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Grain-boundary motion in layered phases

Denis Boyer and Jorge Vin˜als
School of Computational Science and Information Technology, Florida State University, Tallahassee, Florida 32306-4120

~Received 9 November 2000; published 18 May 2001!

We study the motion of a grain boundary that separates two sets of mutually perpendicular rolls in Rayleigh-
Bénard convection above onset. The problem is treated either analytically from the corresponding amplitude
equations, or numerically by solving the Swift-Hohenberg equation. We find that if the rolls are curved by a
slow transversal modulation, a net translation of the boundary follows. We show analytically that although this
motion is a nonlinear effect, it occurs in a time scale much shorter than that of the linear relaxation of the
curved rolls. The total distance traveled by the boundary scales ase21/2, wheree is the reduced Rayleigh
number. We obtain analytical expressions for the relaxation rate of the modulation and for the time-dependent
traveling velocity of the boundary, and especially their dependence on wave number. The results agree well
with direct numerical solutions of the Swift-Hohenberg equation. We finally discuss the implications of our
results on the coarsening rate of an ensemble of differently oriented domains in which grain-boundary motion
through curved rolls is the dominant coarsening mechanism.

DOI: 10.1103/PhysRevE.63.061704 PACS number~s!: 61.30.Jf, 05.45.2a, 47.20.Bp
ep
b
-

-
cu
ur
n

-
ib
s

re
lo
a

of

x-
a
l
o
d
a
rg
a

a
th

to
ro
s
o-
io

en
ur-
at

ed
or-
he
rse
or-
.
ted
ry
ent

ed
ude
ef-
the
v-

can
a-

n,
ib-
le of
ave
ents

the

ing

her

in
n III
ns-
hod
ell
V.
I. INTRODUCTION

This paper addresses the motion of a grain boundary s
rating two regions of parallel convective rolls, as can
observed in a Rayleigh-Be´nard convection cell of large as
pect ratio. Each semi-infinite region~or grain! is comprised
of roll patterns of same wave numberq0, but the correspond
ing wave vectors are mutually perpendicular. Our main fo
in this paper is the relationship between local roll curvat
and grain-boundary motion. Although the model equatio
used in our analysis are appropriate for Rayleigh-Be´nard
convection near onset@1#, we expect that the qualitative fea
tures of our findings also hold in others systems that exh
layered phases, such as, for example, lamellar phase
weakly segregated block copolymers@2,3#.

We consider a disordered system brought into a laye
phase, e.g., by a temperature quench in the case of a dib
copolymer, or by a change in Rayleigh number in
Rayleigh-Bénard convection cell. Domains comprised
rolls ~in Rayleigh-Bénard convection! or lamellae~in block
copolymers near a symmetric mixture! quickly form that
have a well-defined characteristic wave numberq0 ~in the
case of Rayleigh-Be´nard convection near threshold, for e
ample,q0 lies on the marginal stability boundary against
zig-zag instability@4,5#!. Due to translational and rotationa
invariance, the spontaneous relaxation from the initial dis
dered state leads in practice to a large number of such
mains, and a sufficiently large system remains isotropic m
roscopically. Such a configuration also contains a la
density of defects, such as grain boundaries, disclination,
dislocations.

Defect motion in two-dimensional layered phases h
been studied extensively, especially in connection with
evolution of convective rolls in Rayleigh-Be´nard cells@6,7#.
A primary question is how defect velocities are related
features of the background surrounding them, such as
periodicity. It is well known, for example, that dislocation
climb @8#, or that grain-boundary motion between two d
mains with straight rolls provides a wavelength select
1063-651X/2001/63~6!/061704~9!/$20.00 63 0617
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mechanism@9,10#. On the other hand, less attention has be
paid to the relationship between defect motion and roll c
vature@11#. We study in this paper a particular situation th
appears to be prevalent~even if idealized! during the forma-
tion and evolution of layered structures: curvature induc
motion of a grain boundary separating two semi-infinite
dered domains. We first show that if the rolls of one of t
domains are periodically modulated along their transve
direction, the perturbation decays in time with a rate prop
tional to q4, whereq is the wave number of the modulation
In addition, to our knowledge a novel feature is associa
with this relaxation; the average position of the bounda
does not remain stationary, but undergoes a net displacem
such that the size of the region with straight unperturb
rolls increases. Analytic calculations based on the amplit
equation formalism show that this motion is a nonlinear
fect, and that it occurs in a time scale much shorter than
linear relaxation of the curved rolls. The total distance tra
eled by the boundary scales ase21/2, wheree is the reduced
Rayleigh number. Consequently, the grain boundary
travel large distances, even for very small initial perturb
tions.

The analysis of grain-boundary motion and relaxatio
while interesting in its own right, is also expected to contr
ute to our understanding of the coarsening of an ensemb
grains. Linear analyses of boundary or defect motion h
already been used in the past to predict coarsening expon
@12,13#. The method reproduces known exponents in
case of modelsA and B in the lexicon of Hohenberg and
Halperin @14#, and has also been used to predict coarsen
exponents for O(N) vector models@13# ~see also Refs.
@15,16#!. Coarsening laws for layered phases, on the ot
hand, remain largely unexplained@17,12,5,18–20#.

In Sec. II, we describe the configuration of the gra
boundary studied, as well as the model equations. Sectio
presents a linear stability analysis of long-wavelength tra
verse modulations near the boundary. The numerical met
used to validate our solutions is outlined in Sec. IV, as w
as the motivation for the nonlinear analysis given in Sec.
©2001 The American Physical Society04-1
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DENIS BOYER AND JORGE VIÑALS PHYSICAL REVIEW E 63 061704
Finally, in Sec. VI, we present conclusions, and briefly d
cuss possible implications of our results on coarsening ra

II. GRAIN-BOUNDARY CONFIGURATION
AND GOVERNING EQUATIONS

The base or reference state is a stationary and planar g
boundary separating two semi-infinite domainsA and B of
straight convective rolls. Both sets of rolls have the sa
wavelengthl052p/q0. It is in general expected from pre
vious studies that such grain boundaries are stable ag
low wave number perturbations@21#. We wish to study here
the decay of a perturbation of wave numberq!q0 applied in
the direction transverse to the rolls of one of the doma
referred to as to domainA @see Fig. 1~a!#. In this paper, we
consider for all our analytic calculations the particular ca
in which the two sets of rolls are oriented at right ang
relative to each other in the way depicted in Fig. 1~b!. In this
case, the rolls of domainA are parallel to the grain boundar
itself. We expect that a 90° grain boundary is the bound
of lowest energy, and hence that it is the most common in
extended system that evolves spontaneously. However,
analysis can be generalized to cases such as shown on
1~a!, in which A and B rolls have arbitrary angles with re

FIG. 1. ~a! Grain boundary separating two sets of rollsA andB

of the same periodicity (uqW 0u5uqW 08u5q0). The rolls of domainA are
weakly curved by a transverse modulation of wave numberq!q0.
~b! Particular case studied here, corresponding to a 90° orienta
dx0 is the magnitude of the phase modulation.
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spect to the grain boundary, and we do not anticipate qu
tative changes in our conclusions.

Our focus is on transverse modulations since this is
simplest kind of perturbation that induces roll curvatu
without any average roll compression~compression is asso
ciated with longitudinal perturbations along the roll norma!.
Our study differs from that of Ref.@21# in which a grain
boundary was perturbed with a modulation of wave vec
having components both transverse and longitudinal to
rolls. As was shown in Ref.@21#, the longitudinal componen
of the perturbation dominated the relaxation. We analy
here the relaxation of a pure transverse~or curvature! mode,
and obtain results that are qualitatively different from tho
of Ref. @21#.

Let an order parameterc represent, for example, the ve
tical velocity in the midplane of a convecting fluid layer. Ju
above onset, when the reduced Rayleigh numbere5(R
2Rc)/Rc!1 (Rc is the critical Rayleigh number for insta
bility ! c can be expanded as the superposition of two wa
with slowly varying complex amplitudesA andB @1#

c~x,y,t !5
1

2
@A~x,y,t !eiq0x1B~x,y,t !eiq0y1c.c.#;

Aux52`50, Bux51`50. ~2.1!

The amplitudes satisfy a set of two coupled Ginzbu
Landau equations that can be derived from the equation
c ~for instance the Swift-Hohenberg model@22#! by multi-
scale analysis@9,7#

]A

]t
52

dF

dĀ
,

]B

]t
52

dF

dB̄
, ~2.2!

wheredF/dĀ is the functional derivative with respect to th
complex conjugate ofA, andF is a Lyapunov functional

F5E drWF

5E drWH 2e~ uAu21uBu2!1
g

2
~ uAu41uBu4!1g'uAu2uBu2

1j0
2US ]x2

i

2q0
]y

2DAU2

1j0
2US ]y2

i

2q0
]x

2DBU2J . ~2.3!

The coherence lengthj0 is of the order ofq0
21, g andg' are

interaction coefficients, and the time scale factor has been
to unity. These three parameters depend on the partic
model equation considered for the original fieldc.

The nontrivial stationary solutions$A0 ,B0% of the govern-
ing set of Eqs.~2.2!–~2.3! describe a planar boundary, an
depend only on the coordinatex normal to the boundary
They are defined by

05eA01j0
2]x

2A02gA0
32g'B0

2A0, ~2.4!

05eB02
j0

2

4q0
2
]x

4B02gB0
32g'A0

2B0 . ~2.5!

n.
4-2
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This system of equations was extensively studied in R
@9,10#. It is a planar grain boundary of thickness proportion
to j0 /Ae. Note that the system of equations is not invaria
under permutation ofA0 and B0. The amplitudeA0 of the
rolls parallel to the interface vanishes as exp(xAe/j0) when
x→2`, and saturates to (e/g)1/2tanh(xAe/j0) when x→
1`. The behavior of the amplitude of the rolls perpendicu
to the interface is slightly different:B0(x)2(e/g)1/2

} exp(xAe/j0) when x→2`, and there is a pointx* such
that B0(x* )50. It is customary to define the location of th
grain boundary by the pointx* . To a good approximation
B0(x).0 for x>x* .

We emphasize that a stationary solution only exists w
the wave number of the solution equals the marginal w
numberq0, and that at first order ine, the solutionsA0 and
B0 only depend on the slow spatial variablee1/2x, but not on
the fast scalex. Hence, the location of the boundary and t
phase of the rolls are independent@7#.

III. LINEAR STABILITY ANALYSIS
OF A 90° GRAIN BOUNDARY

We linearize Eqs.~2.2! around$A0 ,B0%, and assume the
following perturbed solutions~note that the form of the per
turbation explicitly assumes that the boundary does not
dergo a net average displacement!:

A~x,y,t !5@A0~x!1ã#ei f̃, ~3.1!

B~x,y,t !5B0~x!1b̃. ~3.2!

The phasef̃ represents a transverse distortion, as shown
Fig. 1~b!, and is of the general form

f̃5f~x!cos~qy!est, f̃!1. ~3.3!

The real fieldsã and b̃ are amplitude corrections and sim
larly read

ã5a~x!cos~qy!est, ~3.4!

b̃5b~x!cos~qy!est. ~3.5!

In the above expansion, we have neglected the imagin
part ofB. Im(B) can written asd(x)sin(qy)est; yet, because
of the fourth orderx derivative in the equation satisfied byB
@the second relation in Eq.~2.2!#, d(x) is of ordere lower
than the real part functionb(x), and hence negligible. Inser
ing Eqs.~3.1!–~3.2! into Eqs.~2.2!, we find

sa5ea1j0
2@]x

2a2~q4/4q0
2!a2~q2/q0!]x~fA0!#

2~3gA0
21g'B0

2!a22g'A0B0b, ~3.6!

sA0f5j0
2@A0

21]x~A0
2]xf!2~q4/4q0

2!A0f1~q2/q0!]xa#,
~3.7!

sb5eb2j0
2q2b2~3gB0

21g'A0
2!b22g'B0A0a.

~3.8!
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We further expand the solutions in power series of
small parameterq2, and define,a5a01q2a21q4a41•••,
f5f01q2f21q4f41•••, b5b01q2b21q4b41•••.
Since the limitq→0 corresponds to a uniform translation
the interface,s5q2s21q4s41•••. We now analyze the
resulting equations order by order inq2.

At order q0, Eq. ~3.7! reduces toA0
2]xf05const. Since

A0(x)22 diverges exponentially at2`, and ]xf must re-
main finite on the whole interval@2`,`#, the only admis-
sible solution is]xf050. Hencef05const is a free param
eter that represents the magnitude of the initial ph
modulation. With the notation of Fig. 1~b!, f0 is simply
related to the magnitude of the roll deformationdx0 through
f05q0dx0 (dx0!l0). At orderq0, Eqs.~3.6! and~3.8! can
be written as

H0S a0

b0
D 50.

If we take thex derivative of Eqs.~2.4! and~2.5! we recover
the above equation, witha0 and b0 replaced by]xA0 and
]xB0. Hence the solutions at this order are

a0~x!5a0]xA0 , b0~x!5a0]xB0 , ~3.9!

wherea0 is a constant to be determined from the solvabil
condition at the next order.

At order q2, the solutionsa2 andb2 satisfy

H0S a2

b2
D 5S ~a0s21f0j0

2/q0!]xA0

a0~s21j0
2!]xB0

D . ~3.10!

The solvability condition at orderq2 requires that the right-
hand side vector be orthogonal to the kernel of the adjoin
H0. SinceH0 is Hermitian, andH0(]xA0 ,]xB0)50, we find,

~a0s21f0j0
2/q0!E

2`

`

~]xA0!2 dx

1a0~s21j0
2!E

2`

`

~]xB0!2dx50. ~3.11!

On the other hand, at orderq2, one can replacesf by s2f0,
anda by a0]xA0 in Eq. ~3.7!. After multiplying Eq.~3.7! by
A0, and integrating overx, one finds

A0
2]xf25

s2f0

j0
2 E

2`

x

A0
2~u! du2

a0

q0
FA0~x!]xA0~x!

2E
2`

x

~]uA0!2 duG1C, ~3.12!

whereC is a constant of integration. However, the conditi
that u]xf2u,` whenx→2`, requiresC50. Furthermore,
in the limit x→1`, A0→(e/g)1/2, hence*xA0

2(u) du}x.
The gradient off2 remains finite only ifs250. Therefore
Eq. ~3.11! with s250 now yields the value of the solvability
constanta0
4-3
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DENIS BOYER AND JORGE VIÑALS PHYSICAL REVIEW E 63 061704
a052dx0S E
2`

`

~]xA0!2dxD S E
2`

`

~]xB0!2dxD 21

,

~3.13!

where the definitionf05q0dx0 has also been used.
To summarize our results up to this point, the perturb

amplitudes at orderq0 are given by

A5@A0~x!1a0cos~qy!est]xA0~x!#ei f̃

.A0~x1a0cos~qy!est!exp@ iq0dx0cos(qy)est#, ~3.14!

B.B0~x1a0cos~qy!est!, ~3.15!

where we have used Eqs.~3.1!–~3.2! and ~3.9!. Equations
~3.14! and~3.15! show that the amplitude moduliuAu anduBu
of the weakly modulated rolls at this order equal the u
modulated profiles with a simple change in the coordin
origin. By analogy with the planar case@9,10#, we define the
location of the modulated boundary by the set of poi
$xg ,y% such thatB(xg ,y)50. Equation~3.15! indicates that
the location of the boundary is given by the curve

xg~y!5x* 2a0cos~qy!est,

with B0(x* )50. It is a local translation relative to the plan
boundary by2a0cos(qy)est along thex axis. Note, on the
other hand, that the lines of constant phase ofA are given by
x5const2dx0cos(qy)est instead, so that2dx0cos(qy)est

represents the local deformation of the straight rolls.
shown by Eq.~3.13!, boundary and roll deformations are n
independent; the lengthsa0 anddx0 are related to each othe
through the nonuniform profilesA0 and B0. A quite nonin-
tuitive result is the opposite directions of the related trans
tions, evidenced by the minus sign in Eq.~3.13!. Consider
for instance a point where the lines of a constant phaseA
are displaced towards the regionB; the actual position of the
boundary, however, is displaced towards regionA. This ef-
fect can be seen more easily in Fig. 2~see also Sec. IV!.

At order q4 integration of Eq.~3.7! leads to

A0
2]xf45E

2`

x S s4

j0
2

1
1

4q0
2D f0A0

2~u! du

2
1

q0
E

2`

x

A0~u!]ua2 du,

where the second-order results250 has been used. The se
ond integral in the right-hand side is finite, but the first o
diverges asx whenx→1`, except ifs4 /j0

211/4q0
250. We

therefore conclude that, at leading order inq,

s52
j0

2

4q0
2

q4. ~3.16!

This is one of the central results of this section: the mo
lated boundary is expected to relax exponentially with a r
proportional toq4.
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The linear analysis shows that the interface is alwa
stable with respect to long-wavelength perturbations. Thi
in agreement with the case studied in Ref.@21#, although the
authors concluded that the decay rates}q2 instead. Such a
behavior was found because the wave vector of the mod
tion considered in their work had a nonzero component
the longitudinal direction. We note that the decay rate of E
~3.16! is in fact identical to that of a single wave (A rolls
only in Fig. 1! @7#. According to Eq.~3.16!, the relaxation of
the boundary is completely determined by the relaxation
the A rolls far from it.

Unfortunately, in spite of the fact that the main predi
tions of the perturbation analysis agree well with a numeri
solution of the Swift-Hohenberg equation, the linear analy
just discussed is not uniformly valid~we will further elabo-
rate on this point in Sec. V!. Consider Eq.~3.12! for f2 in
the limit x→1`. The leading behavior is given by

f2.
a0

q0A0
2~`!

S E
2`

`

~]uA0!2duD x. ~3.17!

Therefore the phase perturbationf.f01q2f2, which is as-
sumed to be small in the derivation of Eq.~3.7!, diverges as
x for largex through the second-order correctionf2 at any
finite time t. As a consequence, from Eq.~3.3!, the y com-
ponent of the wave vector of the roll pattern is

]yf̃52q sin~qy!est~f01q2f2!,

and also diverges withx. This implies that, far enough from
the boundary, they component of the wave vector becom
larger than thex component, given byq01]xf̃.q0. This
solution represents an increasingly zig-zagging wave, wh
is of course not physical. As is apparent from Eq.~3.17!, the
singularity arises because of the presence of a nonunif

FIG. 2. Configuration with curved interfaces obtained by n
merical solution of the Swift-Hohenberg equation in a square g
with 2563256 nodes, withe50.04, q5q0/16, anddx05l058.
Because of the curved rolls, the grain boundaries are moving
wards each other.
4-4
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GRAIN-BOUNDARY MOTION IN LAYERED PHASES PHYSICAL REVIEW E63 061704
amplitude of the pattern near the boundary]xA0Þ0. In fact,
we think it is possible that the linearized system with no
constant coefficients~3.6!–~3.8! does not have bounde
eigenfunctions.

It appears that the failure of the linear analysis is rela
to an additional important feature of boundary motion, n
taken into account in the previous calculation: a net tran
tion of the average position of the boundary towards theA
region, as shown by the numerical calculations presente
the following section. After we present the numerical e
dence, we argue in Sec. V that this feature cannot be
tained at the linear level in the amplitude of the perturbati
and that it is in fact a singular contribution in the limite
→0.

IV. NUMERICAL SOLUTION
OF THE SWIFT-HOHENBERG EQUATION

In order to test the predictions of the previous section, a
to obtain further insight into grain-boundary motion, we ha
numerically solved the Swift-Hohenberg model of Rayleig
Bénard convection@22#

]c

]t
5ec2

j0
2

4q0
2 ~q0

21“

2!2c2c3. ~4.1!

We consider the evolution from an initial condition that co
responds to the geometry shown in Fig. 1~b!. We note that
solving Eq.~4.1! in the case of curved rolls is much simpl
than solving the two-dimensional Ginzburg-Landau eq
tions ~2.2!.

Equation~4.1! is solved numerically with a pseudospe
tral method. Further details on the algorithm and the ti
integration scheme can be found in Ref.@23#. The stability of
the algorithm allows relatively large values of the time ste
which is fixed to 0.4 in the dimensionless time units of E
~4.1!. Equation~4.1! is then discretized on a square grid
size 5123512, and occasionally 2563256. Spatial discreti-
zation is such that there are eight grid nodes per wavele
l0. In all the following numerical examples, we have chos
j052q0

21, which is close to the value that corresponds to
stress free boundary conditions in the original system of fl
mechanical equations, from which the Swift-Hohenbe
equation is derived as an approximation. We use perio
boundary conditions in both directions, and hence the ini
condition comprises two symmetric, well-separated gr
boundaries located atx51/4 andx53/4, in units of the sys-
tem size. We have verified that the numerical solutions of
Swift-Hohenberg equation for the stationary straight gr
boundary coincides with those obtained by directly solv
the amplitude equations~2.4!–~2.5!, with the appropriate pa
rameters that follow from the multiscale analysis of t
Swift-Hohenberg equation (g53/4 and g'53/2). The
modulated initial condition is implemented with the help
the one-dimensional solution, as

c~x,y,t50!5A0~x!cos@q0x1q0dx0cos~qy!#

1B0~x!cos@q0y#. ~4.2!
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A typical configuration is shown in Fig. 2, taken at th
intermediate timet51600, with e50.04, q5q0/16, and a
system size of 2563256. Note that this solution is consiste
with our earlier assumption of neglecting Im(B) in the per-
turbation equations@Eq. ~3.2!#, since theB rolls remain
straight near the grain boundary despite the transverse m
lation of the A rolls. The opposition in phase of the ro
profile and of the boundary location, given in Eq.~3.13!, is
also well-reproduced numerically Yet, this effect is easy
observe only for relatively large values ofdx0, as shown on
Fig. 2.

Figure 3 shows our numerical results for the inverse
cay rate2s21 as a function ofq. These results are obtaine
for a system of size 5123512, so that the number of roll
that separate the two grain boundaries is twice larger tha
Fig. 2. We checked that the planar grain boundaries did
appreciably interact, and therefore remained stationary.
value of s was determined from an exponential fit to th
decay of the phase of a given roll, for a small initialdx0. We
first compute numericallys in the absence of any grai
boundary, i.e., with the single waveA. We find very good
agreement with Eq.~3.16!, given that there are no adjustab
parameters in the theoretical curve. When grain bounda
are present, the numerical results~square symbols! are some-
what higher, but still compare well with Eq.~3.16!. They
remain closer to the laws}2q4, rather than to, say,s}
2q5, and certainly than tos}2q2. The small discrepancy
observed is probably due to the finite size of the syste
although the two grain boundaries are separated by rou
30 rolls, they slightly interact during relaxation. As a chec
we have computeds(q53q0/32) again in a system of siz
102431024, with the same value ofl0. The difference be-
tween that numerical result and the theoretical curve is
duced by a factor of 2.5 compared with a system size
5123512.

FIG. 3. Decay time2s21 ~in dimensionless time units! of the
grain-boundary modulation as a function of wave numberq. The
square symbols are the numerical results while the solid line co
sponds to Eq.~3.16!. The cross symbols are the numerical resu
obtained from the modulation of a single wave, without any gr
boundary.
4-5
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The numerical solution reveals an additional feature t
was not included in our linear analysis; while the bound
modulation is relaxing, there is net motion of the gra
boundary towards theA rolls region. This motion is a pure
amplitude mode, as the lines of constant roll phase rem
stationary on average. Therefore, after a long time,
modulated rolls have completely relaxed but the size of
region of A rolls has decreased, and the grain boundary
located at a distanced` away from its initial average loca
tion. The distanced` exceeds the initial deformationdx0,
and it can be even significantly larger than the roll wav
length l0. In the configuration shown in Fig. 2~system of
size 2563256), the magnitude of the perturbation was del
erately chosen relatively large (dx05l0), so that, at late
times, the modulated region completely disappears by a
hilation of the two grain boundaries.

We now report our results ford` in a bigger system of
size 5123512, and withq53q0/32. Figure 4 shows our re
sults for the total traveled distanced` as a function ofdx0.
The complete relaxation of the perturbation requires tim
around 105, and the location of the~nearly! flat boundary is
again defined to be the pointx* at whichB(x* )50 @9#. This
point if obtained from the fieldc through the relationB(x)
5@c(x,y5l0)2c(x,y53l0/2)#/2 for a flat interface@see
Eq. ~2.1!#. We observe in the figure that the total travel
distance increases nonlinearly withdx0. The following sec-
tion gives an interpretation of this feature, and further d
cussion of the results.

V. DEFECT MOTION THROUGH ENERGY RELAXATION

We study in this section a more general form for the p
turbed amplitudes than those given in Eqs.~3.14!–~3.15!.
We assume a perturbed solution of the form

FIG. 4. Total distance traveled by the interfaced` as a function
of the magnitude of the initial modulationdx0, for e50.04 ande
50.1 (q53q0/32, the grid size is 5123512 andl058). The sym-
bols are the numerical results, and the solid line corresponds to
~5.8!.
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A5A0@x2kdx~ t !cos~qy!2d~ t !#exp@ iq0dx~ t !cos~qy!#,
~5.1!

B5B0@x2kdx~ t !cos~qy!2d~ t !#, ~5.2!

where

dx~ t !5dx0est, s52
j0

2

4q0
2

q4, and

k5E ~]xA0!2dxY E ~]xB0!2dx. ~5.3!

The quantityd(t) represents the net distance traveled by
grain boundary at timet. A linear stability analysis based o
Eqs.~5.1!–~5.2! along the lines of Sec. III leads tod(t)50
for an interface initially located at the origin. As we sho
below, the net displacement depends nonlinearly on the
tial modulation, and hence cannot be obtained from a line
ized set of equations. We use here a different method that
been widely used to study defect motion in potential syste
@1#. It is based on the identity

dF

dt
522E drWS U]A

]t U
2

1U]B

]t U
2D , ~5.4!

directly derived from Eqs.~2.2!–~2.3!.
The left-hand side of Eq.~5.4! can be calculated approxi

mately by substituting Eqs.~5.1! and~5.2! into Eq.~2.3!, and
taking the time derivative. After some algebra, we find

dF

dt
5E drWH 2ḋ]xF01

j0
2q4

4
cos2~qy!

3@2dxd ẋA0
2~u!2dx2ḋ]xA0

2~u!#J , ~5.5!

up to orderdx2. F0 is the free-energy density of a plana
boundary, andu5x2kdx(t)cos(qy)2d(t). The term involv-
ing F0 vanishes sinceF0(x51`)5F0(x52`). In Eq.
~5.5!, we have neglected the contributions from the ter
]yA0(u) and ]yB0(u); they are of ordere1/2 smaller than
A0(u)]ye

i f̃ because of the slow variations of the amplitud
compared with the roll periodicity. In addition, we hav
used the approximation] tA0(u).2ḋ]xA0(u) by neglecting
2kd ẋ(t)cos(qy)]xA0(u); the contributions proportional to
this last term vanish with* cos(qy)dy at leading order ine
when spatial integration overy is performed in Eq.~5.5!. For
the same reason, all terms proportional todx in Eq. ~5.5! do
not contribute.

By using similar considerations, the right-hand side of E
~5.4! at leading order ine anddx(t) reads

q.
4-6
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22E drW$ḋ2$@]xA0~u!#21@]xB0~u!#2%

1~d ẋ!2q0
2 cos2~qy!A0

2~u!%. ~5.6!

By combining Eqs.~5.5! and~5.6!, and by using Eq.~5.3!
for dx(t), we find that all terms that do not involveḋ cancel,
and obtain

ḋ~ t !5S j0
2

4q0
2

q4D e

4g

@q0dx~ t !#2

E
2`

`

dx@~]xA0!21~]xB0!2#

,

~5.7!

where we have used the identitiesA0
2(1`)5e/g and

*0
Ldy cos2(qy)/L51/2, whereL is the length of the grain

boundary. Equation~5.7! shows thatḋ.0; i.e., in the con-
figuration shown in Fig. 1 the motion of the boundary is su
that the modulated rolls are progressively replaced by
advancing perpendicular straight rolls. Furthermore, a
contrary to the usual motion of kinks, the velocity is n
constant but decreases asdx(t)2. Since at long timesdx(t)
.0, the boundary eventually stops. In Appendix A, we sh
that Eq.~5.7! generalizes the equation describing the unifo
motion of a grain boundary through a time-independ
modulated background. The method presented in Appen
A also provides a simpler alternative way to extend the re
~5.7! to the case in which the transversally modulated ro
are not parallel to the grain boundary.

Equations~5.3! and~5.7! can now be used to calculate th
total distance traveled by the grain boundaryd` , allowing
further comparison with the numerical results of Sec. IV. W
find

d`5
e

8g

~q0dx0!2

E
2`

`

dx@~]xA0!21~]xB0!2#

. ~5.8!

Note that, in contrast toḋ, d` does not depend on the wav
number of the modulationq, for small q. Since A0(x)
5Ae/g f(Aex/j0) at leading order ine, and if a similar form
is assumed forB0, it is easy to see from Eqs.~5.7! and~5.8!
that ḋ andd` are proportional toe21/2 @24#. Hence the dis-
placement of the boundary diverges close to onset, regard
of the initial amplitude of the modulation. Equations~5.7!
and ~5.8! also show that the magnitude of this displacem
depends quadratically on the perturbationdx0, explaining
why it cannot be derived from the linear analysis presen
in Sec. III. Finally, we note that the velocityḋ(t) is propor-
tional to e21/2dx(t)2q4, at leading order ine, dx(t), andq.

The mechanism for net grain boundary motion can
understood as the follows: Relaxation requires energy
crease while straight rolls have the same energy regardle
their orientation~both base states A and B, are in princip
degenerate!. However, when the boundary is modulated
the way depicted in Fig. 2, only the rolls parallel to th
boundary are distorted at lowest order ine, whereas the per
06170
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pendicular rolls remain straight. Therefore, the energy of
modulated configuration can decrease by both linear re
ation of the initially curved rolls and by nonlinear net di
placement of the grain boundary, the effect of which is
replace curved rolls by straight ones. Close to onset, re
ation through the nonlinear mode is dominant, and eve
small perturbationdx0 can induce a large boundary displac
mentd`@dx0. Of course, for fixede, d` goes to zero with
dx0. It is precisely the observation that the amplitude of th
nonlinear mode diverges ate→0 that suggests that the lin
earized problem discussed in Sec. III may not have a
bounded eigenfunctions.

At fixed e, it is instructive to obtain the magnitude ofdx0
above which the velocity of the boundary is much larger th
the phase velocity of the rolls; i.e.,

ḋ~ t50!@ud ẋ~ t50!u. ~5.9!

In this limit, boundary motion occurs at approximately co
stant roll phase. Given thatd ẋ(0)5sdx0, and by using Eq.
~5.7! for ḋ(0), Eq. ~5.9! leads to

dx0@S l0

2p D 2 4g

e E
2`

`

dx@~]xA0!21~]xB0!2#.

With the numerical solutions obtained forA0(x) andB0(x)
from the coupled Ginzburg-Landau equations, we find t
dx0@5.0 1022l0 for e50.04, anddx0@7.4 1022l0 for e
50.1. Therefore we conclude that nonlinear motion dom
nates linear relaxation even for relatively small initial pertu
bations. We recall that our perturbative calculation is valid
dx0,l0.

We have verified thatd` does not appreciably depend o
the wavelength of the modulation, as shown in Eq.~5.8!.
Figure 4 shows our analytical and numerical results of
total distance traveled by the grain boundary as a function
dx0. The theoretical curve has no adjustable parameters,
is based on the numerical resolution of Eqs.~2.4!–~2.5! with
the valuesg53/4 andg'53/2 that correspond to the Swift
Hohenberg equation. We performed two series of runs,
e50.04 ande50.1. At e50.04, Eq.~5.8! is in quantitative
agreement with the numerical data for small modulatio
The discrepancy observed at large modulation indicates
breakdown of the linear relaxation ofdx(t); perturbations
start decaying at a faster rate than Eq.~3.16!, so that Eq.
~5.8! is overestimating the traveled distance at short tim
At e50.1, we expect a smaller displacementd` , for fixed
dx0, than in the casee50.04. This is what we observe. How
ever, the numerical results show thatd` does not vary con-
tinuously with dx0, but rather it increases discontinuousl
As it is apparent in Fig. 4~crosses!, d` takes now only mul-
tiple values of half the wavelength of the pattern. A low
threshold is needed to displace the grain boundary, which
estimate to bedxc.l0/7. These observations cannot be e
plained by the present analysis, and reveal nonadiabatic
fects that go beyond the amplitude equation formalism. S
effects have been previously observed in other studies
fronts propagation@1,25#. The underlying cause is that wit
4-7



in
pli

in
o
ti
in

di
rs
e

v
v
na
re
ar

n
d
d
rm

t

e
fu
o

tio
ax
h

-
e

re

he
i

al
ib
e
a

ial

ce
a
re
is-
o
o
ra
el
e
a

ent
in

tute,
y,

s
-

the

e,

he
er
he
he

the
t

of

.

e-
is
the
at

oll
nal
at it

. In

nly
nt

ing
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increasinge the variations ofA in the slow variablee1/2x do
not decouple with the fast variable describing the underly
periodic structure. In this case, the solution for the am
tudes depends on the position of the rolls.

VI. CONCLUSIONS

We have found an additional mechanism for gra
boundary motion in layered phases, which is driven by r
curvature in the vicinity of the boundary. We have analy
cally studied the motion of an isolated grain boundary with
the amplitude equations formalism, and numerically by
rect solution of the Swift-Hohenberg equation. Transve
perturbations of the rolls near the grain boundary decay
ponentially in time with a rate proportional toq4, whereq is
the wave number of the perturbation. In addition, we ha
found a nonlinear mode involving net translation of the a
erage location of the boundary. On the basis of functio
minimization, this mode is preferred to the simple linear
laxation near onset. The net velocity of the grain bound
has been computed, and is given in Eq.~5.7!. This result can
be interpreted as giving the velocity as the ratio betwee
time-dependent external force imposed by curved rolls, an
drag term or mobility that depends on the local amplitu
profile of the grain boundary. Close to onset, the drag te
goes to zero ase3/2, and makes the interface velocity~and the
total traveled distance! diverge ase21/2. We have argued tha
this motion cannot be explained by linear analysis.

The precise relationship between these results and th
lated problem of coarsening of layered phases requires
ther study. However, we can offer a few comments based
the results presented in this paper. If the temporal evolu
of a disordered configuration were controlled by the rel
ation of an ensemble of grain boundaries moving throug
background of curved rolls, then Eq.~5.7! could be used to
infer the coarsening rate. Ifv is a characteristic grain
boundary speed, andk is the characteristic curvature of th
rolls ahead of the boundary, then Eq.~5.7! leads tov}k2. If
self-similarity holds during the coarsening of the structu
this last relationship would imply a coarsening lawl (t)
;t1/3, where l (t) is any measure of the linear scale of t
structure. This result for the coarsening law disagrees w
previous literature on the subject@17,12,5,18–20#.

Although the configuration studied in this paper is ide
ized, it is conceivable that it describes one among poss
many competing mechanisms during coarsening. A num
cal solution of the two-dimensional Swift-Hohenberg equ
tion close to onset shows that curved rolls are essent
immobile due to topological constraints~mostly disclina-
tions!, whereas grain boundaries move over large distan
It is likely that the motion of the latter is in part due to
background of curved rolls with a characteristic curvatu
which is set by the spatial distribution of disclinations. D
clinations, in turn, can be eliminated by grain-boundary m
tion. If the characteristic length scales associated with b
defects~grain boundary perimeter and disclination sepa
tion! are proportional to each other, as required by s
similarity, thent1/3 would be a possible contribution to th
coarsening law. Whether this mechanism would domin
06170
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the asymptotic behavior asl→` is being currently investi-
gated.
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APPENDIX A: GRAIN-BOUNDARY MOTION
WITHOUT PHASE RELAXATION

Equation~5.7! can be derived in a different way, which i
similar to the calculation of the velocity of a climbing dislo
cation@1#. Suppose that a set of rolls is modulated along
transverse direction, with wave vectorqW , and is rigidly held
with a time-independent modulation amplitudedxf . Hence,
the system is allowed to evolve by rigid translation alon
and no roll ~or boundary! relaxation is allowed. We then
introduce the perturbations~5.1!–~5.2! with dx(t)5dxf .
Equation~5.4! can be simply recast as

ḋE dy$F~x52`,y!2F~x51`,y!%

522ḋ2E drW@ u]xAu21u]xBu2#, ~A1!

whereḋ is the constant velocity of the grain boundary. T
left-hand side of Eq.~A1! represents the free energy lost p
unit time by the system as the grain boundary moves. T
straight rolls, of lower free energy, replace curved ones. T
differencedF is computed that corresponds to increasing
area of the domain occupied byB straight rolls by an amoun
ḋdt, and by decreasing by the same amount the area
the domain occupied byA curved rolls. The free-energy
gain is easily computed by using Eq.~2.3! with
B(2`)5(e/g)1/2, A(2`)50, and B(1`)50, A(1`)
5(e/g)1/2exp@iq0dxfcos(qy)#. In the right-hand side of Eq
~A1!, u]xA(B)u is replaced byu]xA0(B0)u at leading order.
Equation ~A1! yields Eq. ~5.7! straightforwardly, where
dx(t) must be replaced bydxf . By using Eq.~A1!, the nu-
merator of Eq.~5.7! can now be interpreted as a~time-
dependent! external force acting on the line defect, the d
nominator being the drag term or friction coefficient. It
interesting to note that the more rigorous analysis of
combined effects of roll relaxation and front advance th
leads to Eq.~5.7! gives the same expression as when r
relaxation is omitted. Beside being simpler, an additio
advantage of the energy argument presented here is th
can be applied to a configuration where the set of rollsA and
B are not parallel nor perpendicular to the grain boundary
this case, the external force*dy$F(x52`,y)2F(x5
1`,y)% remains unchanged, by rotational invariance. O
the drag term would probably differ, because of the differe
grain-boundary profile. However, we expect that the scal
behaviorḋ}dx2q4 still holds.
4-8
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@12# K. Elder, J. Viñals, and M. Grant, Phys. Rev. A46, 7618

~1992!.
@13# A. Bray, Phys. Rev. E58, 1508~1998!.
@14# P. Hohenberg and B. Halperin, Rev. Mod. Phys.49, 435

~1977!.
@15# A. Bray, in Formation and Interaction of Topological Defect,

edited by A.-C. Davis and R. Brandenberger~Plenum,
06170
New York, 1995!.
@16# G. Mazenko, inFormation and Interaction of Topological De

fects, edited by A.-C. Davis and R. Brandenberger~Plenum,
New York, 1995!.
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