finding larger ones (kiZ
2, 3, .) is negligible. Many types of forests have been

found to be characterized by values in the range 1.5%b%4

(Enquist & Niklas 2001; Niklas et al. 2003).

We now consider a forager located at a starting point

near the centre of the domain. The forager knows the

location and size of all targets in the system. The following

rules of motion are recursively implemented:

(a) the forager located at the target number i will move in

a straight line to a target j such that the quantity lij =kj is

minimal among all available targets jsi in the

system, where lij is the distance separating the two

targets and kj is the size of target j;

(b) the forager does not choose an already visited target,

as it is assumed that visited targets no longer contain

fruits.

According to rule (a), valuable targets (large k) may be

chosen even if they are not the nearest to the monkey’s

position. The quantity l=k roughly represents a cost/gain

ratio for a move. Our assumption that foragers know the

position and size of all targets could be relaxed by

assuming that they only know a random subset of the
Proc. R. Soc. B (2006)
total. Those known targets would still vary in size

according to the same overall distribution (equation

(2.1)), and the results reported here would not change.

We emphasize that, once the random environment is set

and an initial position chosen, the trajectory, although

complicated, is not random but deterministic. In appendix

A, we develop two modifications of our model designed to

test the robustness of the results. Further improvements,

not considered here, could relax rule (b) and allow

revisiting after a period of time that is sufficient for a

patch to replenish.
3. RESULTS OF THE BASE MODEL
We first analyse the average properties of the trajectories

composed of many steps, and their variations with the type

of environment, namely, the resource exponent b. The

numerical results can be summarized from figure 1a.

(i) For 1%b%2, the sojourn length frequency distri-

bution, denoted as PbðlÞ, is very broad and is only

limited by a characteristic length-scale of order of

the system size (LZ1), which is much larger than

the mean separation distance l0 between two

nearby targets (l0wNK1/2).

(ii) For 2%b%4, PbðlÞ is broad but does not signi-

ficantly depend on the size of the system: in the

sub-range 3%b%4, it is very well fitted by a power-

law distribution for large l, PbðlÞwlKa, with a

measured exponent azbK1, while important

deviations from power-law behaviour appear in

the sub-range 2%b!3.
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Figure 2. (a) Fluctuation ratio hl2i=hli2 (mean square length to
square mean length) associated with the step length
distributions PbðlÞ as a function of the resource exponent b.
The vertical lines are guides to the eye. Insets: spatial maps of
typical trajectories for bZ3 (top) and 5 (bottom). (b) Tree-
size frequency distribution in semi-evergreen medium forest
in La Pantera, in the southeastern Yucatan Peninsula,
Mexico. This is the same forest type with the same species
composition as the spider monkey study site. Data conform to
a power law with exponent bz2:6 (G0.2 standard error).
Adjustment was performed using a least-squares regression.
Data consist of the diameter at breast height of a total of 250
trees ranging from 10 to 63.4 cm. See Cairns et al. (2003) for
more details on the study site and procedures. Data were
kindly provided by the Centro de Investigación Cientı́fica de
Yucatán.
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(iii) For bO4, PbðlÞ decays faster than lK3, meaning that

sojourns between nearby targets entirely dominate

the statistics.

These results can be understood qualitatively as

follows. At large values of the resource exponent b, all

targets are practically identical in size and the forager

travels to the nearest unvisited one (Lima et al. 2001),

performing trajectories resembling those already observed

in some herbivores (Gross et al. 1995). In contrast, for

small b, the largest targets available in the system are much

larger than average and also relatively numerous. As the

distance from any point of origin increases, there is a

higher probability of finding increasingly larger targets, so

that sometimes the forager will decide to visit them in spite

of the distance it has to travel. In that lower exponent

range, the length of a long sojourn can be of the order of

the system size, with the resulting trajectories resembling

those of a randomwalker trapped in a finite domain. Lévy-

like trajectories occur at intermediate values of b, for

which large targets are indeed present, but are still scarce

and far apart from each other. In this regime, the

trajectories are not strongly affected by the finite size of

the system except after very long times. In figure 2a, we

show numerical results for the relative step length

fluctuations as a function of b, along with typical

trajectories. The resource size distribution with bcZ3 is

special because it induces the largest relative fluctuations

on the length of the sojourn l. These trajectories contain

the largest number of length-scales, characterized by

P(l )wlKa, with az2 (see figure 1a).

It is worth noting that the special state at bcZ3 most

resembles the trajectories described by spider monkeys in

the field (Ramos-Fernández et al. 2004). Additionally, this

resource exponent value is close to that which character-

izes the real variation in tree size, as measured in the field

in an area close to the study site. The tree-size distribution

at this site can be fitted as a power law with exponent value

2.6G0.2 (figure 2b). These results are based on measure-

ments of the DBH, which is commonly regarded as one of

the most accurate methods for estimating fruit abundance

of tropical tree species (Chapman et al. 1992). It is

observed in some examples that the mass of reproductive

structures is roughly a linear function of DBH

(McDiarmid et al. 1977; Snook et al. 2005), as well as of

tree size (Crawley 1997; Fenner & Thompson 2005).

Our model accounts for another feature that illustrates

the interaction between spider monkeys and their environ-

ment. In the field, once a monkey has stopped at a given

tree, it tends to stay there for a random time-interval, t,

that is also distributed as a power law (Ramos-Fernández

et al. 2004). In spite of the fact that most waiting times are

short (5–10 min), a significant number of them are longer

than 2 h. As reported in figure 3a, the measured waiting

time distribution of spider monkeys can be fitted by the law

jðtÞwtKw with wz2:0 (Ramos-Fernández et al. 2004).

We then assume that the time spent on a tree is

proportional to the amount of food available at that tree,

which is also proportional to the tree size. In figure 3a, we

also show the frequency distribution of the size of the

targets visited by the model forager, noted as P ðnÞ
bZ3ðkÞ, for

the special value bcZ3 of the model. Such distribution is

not straightforward: the walker visits a subset of targets

that have relatively larger sizes compared with the overall
Proc. R. Soc. B (2006)
distribution p(k) of equation (2.1). This is due to the

attractiveness of larger targets in the choice process. We

observe P ðnÞ
bZ3ðkÞwkKg, with gz2:0. This numerical value

is in quantitative agreement with the waiting time

exponent wz2:0 measured in the field, as would be

expected under the assumption that the time spent feeding

on a tree is proportional to its size or its fruit content.

Fruit-eating monkeys swallow the seeds of many tree

species and deposit them away from the parent tree after

an average transit time of 4.4 h in the case of spider

monkeys (Lambert 1998). During this time, a spider

monkey may travel distances of tens to hundreds of

meters. Indeed, in previous work (Ramos-Fernández et al.

2004), we observed that during the early morning period,

when monkeys forage away from their sleeping trees, their

mean displacement grows algebraically with time, as t0.85.

This growth rate is faster than ordinary diffusion, but

slower than straight-line motion. In the model, one can

similarly define the mean displacement of the walker as the

average quantity hjRðt0C tÞKRðt0Þji, where t is the total
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Figure 3. (a) Waiting time distribution. Once a monkey has stopped at a tree, it stays there for a time t before moving to another
site. The measured waiting time distribution of spider monkeys in the field is plotted here as filled squares, and is fitted by
an inverse power law, jðtÞwtKw with wz2:0 (one time unit represents a 5 min interval; see Ramos-Fernández et al. 2004).
Also plotted—as open squares—is the distribution P ðnÞ

bZ3ðkÞ of the size of the targets visited by the walker in the model, at the
particular exponent value bZ3. We observe P ðnÞ

bZ3ðkÞwkKg, with the same value gz2:0. One iteration of the model is equivalent
to 5 min in the field observations of spider monkeys. (b) Mean displacement of the model walker, hjRðt0C tÞKRðt0Þji, as a
function of the duration of the walk t. A walker arriving at a target of size k stays there for a time tZk before moving towards the
next target at a constant speed (l0 per unit time).
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duration of the walk, R is the walker’s position vector

and t0 an arbitrary origin time. A walker arriving at a target

of size k stays there for a time equal to k (see above and

figure 3a) before moving towards the next target at

a constant speed, e.g. l0 per unit time. In figure 3b, we

have plotted the resulting displacement as a function of

time t for various resource exponents b. We observe that

the mean displacement of the forager away from its

starting point after any given time is maximal when the

environment has the target size frequency distribution

exponent bZ3. This property is independent of the

forager’s speed: we have verified that, for any fixed value of

the speed of motion between two targets, the displacement

is always maximal when bZ3. This result still holds if the

distribution (2.1) is truncated at a particular size kmax (if

p(kO100)Z0, for instance).

Qualitatively, this result implies that at low b values

(less than 3) the large quantity of large targets slows down

the forager’s progression through the system. At large b

values (greater than 3), on the other hand, most targets are

small and very large ones are so scarce that they have little

impact on the trajectories. In this case, waiting times are

short, but so are the lengths of the steps. An intermediate

situation (shorter waiting times, long step lengths) is

achieved for bZ3, the value at which the mean

displacement, and therefore dispersal, are maximal.
Proc. R. Soc. B (2006)
4. DISCUSSION

Despite its simplicity, the model shows a rich variety of

behaviour. By varying its main parameter, which describes

the decay of the tree-size frequency distribution, the

trajectories of a forager following a simple optimization

rule can differ widely. The agreement found between the

field exponents (for step length, tree size and waiting time

distributions) and their theoretical values at the special

parameter bcZ3 suggests that the model correctly

captures the interactions between spider monkeys and

their environment. At these values, forager trajectories

contain the largest possible fluctuations regarding the

length of constituent sojourns and thus can be correctly

characterized as Lévy walks.

Viswanathan et al. (1999) suggested that Lévy walks

may be part of an optimal searching strategy to find scarce,

randomly distributed resources. Their argument is based

on the fact that, compared to Brownian foragers (who

perform walks with a constant length of constituent

sojourns), Lévy foragers would reach new, unvisited

areas in shorter times as well as having a smaller

probability of reaching areas already visited. However,

many animal species, from insects to primates, have been

shown to possess a sophisticated knowledge of resource

location (e.g. Garber 1989; Dyer 1994). Our results

suggest that Lévy walks arise as a consequence of food
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intake maximization in a spatially disordered, hetero-

geneous environment where the location of resources is at

least partially known.

A crucial assumption of our model is that spider

monkeys rely on mental maps in their foraging as they

move from one fruiting tree to another. Recent work

(Valero 2004) carried out in the same study site as the one

where the movement patterns were first studied (Ramos-

Fernández et al. 2004) found that spider monkeys can

orient their straight-line movements toward existing

fruiting trees at distances of up to 1500 m. These distances

appear too great to have been the result of detection by

sight alone and instead suggest that spider monkeys use

some kind of mental representation of the location of

current feeding sources (Valero 2004). A variant of our

model (see appendix A) introduces a degree of error of

65% in the foraging rule employed by foragers, effectively

eliminating, in many cases, the best option available. Still,

the statistics of the foraging patterns remain unaffected.

The distribution of resources on which spider monkeys

actually rely on is close to an inverse power law with

exponent bZ3. Similarly, tree-size distribution measure-

ments, reported elsewhere (Enquist & Niklas 2001; Niklas

et al. 2003) in several forest types, have shown that typical

exponent values are in the range 1.5%b%4. Our results

highlight some of the consequences that power-law size

distributions in tree communities can have on the foraging

patterns of animals that utilise them as a resource.

The phenology of trees deserves special attention, as

the diet of foragers largely depends on the timing of

fruiting (Rathcke & Lacey 1985). So far, we have not

included different species in our model, and it is clear that

there are times when more abundant or larger tree species

would provide larger amounts of fruit (Newstrom et al.

1994). This could imply that the total number of feeding

trees, as well as their size frequency distribution (e.g. the

exponent b) at any one time, might not remain constant

across seasons. The model can provide testable predic-

tions of the way in which foraging trajectories would vary.

For instance, the results above still hold if fruiting trees are

modelled as a random subset of the overall set of targets.

Additionally, the spatial structure of feeding trees could

change with time, a feature that can be incorporated into

the model with the help of the Markov point processes

mentioned in appendix A.

Our results may have important consequences for the

ecology of the trees that spider monkeys use, particularly

on the seed dispersal patterns. Long-distance seed

dispersal has been identified as a key determinant of the

spatial and genetic structure, as well as the species

composition, of tree communities ( Janzen 1970; Cain

et al. 2000; Nathan & Muller-Landau 2000; Pacheco &

Simonetti 2000; Chave et al. 2002). Frugivorous primate

species, in particular, are important seed dispersers as they

have been shown to disperse the seeds of twice as many

species as birds (Clark & Poulsen 2001), affecting the

spatial patterns of seed abundance at various spatial scales

( Julliot 1997;Wehncke et al. 2003). These primate species

are known to disperse seeds at modal distances of

200–500 m, although the longest observed dispersion

events can go up to 840 m for capuchin monkeys

(Wehncke et al. 2003) or 1 km for woolly monkeys

(Stevenson 2000). Such a ‘fat tail’ in the probability of

seed dispersion as a function of distance from the source
Proc. R. Soc. B (2006)
has been suggested by Clark et al. (1999) to be a more

appropriate representation of the dispersion probability

function. In our model, we find that the movement

patterns described by foragers could disperse seeds

precisely in this way. By moving in a series of short

sojourns followed by rare but very long ones, seeds would

be deposited frequently near the source but also,

infrequently, at very long distances from it.

The results presented in appendix A, on the other

hand, show that dispersal is also sensitive to the existing

spatial structure of trees at short-to-intermediate length-

scales. Under the same foraging rules and size distribution

of resources, seeds are likely to be spread further in a

community that is spatially random/uniform (with the

Poisson forest as a limiting case) than in a spatially

structured/heterogeneous community (e.g. clumped). In

order to tell whether foragers would be contributing to the

evolution of the tree population toward a particular size or

spatial structure, a description of forest dynamics should

be further coupled to the present model. For instance,

many factors would influence the growth success of a seed

that has arrived at a given site: the distance from parent

tree ( Janzen 1970; Harms et al. 2000), nutrient avail-

ability, competition with other seeds or predation

( Jordano 1992; Nathan & Muller-Landau 2000; Adler &

Muller-Landau 2005). Our model does not specifically

address the issue of species diversity. However, it gives

some insights on a mechanism (among many) which can

have an impact on diversity at intermediate scales in

communities composed of individuals with known size

and spatial distributions.

In summary, we have identified a novel mechanism by

which a realistic, scale-invariant distribution of tree size

generates Lévy-walk foraging movements as an emergent

pattern. These findings have been supported by various

field measurements. Our results should be considered as

an alternative explanation of the prevalence of Lévy walks

in animal behaviour, especially of species with sophisti-

cated knowledge about their environment. On the other

hand, these foraging patterns may have important

consequences for the dynamics of tree communities.

We are indebted to Robert M. May, Annette Ostling, Tim
Coulson, Michael P. Hassell, François Leyvraz, Eliane
Ceccon, Gregory S. Gilbert, Barbara Ayala, Michael F.
Shlesinger and Joseph Klafter for fruitful discussions, and to
the late Ingrid Olmsted from the Centro de Investigación
Cientı́fica de Yucatán for the data on tree size in a tropical
forest in the Yucatan Peninsula. This work was supported by
CONACYT grants 40867-F and G32723-E, SEMARNAT–
CONACYT grant 0536, DGAPA grants IN-111000, IN-
100803 and IN-118306 and the Instituto Politécnico
Nacional.
APPENDIX A. ROBUSTNESS OF THE MODEL
The model above relies on a few basic assumptions. To

further investigate the robustness and the generality of its

predictions, we also present two variants including more

specific hypotheses.

(a) Variant I: tree correlations

Trees in tropical forests are usually not randomly

distributed in space. They tend to be aggregated in

many cases and clumping is particularly strong among

conspecifics (Crawley 1997; Condit et al. 2000). Spatial
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correlations still exist across different species, although

they are much lower (Pélissier 1998). The diet of spider

monkeys is composed of hundreds of different species (van

Roosmalen & Klein 1987; Ramos-Fernández & Ayala-

Orozco 2003). Even in a single month, spider monkeys

may have access to more than 20 different species

(Ramos-Fernández 2001). Even though the random

(Poisson) assumption made above may be not too far

from reality as far as the overall set of available trees is

concerned, it is instructive to further take into account an

a priori existing stand structure to study its impact on

forager trajectories. In this first variant of the model, the

target size distribution in equation (2.1) and the foraging

rules are unchanged, but the targets composing the system

are now correlated in space.

Markov point processes are phenomenological

methods that are widely used in forestry statistics to

generate correlated spatial patterns (Ripley 1977; Stoyan

& Penttinen 2000). A pairwise interaction f(lmn) is

introduced, depending on the distance separating two

trees m and n, for instance, f being related to the

likelihood that two trees are found at a given distance.

Further, the forest is modelled by N points (NZ7.2!104

here) such that the probability density of finding them

at positions {x1, ., xN} is set as proportional to

exp½K
P

m!nfðlmnÞ�, the sum running on all possible pairs

of points. Representative patterns are obtained after many

computer iterations by using a depletion–replacement

algorithm usual in Monte-Carlo calculations (Binder &

Heermann 2002). We choose a standard shape for f(l ):

the pair interaction is supposed to be infinitely repulsive

(hard-core) at short distances, attractive at intermediate

distances, whereas targets do not interact directly at larger

distances. More specifically, f(l )ZN for 0!l!s;

f(l )ZKg for s!l!R and f(l )Z0 for lOR, where

sZ0.5d, RZ3d, with dZ4.47!10K3. The hard-core

repulsion produces a fairly regular pattern at short

length-scales, while the attractive potential (interaction

strength gR0) generates positive correlations further away
Proc. R. Soc. B (2006)
(clumps). Correlations become negligible for sufficiently

large separation distances.

We then consider two cases: In Case (1), any pair

of targets {m, n} interact through a unique potential,

with gZ0.1 as described earlier. In Case (2), a pair of

targets interact with the potential of Case (1) only if the

ratio of their sizes km/kn is not larger than 2 (with the

convention kmRkn); if not, the value gZ0 is set in their

interaction.

In Case (1), the interaction between targets does not

depend on their sizes: the method produces point patterns

with spatial correlations, the sizes of neighbouring targets

remaining uncorrelated, as in the base model. Case (2), on

the other hand, favours configurations where targets of

similar sizes are more likely to be clumped, producing an

effective repulsion between targets of very different sizes.

Inhibition is commonly observed in evergreen tropical

forests between adult and young trees, in part due to

competition for light (Pélissier 1998).

In Case (2), the overall target–target pair correlation

function g(l ), related to Ripley’s K function (Stoyan &

Penttinen 2000), decays slowly towards the value unity

with the separation distance l, and indicates larger clumps

than in Case (1): g(lZs)z1.84 and g(lZ5s)z0.99 for

Case (1), whereas g(lZs)z1.43 and g(lZ5s)z1.14

for Case (2) with a size distribution exponent bZ3.

(A Poisson process gives g(l )Z1 for any l.) The values

above are of the same order of magnitude as the ones

measured in tropical forest stands that include all species

(Pélissier 1998).

(b) Variant II: imperfect foraging efficiency

In order to relax the assumption of perfect knowledge by

the foragers, the second variant of the base model modifies

the foraging rule (a), while the targets remain Poisson-

distributed in space and with independent weights. In this

variant, we assume that the forager is inexact in evaluating

the distance to a given target, as well as its fruit content.

The forager located at target i will evaluate the cost of a

move to target j as l�ij =k
�
j , where l�ij and k�j are subjective
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distances and fruit contents deviating from the real ones:

l�ij Z lijð1CehjÞ and k�j Zkjð1CeljÞ, with e a constant

lower than 1 and {hj, lj} two random numbers uniformly

distributed in the interval [K1,1]. Before each move,

a pair of random numbers {hj, lj} are attributed indepen-

dently of each unvisited target j, making its attractiveness

over or underestimated. The forager moves to the target of

lowest l�ij =k
�
j among the unvisited js. The results presented

here have been obtained with eZ0.30, corresponding to

an error of typical amplitude of 65%.

We now discuss the results given by the two variants of

the model which address its robustness. Figure 4 displays

the frequency distribution of the lengths of the sojourns,

the tree-size distribution exponent being fixed to the value

bZ3. Spatial correlations between targets modify the

shape of P(l ) at short distances. However, the scaling law

P(l )wlK2 at large l found for uncorrelated targets is not

modified with the introduction of spatial correlations

without size affinity (variant I—Case (1)). The average

mean displacement of the forager is also unchanged, as

shown in the inset of figure 4.

Interestingly, deviations from the base behaviour arise

when targets are correlated in size (variant I—Case (2)),

the frequency of long sojourns being noticeably lower.

This feature can be explained by the fact that large targets

(those that can be reached after a long sojourn) tend to be

clumped in this case, which reduces the distance between

them compared to the Poisson situation. When reaching a

clump of large targets, the forager may not need to give

long sojourns for a while. As a consequence, the mean

displacement (and therefore dispersion) is significantly

reduced compared to the Poisson case, as shown in the

inset of figure 4.

When the foraging rule is imperfect and with a typical

error of 65% (variant II), no qualitative differences in the

distributions are found with respect to the perfect,

deterministic rule (figure 4).
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