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Abstract.  We consider a continuous-space and continuous-time diusion 
process under resetting with memory. A particle resets to a position chosen 
from its trajectory in the past according to a memory kernel. Depending on 
the form of the memory kernel, we show analytically how dierent asymptotic 
behaviours of the variance of the particle position emerge at long times. These 
range from standard diusive ( t2σ ∼ ) all the way to anomalous ultraslow 
growth tln ln2σ ∼ .
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1. Introduction

Diusion is a fundamental dynamical process, introduced originally to describe the 
motion of molecules and Brownian motion [1] and subsequently used to model a whole 
range of stochastic phenomena from biology to computer science [2, 3]. The molecu-
lar origin of diusion is the random walk of the constituent particles and one obtains 
the diusion equation as a continuum limit of the random walk. The solution of the 
diusion equation leads to the Gaussian distribution with variance growing linearly in 
time t t2( )σ ∼  which we refer to as diusive growth. In an infinite system the Gaussian 
 distribution keeps broadening in time, whereas in a finite system an equilibrium 
 stationary state is attained at long times.

While diusive processes are abundant in nature, many systems exhibit anoma-

lous behaviour t t2 1( )σ ∼ β  where 11β ≠ . For example, 11β <  corresponds to subdiusion 
whereas 11β >  corresponds to superdiusion [4, 5]. Models such as the continuous 
time random walk (CTRW) provide a microscopic model for subdiusive behaviour 
[6]. In contrast Lévy flights or walks lead to superdiusive behaviour [4, 5]. Another 
anomalous behaviour, outside the regime of these models, is the very slow logarithmic 

growth with time tln2 2( )σ ∼ β  where 02β > . Such logarithmically slow dynamics are 
usually observed in glassy or disordered systems. For example in the Sinai model—a 
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single random walker diusing in a Brownian random potential—the variance of the 
position of the particle grows in time as tln2 4( )σ ∼  [4]. A natural question is whether 
microscopic dynamics can generate such anomalously slow growth of the variance of a 
single particle without the explicit presence of disorder or external potential.

Recent studies have revealed that a variety of subdiusive behaviour, including 
logarithmic growth can be achieved in a single particle model with memory-dependent 
dynamics. In this simple scenario the particle, at a given time, jumps a random distance 
which may depend on the history of the process; these processes are thus typically non-
Markovian in nature. Examples include ‘elephant walk’ [7], ‘cookie random walks’ [8, 
9], ‘reinforced walks’ [10, 11], etc. In the ecological context, a model [12, 13] of animal 
mobility has been proposed which incorporates the tendency for an animal to revisit 
previously visited sites, a possible mechanism that can explain the formation of home 
ranges. A particular case of this model is the one where, in addition to nearest neigh-
bour random walk dynamics, the particle revisits a site with a probability proportional 
to the number of times this site has been visited in the past [14]. This model turns 
out to be exactly solvable [14] and the particle position distribution converges to a 
Gaussian at long times with a variance growing logarithmically as tln2σ ∼ . The model 
was generalised in [15] to relocation to a site visited in the past, selected according to 
a time-weighted distribution with a specific form. This has been further generalised to 
memory kernels that lead to an asymptotic Lévy distribution with index 0 2⩽µ<  for 

the particle position with a length scale growing as tln 1( ) /µ [16]. Another simple model 
with memory that has attracted recent interest is diusion with stochastic resetting 
[17, 18]. In this case the dynamics occurs in continuous space-time and, in addition to 
diusion, relocation occurs to the initial position with a constant rate. In this case at 
long times the particle position distribution converges to a non-Gaussian stationary 
distribution and the variance approaches a constant at late times [18, 19]. Several non-
Markovian variations of this model have been studied recently [20–24].

These studies demonstrate how memory can strongly aect the late time behaviour 
of a diusive process and generate a range of time dependent growth of the variance of 
the particle position. It is then natural to ask whether a simple model can incorporate 
all the dierent behaviours, found in the various contexts mentioned above, within a 
single unified setting. The purpose of this paper is to present and analyse such a gen-
eralized model.

In the present work we consider diusion (in continuous space and time) with a 
resetting process that relocates the diusive particle to a position from its past his-
tory. The model allows a smooth interpolation between diusion with resetting to the 
initial position and diusion with time-weighted relocation to positions visited in the 
past. We demonstrate conditions required for the diusive particle to attain a localised, 
nonequilibrium stationary state. Furthermore, we demonstrate that when the condi-
tions for a stationary state do not hold, a wider variety of long-time scaling behav-
iours than previously encountered are possible: the variance of the distribution may 
grow logarithmically in time, subdiusively as tβ with 1β<  or diusively as t with a 
modified or unmodified diusion constant. In addition we find for a special case, at the 
localised–nonlocalised transition, an ultra-slow tln ln  growth of the variance. We note 
that a similar ultraslow spread of a spatial distribution has been reported from data on 
human mobility [25].

https://doi.org/10.1088/1742-5468/aa58b6
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2. The model

We consider a continuous-space and continuous-time implementation of diusion under 
resetting with memory. We begin by considering spatial dimension d  =  1 but our results 
are easily generalisable to arbitrary d (see section 6). We define the resetting rate to 
be r and upon resetting at time t the diusive particle selects a position x( )τ  from its 
trajectory, where τ is chosen with probability density K t,( )τ . We refer to K t,( )τ  as 
the memory kernel, which can be any non-negative function and has the property that 

K td , 1
t

0
( )∫ τ τ =  for all t. This property guarantees the conservation of total probabil-

ity. Figure 1 illustrates these rules with a diusive trajectory undergoing a first reset-
ting event to a position occupied at a former time.

The Master equation for the process reduces to the Fokker–Planck equation for the 
probability distribution p(x,t)

p x t

t
D

p x t

x
r p x t r K t p x

, ,
, , , d

t2

2 0

( ) ( ) ( ) ( ) ( )∫ τ τ τ
∂

∂
=

∂
∂

− + (1)

starting from the initial condition p x x, 0( ) ( )δ= . The first term on the right hand side 
of (1) represents diusion with diusion constant D ; the second term represents loss of 
probability from x due to resetting; the third term represents gain of probability into 
x by choosing a time τ in the past with probability density K t,( )τ  and relocating to x 
with probability density p x,( )τ . Indeed, by integrating equation (1) over x and using 

K td , 1
t

0
( )∫ τ τ = , it is easy to see that the Master equation conserves the total prob-

ability x p x td , 1( )∫ =  since the integral of the second term is  −r and the integral of 

the third term is  +r. Equation (1) may be derived following a similar approach to that 
used for the discrete time random walk case [15].

Let us first consider two limiting cases of the kernel K t,( )τ :

 (i) Case I: K t,( ) ( )τ δ τ= . In this case, equation (1), upon using p x x, 0( ) ( )δ= , 
reduces to

p x t

t
D

p x t

x
r p x t r x

, ,
, .

2

2

( ) ( ) ( ) ( )δ
∂

∂
=

∂
∂

− + (2)

  This then corresponds to resetting the walker to its initial position x0  =  0 with 
rate r. Hence in this case, the model reduces to the ‘diusion with stochastic reset-
ting’ model studied by Evans and Majumdar [18]. For that model the probability 
distribution reaches a localised, stationary state exponentially decreasing with 

distance from the resetting position p x xexpst 2 0
0( ) [ ]α= − | |α

 with r D0
1 2( / ) /α =  

[18].
 (ii) Case II: K t t, 1( ) /τ = . In this case, the Master equation (1) becomes

p x t

t
D

p x t

x
r p x t

r

t
p x

, ,
, , d .

t2

2 0

( ) ( ) ( ) ( )∫ τ τ
∂

∂
=

∂
∂

− + (3)

https://doi.org/10.1088/1742-5468/aa58b6
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  This is just the continuous-space and continuous-time version of the discrete-
time lattice model studied by Boyer and Solis–Salas [14], where the walker resets 
with rate r to a previously visited site chosen randomly from all past times. This 
is equivalent to saying that a previously visited site is chosen for relocation with 
a probability proportional to the number of visits to that site in the past. In that 
work it was shown that the late time behaviour is Gaussian but with a variance 
growing very slowly (logarithmically) with time [14]. We will show in section 4 
that, as in the corresponding random walk problem, the late time behaviour of 

equation (3) is Gaussian (with zero mean): p x t x t, exp 22 2( ) [ / ( )]σ∼ −  with a vari-
ance growing very slowly (logarithmically) with time [14]: t tln2( )σ ∼ .

Our interest is in establishing what further behaviours are possible under resetting 
with memory. To this end, we choose a family of memory kernels K t,( )τ  which allows 
a smooth interpolation between these two limiting cases:

K t,
d

t

0

( ) ( )

( )∫
τ

φ τ

φ τ τ
=

 (4)

where ( )φ τ  can be any non-negative function suciently well behaved as 0→τ  in order 
for the denominator of (4) to converge i.e. ( )φ τ  does not diverge more strongly than 
τ α−  where 1α< . Thus K t,( )τ  only depends on the present time t through the denomi-
nator in (4). By choosing ( ) ( )φ τ δ τ=  one obtains Case I, where p(x,t) approaches a 
non-Gaussian stationary state at late times. In contrast, by choosing 1( )φ τ =  one 
recovers Case II where the distribution is a Gaussian at late times with variance 

Figure 1. Example of a trajectory starting at the origin and following the rules of 
the model considered in this study. At fixed rate r, the normally diusive particle 
resets to a previous position x( )τ  where the time τ is a random variable drawn from 
a given distribution K t,( )τ .

https://doi.org/10.1088/1742-5468/aa58b6
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growing logarithmically with time t. We would like to understand generally how the 
late time distribution depends on the choice of ( )φ τ .

We note that another class of memory kernel,

K t
t

t
,

d
t

0

( ) ( )

( )∫
τ

ψ τ

ψ τ τ
=

−

− (5)

was considered in the context of random walks with relocation and the special case 

t t1( ) ( )ψ τ τ− = + − β−  (memory decaying as a power law with exponent 0β> ) was 
analysed in detail [15]. Except in the interval 1 2β< < , this choice led to late time 

Gaussian distributions p x t x t, exp 22 2( ) [ / ( )]σ∼ − , but now the temporal growth of the 
variance t2( )σ  depends on the choice of the exponent β. It was found that t t2( )σ ∼  for 

2β>  and t tln2( )σ ∼  for 1β<  [15]. In the intermediate case 1 2β< < , p(x,t) is non-

Gaussian and known only through its moments, and t t2 1( )σ ∼ β− .
We also note that recent works [21–23] have studied non-Markovian resetting pro-

cesses characterised by a non-exponential distribution of intervals between resetting 
times. In these problems the master equations are also non-local in time and steady 
state solutions were considered in these works.

The Fokker–Planck equation (1) is linear in p(x,t), and hence it is natural to con-
sider the Fourier transform of p(x,t)

p k t p x t x, , e d .kxi˜( ) ( )∫=
−∞

∞

 (6)

Taking the Fourier transform of equation (1), with the choice for kernel in (4), yields

p k t

t
r D k p k t r

p k,
,

, d

d
,

t

t
2 0

0

˜( ) ( ) ˜( )
( ) ˜( )

( )

∫

∫

φ τ τ τ

φ τ τ

∂
∂

= − + + (7)

subject to the initial condition, p k, 0 1˜( ) = . In the next two sections we shall consider 
cases where (7) can be solved exactly. Then in section 5 we shall extract the large time 
behaviour of the solution in the general case.

3. Exact solution for the case ( ) [ ]φ τ τ= λ −λexp

Let us first consider the special case when

exp .( ) [ ]φ τ λ λ τ= − (8)
When →λ ∞, ( ) → ( )φ τ δ τ  and we recover Case I. In the opposite limit 0→λ , K t t, 1( ) /τ =  
and we recover Case II. For 0λ>  the system reaches a stationary state as t → ∞, how-
ever for the case 0λ =  there is no stationary state and as we shall see the probability 
distribution broadens logarithmically with time. Thus the limits 0→λ  and t → ∞ do 
not commute and we shall consider the case 0λ =  separately in the next section.

Substituting exp( ) [ ]φ τ λ λ τ= −  in equation (7) gives

https://doi.org/10.1088/1742-5468/aa58b6
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p k t

t
r D k p k t r p k1 e

,
, , e d .t

t
2

0
( ) ˜( ) ( ) ˜( ) ˜( )

⎡
⎣⎢

⎤
⎦⎥ ∫λ τ τ−

∂
∂

+ + =λ λτ− −
 (9)

Dierentiating once more with respect to t reduces (9) to a second order dierential 
equation

p k t

t
r D k

p k t

t

p k t

t
D k p k te 1

, , ,
, 0.t

2

2
2 2( ) ˜( ) ( ) ˜( ) ˜( ) ˜( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥λ−

∂
∂

+ +
∂

∂
+

∂
∂

+ =λ

 

(10)

To solve this equation, we first make a change of variable, from t to y e t= λ− . Then,

˜( ) ( )= = λ−p k t W y, e t (11)

where W( y ) depends implicitly on k. Substituting (11) in equation (10), we get after a 
few steps of straightforward algebra, a second order dierential equation for W( y )

( ) ( ) ( ) ( ) ( )
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥

λ λ λ
− + − + − −

+
+ =y y

W y

y
r D k

r D k
y

W y

y

D k
W y1

d

d
1

1
2

d

d
0.

2

2
2

2 2

 

(12)

As 0 e 1t⩽ ⩽λ− , the second order dierential equation (12) holds in the regime y0 1⩽ ⩽ . 

The initial condition, p k t, 0 1˜( )= =  and the fact that y e 1t →= λ−  as t 0→ , translates 
into one boundary condition for W(y )

( )= =W y 1 1. (13)
To solve a second order equation, we generally need two boundary conditions. However, 
we note that the original equation (9) (before taking the derivative with respect to 
time) is a first order dierential equation. Hence, it turns out that just one initial con-
dition in t (or equivalently one boundary condition at y  =  1, W(1)  =  1) is enough to fix 
the full solution of (12).

Fortunately, equation (12) has the form of a standard hypergeometric dierential 
equation

( ) ( ) [ ( ) ] ( ) ( )− + − + + − =y y
W y

y
c a b y

W y

y
abW y1

d

d
1

d

d
0,

2

2 (14)

once we identify

a c c
D k1

2

42
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥λ

= + + (15)

b c c
D k1

2

42
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥λ

= − + (16)

c
r D k

a b1 .
2

λ
= −

+
= + (17)

The general solution of the hypergeometric dierential equation (14) can be written as 
a linear combination [26]

https://doi.org/10.1088/1742-5468/aa58b6
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W y A F a b c y B y F a c b c c y y, , ; 1, 1, 2 ; 0 1,c1( ) ( ) ( ) ⩽ ⩽= + − + − + −−

 
(18)

where F a b c y, , ;( ) is the standard hypergeometric function and A and B are two arbi-
trary constants, yet to be determined. To fix the two constants A and B, we will use the 
boundary condition W(y  =  1)  =  1 in equation (13). In order to do so, it is convenient to 
use the following identity [26]

( ) ( )
( ) ( )

( ) ( )
( )

[ ( ) ( ) ( ) ( )] ( )∑ ψ ψ ψ+ =
Γ +
Γ Γ

+ − + − + − − −
=

∞

F a b a b y
a b

a b

a b

n
n a n b n y y, , ;

!
2 1 ln 1 1

n

n n n

0
2

 (19)
where a a a a a n1 2 1n( ) ( )( ) ( )= + + … + −  is the Pochhammer symbol and 

z z z( ) ( )/ ( )ψ = Γ Γ′ . As y 1→ , keeping only the leading n  =  0 term gives

F a b a b y
a b

a b
a b y, , ; 1 2 1 ln 1 .( → ) → ( )

( ) ( )
[ ( ) ( ) ( ) ( )]ψ ψ ψ+

Γ +
Γ Γ

− − − − (20)

Using this result in equation (18) gives

W y A
a b

a b
a b y

B
a b

a b
a b y

1 2 1 ln 1

2

1 1
2 1 1 1 ln 1 .

( → ) ( )
( ) ( )

[ ( ) ( ) ( ) ( )]

( )
( ) ( )

[ ( ) ( ) ( ) ( )]

ψ ψ ψ

ψ ψ ψ

=
Γ +
Γ Γ

− − − −

+
Γ − −

Γ − Γ −
− − − − − −

 

(21)

In order to enforce the boundary condition W(y  =  1)  =  1 the coecient of the leading 
diverging term yln 1( )−  in equation (21) must vanish. In addition, the subleading con-
stant term must be equal to unity. This then provides two equations to determine the 
two unknown constants A and B. These two equations read

A
a b

a b
B

a b

a b

2

1 1
0

( )
( ) ( )

( )
( ) ( )

Γ +
Γ Γ

+
Γ − −

Γ − Γ −
= (22)

ψ ψ ψ ψ ψ ψ
Γ +
Γ Γ

− − +
Γ − −

Γ − Γ −
− − − − =A

a b

a b
a b B

a b

a b
a b2 1

2

1 1
2 1 1 1 1.

( )
( ) ( )

[ ( ) ( ) ( )] ( )
( ) ( )

[ ( ) ( ) ( )]

 (23)
Using (22) in (23) gives

A
a b

a b
a b a b1 1 1.

( )
( ) ( )

[ ( ) ( ) ( ) ( )]ψ ψ ψ ψ
Γ +
Γ Γ

− + − − − = (24)

This determines A. The other constant B can be determined using (22). The expressions for 
A and B can be further simplified by using the relation [26], a a a1 cot( ) ( ) ( )ψ ψ π π− − =  
and the two identities: a b a b a bcot cot sin sin sin( ) ( ) ( ( ))/[ ( ) ( )]π π π π π+ = +  and 

a a a1 sin( ) ( ) / ( )π πΓ Γ − =  which eventually lead to

A
a b

a b

1

1 1

( )
( ) ( )

=
Γ − −

Γ − Γ − (25)

B
a b

a b

a b

1

1
.

( )
( ) ( )

= −
− −

Γ +
Γ Γ (26)

https://doi.org/10.1088/1742-5468/aa58b6
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Plugging these expressions into (18) and equating W y p k t,( ) ˜( )=  gives the exact time-
dependent solution at all times t

˜( ) ( )
( ) ( )

( )

( )
( ) ( )

( )( )

=
Γ − −

Γ − Γ −
+

−
− −

Γ +
Γ Γ

− − − −

λ

λ λ

−

− − −

p k t
a b

a b
F a b a b

a b

a b

a b
F b a a b

,
1

1 1
, , ; e

1

1
e 1 , 1 , 2 ; e ,

t

c t t1
 

(27)

where, we recall that a and b are given in equations (15) and (16).
It is evident from this exact solution in equation (27) that for the choice, 

exp( ) [ ]φ τ λ λτ= −  with 0λ> , the system always reaches a stationary state as t → ∞. 
Taking t → ∞ in equation (27), using F a b c y, , ; 0 1( )= =  and c  <  1, one obtains exactly 
the stationary probability distribution (in Fourier space)

p k
a b

a b

1

1 1
,st˜ ( ) ( )

( ) ( )
=

Γ − −
Γ − Γ − (28)

with a, b given in equations (15) and (16). We can rewrite expression (28) as

p k B a b a
a

1 ,
sin

st˜ ( ) ( ) π
π

= − − (29)

where B(x, y) is the usual Beta function [26].
Let us first verify that in the limit →λ ∞ limit, we recover the results of [18]. As 

→λ ∞, we get from equations (15)–(17)

λ
= −

+
c

r Dk
1

2

 (30)

a
r

1→
λ

− (31)

λ
→ −b

Dk
.

2

 (32)

Using x x1( ) → /Γ  as x 0→  in (28), gives

→ =
+

λ ∞ p k
r

r Dk
lim .st 2

˜ ( ) (33)

Inverting the Fourier transform exactly reproduces the stationary solution in real space 
obtained in [18]

p x
r

D

r

D
x

4
exp .st( )

⎡
⎣⎢

⎤
⎦⎥= − | | (34)

For finite λ, one notices that the right hand side of equation (28) (or equivalently equa-
tion (29)) has poles when a b c r D k m1 1 2( )/λ− − = − = + = −  where m 0, 1, 2= …. In 

other words, the poles in the complex k plane occur at k i r m D( )/λ= ± + . Hence, the 

solution in the real space can be written as a sum over exponentials (each coming from a 
pole in the lower half of the complex k-plane for x  >  0 and from the upper half if x  <  0)
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p x A e ,
m

m

r m
D

x
st

0

( ) ∑=
λ

=

∞
− + | |

 (35)

Thus at finite 0λ>  the leading term of pst(x) at large x| | is still given by e r D x/− | |. The 
coecients Am’s can be computed from the residues at the relevant poles and one 
obtains

( )
( )/ /

λ
π λ

π=
−
+

A
D

a

m r m
a

2

1

!
sinm

m m
m1 2 1 2 (36)

where

a m m r
1

2
1 1 4 .m

2 1 2[ (( ) / ) ]/λ= + + − − (37)

4. Exact solution for uniform memory kernel: φ τ = 1( )

In the previous section we considered ( )φ τ  given by (8) for 0λ> . Since the asymptotic 
results only hold for 0λ> , we need to consider the special case 0→λ  (which corre-
sponds to 1( )φ τ = ) separately, as presented below. This case actually corresponds to 
the continuous space-time limit of [14].

We consider 1( )φ τ =  or K t t, 1( ) /τ =  in which case we obtain from (1)

t
p k t

t
r Dk t

p k t

t
Dk p k t

,
1

,
, 0,

2

2
2 2˜( ) ( ( ) ) ˜( ) ˜( )∂

∂
+ + +

∂
∂

+ = (38)

an equation that can be also deduced from the 0→λ  limit of (10).
We now define u  =  Dk2  +  r and v  =  Dk2 in (38). Then

t
p k t

t
ut

p k t

t
vp k t

,
1

,
, 0.

2

2

˜( ) ( ) ˜( ) ˜( )∂
∂

+ +
∂

∂
+ =

Making a further substitution z  =  −ut gives

z
p k z

z
z

p k z

z

v

u
p k z

,
1

,
, 0

2

2

˜( ) ( ) ˜( ) ˜( )∂
∂

+ −
∂

∂
− = (39)

which is Kummer’s equation

z
w z

z
h z

w z

z
gw z 0

2

2

( ) ( ) ( ) ( )∂
∂

+ −
∂

∂
− = (40)

with h  =  1, g
v

u
= . We note that Kummer’s equation (39) is a degenerate case of the 

hypergeometric equation (14) and the Kummer functions are confluent hypergeometric 
functions. For all values of g and z, and h not a non-positive integer, the Kummer func-
tions are given by

∑=
=

∞

M g h z
g z

h n
, ,

!
,

n

n
n

n0

( ) ( )
( ) (41)
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where (g)n is again the Pochhammer symbol. As the other solution to (39) diverges we 

deduce p k t C k M ut, , 1,
v

u( )˜( ) ( )= −  where C(k) is to be fixed. From the initial condition 

x0  =  0 and the fact that in the limit z M g h z0, , , 1→ ( ) →  we find C(k)  =  1.
In principle the exact probability density is obtained by inverting the inverse Fourier 

transform,

⎛
⎝
⎜

⎞
⎠
⎟∫ ∑π

=
+

− +
−∞

∞
−

=

∞

p x t k
Dk

Dk r

Dk r t

n n
,

1

2
d e

! !
ikx

n n

n

0

2

2

2

( ) ( ( ) )
 (42)

but the inversion is dicult to carry out.
However, we can easily compute the variance of the distribution (mean squared 

displacement), exact for all times, from the Fourier transform using the formula

x
p k t

k

,
.

k

2
2

2
0

˜( )
= −

∂
∂ =

 (43)

Now we find

⎡

⎣
⎢
⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥∂

∂ +
= −

=
k

Dk

Dk r

D

r
n

2
1 ! ,

n k

2

2

2

2

0

( ) (44)

so that we obtain from (43)

∑=
−

=

∞ +
x

D

r

rt

n n

2 1

!
.

n

n n
2

1

1( ) ( )
 (45)

The asymptotic, large t form of the second moment can be obtained by noting

x
D

r
E rt rt

2
ln ,2

1 e[ ( ) ( )]γ= + + (46)

where the exponential integral E1(z) is given by

E z x
x

z
z

n n
d

e
ln

1

!z

x

n

n n

1 e
1

( ) ( )
∫ ∑γ= = − − −

−∞ −

=

∞

 (47)

and 0.5772eγ = … is Euler’s constant. Substituting the asymptotic expansion of E1(z)

E z
z

O
z

z
e

1
1

for ,
z

1( ) →⎜ ⎟
⎛
⎝
⎜ ⎛

⎝
⎞
⎠
⎞
⎠
⎟∼ − ∞

−

 (48)

into (46), we obtain

x
D

r
rt

rt
t

2
ln

e
for 1.

rt
2

e( )
⎛
⎝
⎜

⎞
⎠
⎟γ= + + + …

−
� (49)

This result is consistent with that of [15] for the discrete, random walk case.
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5. General memory kernel

We now consider a general memory kernel given by a general function ( )φ τ . It is 
 possible to analyse equation (7) at late times t according to the large τ behaviour 
of ( )φ τ . We find a rather rich variety of asymptotic behaviour of t2( )σ  which we 
 summarize below.

 •	 When ( )φ τ  decays more quickly than 1/τ for large τ i.e. 0( ) →τφ τ  as →τ ∞ there 
is a stationary distribution pst(x).

 •	 When ( )φ τ  decays as, or more slowly than, 1/τ for large τ or increases for large τ, 
i.e. 0( )τφ τ >  as →τ ∞, there is no stationary distribution. Instead there is a late 
time behaviour in which the time-dependent distribution takes a Gaussian form 
with variance t2( )σ .

 	 The time dependence of the variance has dierent classes of behaviour as follows:

 1. for 1( ) /φ τ τ∼ , t tln ln2( )σ ∼ ;

 2. for ( )φ τ τ∼ α with 1α> − , t tln2( )σ ∼ ;

 3. for aexp( ) ( )φ τ τ∼ β  where 0 1β< <  and a is a positive constant, t t2( )σ ∼ β;

 4. for aexp( ) ( )φ τ τ∼  where a is a positive constant, t Dt
a

a r
2 2( )( )σ

+
� ;

 5. for aexp( ) ( )φ τ τ∼ β  where 1β>  and a is a positive constant, t Dt22( )σ � .

We now discuss these dierent cases separately.

5.1. φ τ( ) decaying faster than τ1/  as τ→∞

Consider the case where 1( ) /φ τ τ�  as →τ ∞. In this case, the integral d
t

0
( )∫ φ τ τ appear-

ing in the denominator of the memory term (second term) in equation (7) converges as 
t → ∞ (assuming 0( )φ  is well behaved). Hence, the memory term becomes independent 
of time at large time. Then as as t → ∞, the system approaches a stationary state. This 
stationary solution (in Fourier space) is obtained by setting the rhs of equation (7) to 
zero and solving

r Dk p k r
p k, d

d
.2

st
0

0

( ) ˜ ( )
( ) ˜( )

( )
∫

∫

φ τ τ τ

φ τ τ
+ =

∞

∞ (50)

Of course, determining p kst˜ ( ) explicitly requires knowledge of the full time-  
dependent solution in the right hand side of (50). Nevertheless, it is clear that when 
the  integrals in the right hand side of (50) converge there is always a stationary state 
solution p kst˜ ( ).
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5.2. Power-law family: ( )φ τ τ∼ α as τ→ ∞ with α> −1

Let us assume ( )φ τ τ∼ α as →τ ∞ and that 1α> − . In this case, to analyse equation (7) 
at late times, we make the ansatz

p k t
A

t
, with 0 1.˜( ) γ α∼ < < +γ (51)

Substituting this ansatz in equation (7), one finds that the lhs decays as t 1γ− −  while 
the rhs decays as t γ− . Thus the pre-factor of the term of order t γ−  in the rhs must be 
0, which fixes the exponent γ

( )γ α= +
+
Dk

r Dk
1 ,

2

2 (52)

for any k. The above expression is consistent with the a priori assumption 1γ α< + . 
Hence, as k 0→ ,

p k t At A t A
D

r
k t, exp ln exp

1
ln .2˜( ) [ ( )] ( ) ( )

⎡
⎣⎢

⎤
⎦⎥γ

α
∼ = − ∼ −

+γ−
 (53)

The normalisation condition p k t0, 1˜( )= =  imposes A 1→  as k 0→ . Inverting the 

Fourier transform, one obtains a Gaussian distribution p x t x t, exp 22 2( ) [ / ( )]σ∼ −  where 
the variance grows with time logarithmically

t
D

r
t

2
1 ln .2( ) ( ) ( )σ α≈ + (54)

In particular, for 0α = , one recovers the result of section 4. Note that Gaussian diusion 
with logarithmic variance as above is also observed in certain Markovian processes, for 
example, for Brownian motion when the diusion coecient decays as 1/t at large 
times [27].

5.3. The borderline case when ( ) /φ τ τ∼ 1  as τ→ ∞, i.e. α = −1

In this borderline case, the following ansatz is appropriate

p k t
A

t
,

ln
˜( )

( )
∼ γ (55)

where the exponent 0γ>  is yet to be determined. Substituting this ansatz into the rhs 
of equation (7) and neglecting the lhs (which decays faster), one finds that

Dk

r Dk
.

2

2
γ =

+
 (56)

As above, A must tend to 1 when k 0→ . Hence, for small k,

p k t t
D

r
k t, exp ln ln exp ln ln ,2˜( ) [ ] [ ( )]γ∼ − ∼ − (57)

indicating a Gaussian in real space with variance growing extremely slowly for large 
t as
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t
D

r
t

2
ln ln .2( ) ( )σ ≈ (58)

5.4. Stretched exponential family: aexp( ) [ ]φ τ τ∼ β  as →τ ∞ and with a  >  0 and 0β>

Here we consider a class of functions belonging to the family

φ τ τ∼ >βa aexp where 0( ) [ ] (59)

where the stretching exponent β is positive. In this model recent times (τ close to t) are 
thus sampled much more often than early times tτ� . This form of memory decay is 
controlled with the parameter β, larger values of β corresponding to shorter memory 
ranges. We consider below three subclasses: (i) 0 1β< <  (ii) 1β =  and (iii) 1β> .

5.4.1. Case 0 1β< < . In this case, the integral d
t

0
( )∫ φ τ τ behaves for large t (to lead-

ing order) as

∫ ∫φ τ τ τ
β

∼ ∼τ β−β β

a
td e d

1
e .

t t
a at

0 0

1( ) (60)

Now, we make the ansatz that for large t

∼ − βp k t A ct, exp˜( ) [ ]   (61)

where we assume 0  <  c  <  a (to be justified a posteriori). We next substitute this ansatz 
in equation (7). The integral in the numerator of the second term on the rhs of equa-
tion (7) can be estimated, to leading order in large t, as (see equation (60))

p k A
A

a c
t, d e d e .

t t
a c a c t

0 0

1( ) ˜( )
( )

( ) ( )∫ ∫φ τ τ τ τ
β

∼ ∼
−

τ β− − −β β

 (62)

Substituting these results in equation (7) gives

c t r Dk
ra

a c
e e e .ct ct ct1 2( )β− ≈ − + +

−
β− − − −β β β

 (63)

For 1β< , the lhs decays faster than rhs and equating the rhs to 0 fixes the constant c

c a
Dk

r Dk
a

2

2
=

+
< (64)

which is consistent with the a priori assumption c  <  a. Hence, this gives, for small k,

p k t
aD

r
k t, exp 2˜( )  

⎡
⎣⎢

⎤
⎦⎥∼ − β

 (65)

indicating once again a Gaussian distribution for p(x,t) with variance growing 
subdiusively with time

t
aD

r
t

2
where 0 1.2( )σ β≈ < <β

 (66)
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5.4.2. Case 1β = . We now consider the case, ea( )φ τ ∼ τ as →τ ∞. In this case, the 
correct ansatz for p k t,˜( ) turns out to be

˜( ) ∼ −p k t A, e bt (67)

where we assume b  <  a a priori (to be justified a posteriori). Substituting this ansatz in 
equation (7), we find that now the lhs and the rhs both scale as e bt−  for large t. Equating 
the two sides gives the identity

r Dk b r
a

a b
.2( )+ − =

− (68)

This is a quadratic equation for b which can be solved to give

b r Dk a r Dk a aDk
1

2
4 .2 2 2 2( )⎡

⎣
⎤
⎦= + + ± + + −± (69)

It can easily be shown that b−  <  a and b+   >  a. Therefore, the self-consistent condition 
b  <  a thus forces us to choose b−,

b b r Dk a r Dk a aDk
1

2
4 .2 2 2 2( )⎡

⎣
⎤
⎦= = + + − + + −− (70)

For k 0→ , we have

b
a

r a
Dk .2≈

+ (71)

Hence, for small k and large t,

⎡
⎣⎢

⎤
⎦⎥∼ −

+
p k t

aD

r a
k t, exp .2˜( ) (72)

Once again, A 1→  at small k due to normalisation. Inverting the Fourier transform, one 
again gets a Gaussian distribution for p(x,t) with variance growing diusively for large t

t
a

r a
D t

2
.2( )σ ≈

+ (73)

Diusion is normal in this case, but the eective diusion coecient of the process, aD/
(r  +  a), is smaller than the bare coecient D for any positive resetting rate r.

5.4.3. Case 1β> . Finally, we consider the class of functions where ea( )φ τ ∼ τβ for 
large τ with the exponent 1β> . In this case, the correct ansatz for p k t,˜( ) turns out to 
be an exponential, i.e.

˜( ) ∼ −p k t A, e bt (74)

where the constant b is yet to be determined. Substituting this ansatz in equation (7), 
we find that (as in the case 1β = ), the lhs and rhs both scale as b texp[ ]−  at late times 
and equating them fixes the constant b simply as

=b Dk .2 (75)
Note that b is now completely independent of the resetting rate r. Hence, in this case, 
one recovers pure diusion (as in the r  =  0 case),
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∼ −p k t A, e .Dk t2˜( ) (76)

When inverted, one obtains a Gaussian p(x,t) (the standard purely diusive propagator) 
with variance growing linearly with t (independent of r)

σ ≈t Dt2 .2( ) (77)
Thus, for this class of memory kernel ( )φ τ , resetting is not eective at all, and the 
walker undergoes normal diusion asymptotically at late times.

6. Discussion

In this work we have considered diusion with resetting to a position from the past cho-
sen according to memory kernel (4). We have demonstrated that a remarkable range 
of long time behaviours for the variance of the distribution of the diusive particle are 
made possible through dierent choices of the function ( )φ τ , as summarised in section 5.

We recover previous results for diusion with resetting [18] and the preferential 
relocation model [14] as limiting cases. For functions ( )φ τ  decaying faster than 1/τ, 
the distribution of the position converges towards a non-equilibrium stationary state 
at large times, whereas slower decays produce logarithmic diusion. At the transition 
point between these two regimes, for 1( ) /φ τ τ∼ , we obtain a Gaussian with variance 
growing ultra-slowly as tln ln , an unusual diusive behaviour. When the memory func-
tion φ increases with τ as a stretched exponential with exponent 1β<  (which mimics 
a form of memory decay since recent times are sampled much more frequently than 
early times) non-Markovian eects become weaker but the particle is still subdiusive 
and characterised by a Gaussian distribution with variance tβ. This law is replaced by 
normal diusion for 1⩾β .

Let us comment that although we have considered a one-dimensional process the 
results are easily generalisable to arbitrary spatial dimension. In the case where a sta-
tionary state exists we expect the form of the stationary state to depend on dimension 
as was the case in [28]. However in the case of a time-dependent scaling distribution 
we expect the scaling distribution to be a d dimensional Gaussian distribution with 
width growing in the same way as the one-dimensional case we have presented here. 
The reason being that when we generalise to d dimension the equation (7) obeyed by 
the Fourier transform, it remains the same but with k replaced by k| |, where the Fourier 
transform of p x t,( ) is now

p k t p x t x, , e d .k x di˜( ) ( )∫=
−∞

∞
⋅

 (78)

Therefore the small k expansions we have used in section 5 will also apply in the dimen-
sion d case and we will obtain the same time dependences for the width.

We conclude by mentioning that the recurrence properties of random walks with 
memory and resetting are still poorly understood. Due to the non-Markovian nature 
of these processes, the study of their first passage times is a challenging problem [29].
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