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Grain-boundary motion in layered phases
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We study the motion of a grain boundary that separates two sets of mutually perpendicular rolls in Rayleigh-
Benard convection above onset. The problem is treated either analytically from the corresponding amplitude
equations, or numerically by solving the Swift-Hohenberg equation. We find that if the rolls are curved by a
slow transversal modulation, a net translation of the boundary follows. We show analytically that although this
motion is a nonlinear effect, it occurs in a time scale much shorter than that of the linear relaxation of the
curved rolls. The total distance traveled by the boundary scales #§ wheree is the reduced Rayleigh
number. We obtain analytical expressions for the relaxation rate of the modulation and for the time-dependent
traveling velocity of the boundary, and especially their dependence on wave number. The results agree well
with direct numerical solutions of the Swift-Hohenberg equation. We finally discuss the implications of our
results on the coarsening rate of an ensemble of differently oriented domains in which grain-boundary motion
through curved rolls is the dominant coarsening mechanism.
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I. INTRODUCTION mechanisnj9,10]. On the other hand, less attention has been
paid to the relationship between defect motion and roll cur-
This paper addresses the motion of a grain boundary sepaature[11]. We study in this paper a particular situation that
rating two regions of parallel convective rolls, as can beappears to be prevaleéven if idealized during the forma-
observed in a Rayleigh-Beard convection cell of large as- tion and evolution of layered structures: curvature induced
pect ratio. Each semi-infinite regiqior grain is comprised motion of a grain boundary separating two semi-infinite or-
of roll patterns of same wave numhbagy, but the correspond- dered domains. We first show that if the rolls of one of the
ing wave vectors are mutually perpendicular. Our main focuglomains are periodically modulated along their transverse
in this paper is the relationship between local roll curvaturedirection, the perturbation decays in time with a rate propor-
and grain-boundary motion. Although the model equationgional toq*, whereq is the wave number of the modulation.
used in our analysis are appropriate for Rayleigmdéd In addition, to our knowledge a novel feature is associated
convection near onsgl], we expect that the qualitative fea- with this relaxation; the average position of the boundary
tures of our findings also hold in others systems that exhibitloes not remain stationary, but undergoes a net displacement
layered phases, such as, for example, lamellar phases such that the size of the region with straight unperturbed
weakly segregated block copolymegs3]. rolls increases. Analytic calculations based on the amplitude
We consider a disordered system brought into a layereéquation formalism show that this motion is a nonlinear ef-
phase, e.g., by a temperature quench in the case of a diblo¢&ct, and that it occurs in a time scale much shorter than the
copolymer, or by a change in Rayleigh number in alinear relaxation of the curved rolls. The total distance trav-
Rayleigh-Bmard convection cell. Domains comprised of eled by the boundary scales as*? wheree is the reduced
rolls (in Rayleigh-B@ard convectionor lamellae(in block  Rayleigh number. Consequently, the grain boundary can
copolymers near a symmetric mixtorguickly form that travel large distances, even for very small initial perturba-
have a well-defined characteristic wave numbgr(in the  tions.
case of Rayleigh-Beard convection near threshold, for ex- The analysis of grain-boundary motion and relaxation,
ample,qq lies on the marginal stability boundary against awhile interesting in its own right, is also expected to contrib-
zig-zag instability[4,5]). Due to translational and rotational ute to our understanding of the coarsening of an ensemble of
invariance, the spontaneous relaxation from the initial disorgrains. Linear analyses of boundary or defect motion have
dered state leads in practice to a large number of such d@&ready been used in the past to predict coarsening exponents
mains, and a sufficiently large system remains isotropic mad-12,13. The method reproduces known exponents in the
roscopically. Such a configuration also contains a largease of model#A and B in the lexicon of Hohenberg and
density of defects, such as grain boundaries, disclination, anidalperin[14], and has also been used to predict coarsening
dislocations. exponents for Qf) vector models[13] (see also Refs.
Defect motion in two-dimensional layered phases hag$15,1€). Coarsening laws for layered phases, on the other
been studied extensively, especially in connection with théhand, remain largely unexplain¢tl7,12,5,18—-2p
evolution of convective rolls in Rayleigh-Bard cells[6,7]. In Sec. Il, we describe the configuration of the grain
A primary question is how defect velocities are related toboundary studied, as well as the model equations. Section I
features of the background surrounding them, such as rofiresents a linear stability analysis of long-wavelength trans-
periodicity. It is well known, for example, that dislocations verse modulations near the boundary. The numerical method
climb [8], or that grain-boundary motion between two do- used to validate our solutions is outlined in Sec. IV, as well
mains with straight rolls provides a wavelength selectionas the motivation for the nonlinear analysis given in Sec. V.
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spect to the grain boundary, and we do not anticipate quali-
tative changes in our conclusions.

Our focus is on transverse modulations since this is the
simplest kind of perturbation that induces roll curvature
without any average roll compressiécompression is asso-
ciated with longitudinal perturbations along the roll norjal
Our study differs from that of Refl21] in which a grain
boundary was perturbed with a modulation of wave vector
having components both transverse and longitudinal to the
rolls. As was shown in Ref21], the longitudinal component
of the perturbation dominated the relaxation. We analyze
here the relaxation of a pure transve(se curvaturg¢ mode,
and obtain results that are qualitatively different from those
of Ref.[21].

Let an order parametet represent, for example, the ver-
tical velocity in the midplane of a convecting fluid layer. Just
above onset, when the reduced Rayleigh numéerR
—R)/R.<1 (R, is the critical Rayleigh number for insta-
bility) s can be expanded as the superposition of two waves
with slowly varying complex amplitude& andB [1]

1 ) )
H(x,y,t)= E[A(X,y,'i)e'qoxﬂL B(x,y,t)e'9 +c.c];

Alye =0, Blye,..=0. (2.1

The amplitudes satisfy a set of two coupled Ginzburg-
. Landau equations that can be derived from the equation for
(b) ¢ (for instance the Swift-Hohenberg mod@2]) by multi-
scale analysi§9,7]

FIG. 1. (a) Grain boundary separating two sets of rdlsndB
of the same periodicity|Go| = |q¢|= o). The rolls of domaim are IA SF JB SF
weakly curved by a transverse modulation of wave nunt3en. s = 5_K C ot == 5—§. (2.2
(b) Particular case studied here, corresponding to a 90° orientation.
6Xq is the magnitude of the phase modulation.

where 5F/5A is the functional derivative with respect to the

Finally, in Sec. VI, we present conclusions, and briefly dis-COMPIex conjugate oA, andF is a Lyapunov functional

cuss possible implications of our results on coarsening rates.
F=j drF
Il. GRAIN-BOUNDARY CONFIGURATION

AND GOVERNING EQUATIONS > g
< - [ | - ctla+ 817+ D0l 1819+ . A8
The base or reference state is a stationary and planar grain
boundary separating two semi-infinite domaiksand B of i 2
2 Oy— Hds
0

2 2
+&

[
straight convective rolls. Both sets of rolls have the same  t& A dy— Z_qO&X B

wavelengthh o= 27/qq. It is in general expected from pre-

vious studies that such grain boundaries are stable againghe coherence lengif, is of the order ofy, %, g andg, are

low wave number perturbatiori21]. We wish to study here jnieraction coefficients, and the time scale factor has been set
the decay of a perturbation of wave numbietqo applied in {5 ynity. These three parameters depend on the particular
the direction transverse to the rolls of one of the domainsyggel equation considered for the original fietd

referred to as to domaiA [see Fig. 1a)]. In this paper, we The nontrivial stationary solutiod#,,B,} of the govern-
consider for all our analytic calculations the particular casgng set of Egs(2.2—(2.3) describe a planar boundary, and

in which the two sets of rolls are oriented at right anglesjepend only on the coordinate normal to the boundary.
relative to each other in the way depicted in Figh)1In this They are defined by

case, the rolls of domaiA are parallel to the grain boundary

2
]. 2.3

itself. We expect that a 90° grain boundary is the boundary 0=eAg+ 292A0— gAS— g, B5A,, (2.9
of lowest energy, and hence that it is the most common in an

extended system that evolves spontaneously. However, our gg

analysis can be generalized to cases such as shown on Fig. 0=€eBy— — dxBo— 9By — 0, AjBo. (2.5
1(a), in which A and B rolls have arbitrary angles with re- 44
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This system of equations was extensively studied in Refs. We further expand the solutions in power series of the
[9,10]. It is a planar grain boundary of thickness proportionalsmall paramete?, and definea=agy+ q%a,+ q*a,+

to &,/ /e. Note that the system of equations is not invariant= ¢o+ g%+ q*dpa+ - - -, b=by+q%b,+q*b,+
under permutation oA, and B,. The amplitudeA, of the  Since the limitg— 0 corresponds to a uniform translation of
rolls parallel to the interface vanishes as exfx(/&,) when the interface,c=q?c,+q%o,+---. We now analyze the

x— —o0, and saturates toe(g)*2anh&/e/&,) whenx—  resulting equations order by order dg.

+20. The behavior of the amplitude of the rolls perpendicular At order q°, Eq. (3.7) reduces toAjdx¢o=const. Since

to the interface is slightly different:Bo(x)—(e/g)¥2  Ag(x) 2 diverges exponentially ato, and d,¢ must re-

x expl/el &) whenx— —o, and there is a point* such  main finite on the whole intervdl—«,], the only admis-

thatBo(x*)=0. It is customary to define the location of the sible solution isd,¢,=0. Henceg,=const is a free param-

grain boundary by the point*. To a good approximation, eter that represents the magnitude of the initial phase
Bo(X)=0 for x=x* modulation. With the notation of Fig.(B), ¢¢ is simply
We emphasize that a stationary solution only exists wherielated to the magnitude of the roll deformatiér, through

the wave number of the solution equals the marginal wavebo=0oXo (8Xg<\o). At orderg?, Egs.(3.6) and(3.8) can

numbergg, and that at first order i, the solutionsA, and  be written as

B, only depend on the slow spatial variabfﬂézx, but not on

the fast scale. Hence, the location of the boundary and the H (ao _o
phase of the rolls are independét. % by :
IIl. LINEAR STABILITY ANALYSIS If we take thex derivative of Eqs(2.4) and(2.5) we recover
OF A 90° GRAIN BOUNDARY the above equation, wita, and b, replaced byd,A, and

. _ d«Bo. Hence the solutions at this order are
We linearize Eqs(2.2) around{A,,Bg}, and assume the

following perturbed solutiongnote that the form of the per- ag(X)=agdyAg, bo(X)=agdyBo, (3.9
turbation explicitly assumes that the boundary does not un-
dergo a net average displacement whereqg is a constant to be determined from the solvability
B condition at the next order.
A(x,y,t)=[Ag(x)+ale'?, (3.2 At order g2, the solutionsa, andb, satisfy
B(X,y,t)=Bg(x) +b. (3.2 Ho( a2) ( (@goa+ oklto) dx Ao) (3.10
- ) . . b, ao( o2+ £5)94By
The phasep represents a transverse distortion, as shown in
Fig. 1(b), and is of the general form The solvability condition at ordey? requires that the right-
_ _ hand side vector be orthogonal to the kernel of the adjoint of
d=p(x)cogqy)e”, ¢<1. (3.3 Hy. SinceH, is Hermitian, andHq(d,Aq,yxBg) =0, we find,
The real fieldsa andb are amplitude corrections and simi- *
larly read P (o2 + Bodldo) fﬂc(ﬁon)2 dx
=a(x)cogqy)e”, (3.4)

+ag(oa+ £) fic(&xBo)deZ 0. (311

=b(x)cogqy)e”". (3.5
On the other hand, at ordgf, one can replace ¢ by o, ¢y,
In the above expansion, we have neglected the imaginargnda by ad,A, in Eq. (3.7). After multiplying Eq.(3.7) by
part of B. Im(B) can written asl(x)sin(qy)e“"; yet, because Ag, and integrating ovex, one finds
of the fourth ordeix derivative in the equation satisfied By

[the second relation in Eq2.2)], d(x) is of ordere lower oo
than the real part function(x), and hence negligible. Insert- Abdxr=——— f Aj(u) du— q_ Ao(X) xAg(X)
ing Egs.(3.1)—(3.2) into Egs.(2.2), we find 50
X
oa=ea+ & da—(q*/4dg)a—(°/0o) dx(HA0)] - f (3uA0)* dul + (312
—(3gA5+9,Bj)a—2g, AoBob, (3.6

whereC is a constant of integration. However, the condition
oAgp=E Ay Lo (A2dyd) — (q*1403) Ao+ (% dg) dxal, that |9, ¢,| < whenx— —o, requiresC=0. Furthermore,
(3.7 in the limit x—+o, Ag—(e/g)¥? hence[*Aj(u) dusx.
The gradient of¢, remains finite only ifo,=0. Therefore
ob=eb—¢£29%b— (3gB3+9g, A3)b—2g, BoAoa. Eq. (3.12) with o,=0 now yields the value of the solvability
(3.8 constanta,
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e

(3.13

where the definitionpy= qq0xy has also been used. :', BN et
To summarize our results up to this point, the perturbed
amplitudes at ordeq® are given by

ap= — 5)(0

"‘p‘lll:ﬂ' X I.“‘ '

A=[Ao(X) + aoCog qy)e” g, Ag(x)]e'?
=Ao(X+ agcog qy)e”)exdiqedxecos@y)e’],  (3.14

_.v- - _.e Ty

B=By(x+ aycogqy)e’), (3.15 ;n; -,n. —

.““1 p"'lll‘
where we have used Eq8.1)—(3.2 and (3.9). Equations 1
(3.14) and(3.15 show that the amplitude modul| and|B|

() 54
of the weakly modulated rolls at this order equal the un-
modulated profiles with a simple change in the coordinate ] . ] . )
origin. By analogy with the planar cage,10], we define the FIG. 2. Configuration with curved interfaces obtained by nu-
location of the modulated boundary by the set of p(._“ntsmerlcal solution of the Swift-Hohenberg equation in a square grid

{Xg Y} such thaB(Xg ) =0. Equation(3.19 indicates that \évgzalzjigxozfstienggfvsedwllgllles ?h24gglnqggu6ndzcggx gr_e)\r(r)\_oﬁng to-
the location of the boundary is given by the curve wards each other.

—y* at
Xg(y)=X" ~ ageosqy)e”, The linear analysis shows that the interface is always
stable with respect to long-wavelength perturbations. This is
in agreement with the case studied in F{éfl] although the
authors concluded that the decay rateq? instead. Such a
behavior was found because the wave vector of the modula-
tion considered in their work had a nonzero component in
the longitudinal direction. We note that the decay rate of Eq.
(3.16 is in fact identical to that of a single waveA (rolls
only in Fig. 1) [7]. According to Eq(3.16), the relaxation of
the boundary is completely determined by the relaxation of
the A rolls far from it.

Unfortunately, in spite of the fact that the main predic-
tions of the perturbation analysis agree well with a numerical
solution of the Swift-Hohenberg equation, the linear analysis
just discussed is not uniformly valigve will further elabo-
rate on this point in Sec. V Consider Eq(3.12 for ¢, in
the limit x— + . The leading behavior is given by

with Bo(x*)=0. Itis a local translation relative to the planar ;
boundary by— aycos@y)e” along thex axis. Note, on the
other hand, that the lines of constant phasé afe given by
X=const- dx,cosqy)e” instead, so that— dxycosqy)e”
represents the local deformation of the straight rolls. As
shown by Eq(3.13), boundary and roll deformations are not
independent; the lengthg, and 6x, are related to each other
through the nonuniform profiled, andBy. A quite nonin-
tuitive result is the opposite directions of the related transla-
tions, evidenced by the minus sign in E8.13. Consider
for instance a point where the lines of a constant phage of
are displaced towards the regiBnthe actual position of the
boundary, however, is displaced towards regforrhis ef-
fect can be seen more easily in Fig(s®e also Sec. IV

At order g* integration of Eq(3.7) leads to

2 X [oa, L 2
Aoax¢4_ fw( 53 + qg d)OAo(U) du br= a—( f (94 AO)ZdU) (3.17
A§()
1 (x
—— | Ao(u)d,azdu, Therefore the phase perturbatigr= ¢o+ g% ¢,, which is as-
GoJ—= sumed to be small in the derivation of E8.7), diverges as

x for large x through the second-order correctign at any
finite time t. As a consequence, from E(B.3), they com-
ponent of the wave vector of the roll pattern is

where the second-order resulf=0 has been used. The sec-
ond integral in the right-hand side is finite, but the first one
diverges ax whenx— + o, except ifo,/ &5+ 1/495=0. We

therefore conclude that, at leading ordemgjin ay;b: —qsin(qy)e”(do+ GPby),

o= —Oq“ (3.16 and also diverges witk. This implies that, far enough from
4q3 ' ' the boundary, thg component of the wave vector becomes
larger than thex component, given byjo+ dyd=0,. This
This is one of the central results of this section: the modusolution represents an increasingly zig-zagging wave, which
lated boundary is expected to relax exponentially with a ratés of course not physical. As is apparent from Ej17), the
proportional tog®. singularity arises because of the presence of a nonuniform
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amplitude of the pattern near the boundapp,+ 0. In fact, 100000

we think it is possible that the linearized system with non-
constant coefficient43.6)—(3.8) does not have bounded
eigenfunctions.

It appears that the failure of the linear analysis is related
to an additional important feature of boundary motion, not
taken into account in the previous calculation: a net transla-
tion of the average position of the boundary towards Ahe —o
region, as shown by the numerical calculations presented ir
the following section. After we present the numerical evi-
dence, we argue in Sec. V that this feature cannot be ob
tained at the linear level in the amplitude of the perturbation,

10000

1000

and that it is in fact a singular contribution in the limit
—0.

IV. NUMERICAL SOLUTION
OF THE SWIFT-HOHENBERG EQUATION

0.1
q/%

FIG. 3. Decay time— o~ ! (in dimensionless time unjof the

0.06

In order to test the predictions of the previous section, an@rain-boundary modulation as a function of wave numipelThe
to obtain further insight into grain-boundary motion, we havesquare symbols are the numerical results while the solid line corre-

numerically solved the Swift-Hohenberg model of Rayleigh-
Benard convectior22]
Wy B

il P (4.1)

(d5+V2)2y—y°.

We consider the evolution from an initial condition that cor-
responds to the geometry shown in Figb)l We note that
solving Eq.(4.1) in the case of curved rolls is much simpler
than solving the two-dimensional Ginzburg-Landau equa
tions (2.2).

Equation(4.1) is solved numerically with a pseudospec-
tral method. Further details on the algorithm and the tim
integration scheme can be found in R&3]. The stability of

the algorithm allows relatively large values of the time step,

which is fixed to 0.4 in the dimensionless time units of Eq.
(4.1). Equation(4.1) is then discretized on a square grid of
size 512<512, and occasionally 256256. Spatial discreti-

zation is such that there are eight grid nodes per waveleng

\g- In all the following numerical examples, we have chosen

£=20, *, which is close to the value that corresponds to th
stress free boundary conditions in the original system of flui

mechanical equations, from which the Swift-Hohenberg_ . . .
érst compute numericallyr in the absence of any grain

equation is derived as an approximation. We use periodi
boundary conditions in both directions, and hence the initia
condition comprises two symmetric, well-separated grai
boundaries located at=1/4 andx= 3/4, in units of the sys-

tem size. We have verified that the numerical solutions of th
Swift-Hohenberg equation for the stationary straight grai

the amplitude equation®.4)—(2.5), with the appropriate pa-
rameters that follow from the multiscale analysis of the
Swift-Hohenberg equation g&=3/4 and g, =3/2). The
modulated initial condition is implemented with the help of
the one-dimensional solution, as

#(X,y,t=0)=Ao(x)cog qoX+ goXoc04qy) ]

+Bo(x)cog goy]. (4.2)

(S

e : S
C}/alue of o was determined from an exponential fit to the

n

n
boundary coincides with those obtained by directly solving ~ 5

sponds to Eq(3.16. The cross symbols are the numerical results
obtained from the modulation of a single wave, without any grain
boundary.

A typical configuration is shown in Fig. 2, taken at the
intermediate timet=1600, with e=0.04, g=q,/16, and a
system size of 256 256. Note that this solution is consistent
with our earlier assumption of neglecting IB) in the per-
turbation equation§Eqg. (3.2)], since theB rolls remain
straight near the grain boundary despite the transverse modu-

lation of the A rolls. The opposition in phase of the roll
profile and of the boundary location, given in E§.13), is
also well-reproduced numerically Yet, this effect is easy to
observe only for relatively large values 6%, as shown on
Fig. 2.

Figure 3 shows our numerical results for the inverse de-
cay rate— o~ ! as a function ofy. These results are obtained
for a system of size 522512, so that the number of rolls

1Wat separate the two grain boundaries is twice larger than in

Fig. 2. We checked that the planar grain boundaries did not
appreciably interact, and therefore remained stationary. The

decay of the phase of a given roll, for a small inité&d,. We
oundary, i.e., with the single wave We find very good

agreement with Eq3.16), given that there are no adjustable
parameters in the theoretical curve. When grain boundaries

are present, the numerical resuguare symbo)sare some-

what higher, but still compare well with E43.16. They
remain closer to the lawrx —q?, rather than to, saygo
g°, and certainly than ter=—q?. The small discrepancy
observed is probably due to the finite size of the system;
although the two grain boundaries are separated by roughly
30 rolls, they slightly interact during relaxation. As a check,
we have computed(q=3qy/32) again in a system of size
1024x 1024, with the same value &fy. The difference be-
tween that numerical result and the theoretical curve is re-
duced by a factor of 2.5 compared with a system size of
512x512.
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4

A=Ag[x—rox(t)cogqy) —d(t) Jexdigodx(t)cogqy)],
35 (5.0
3 B=By[Xx— kéx(t)cogqy)—d(t)], (5.2
%5 where
doo/)\o 2
o
15 SX(t)= 6xet, a'=—4—ng4, and
1
05 K:f (aXAo)ZdX/ f(axBo)de. (5.3

The quantityd(t) represents the net distance traveled by the
grain boundary at timé A linear stability analysis based on

FIG. 4. Total distance traveled by the interfateas a function Egs.(5.1)—(5.2) along the lines of Sec. Ill leads t(t)=0

of the magnitude of the initial modulatioéix,, for e=0.04 ande . N, .
~0.1 (q=30,/32, the grid size is 512512 and\y=8). The sym- for an interface initially located at the origin. As we show

\ o elow, the net displacement depends nonlinearly on the ini-
bols are the numerical results, and the solid line corresponds to Eg. . . .
5.9 ial modulation, and hence cannot be obtained from a linear-

ized set of equations. We use here a different method that has

) _ N been widely used to study defect motion in potential systems
The numerical solution reveals an additional feature thaf1], |t is based on the identity

was not included in our linear analysis; while the boundary

modulation is relaxing, there is net motion of the grain

boundary towards tha rolls region. This motion is a pure d_F_ _Zf dr
amplitude mode, as the lines of constant roll phase remain dt '
stationary on average. Therefore, after a long time, the
modulated rolls have completely relaxed but the size of the
region of A rolls has decreased, and the grain boundary iéj
located at a distancé,, away from its initial average loca-
tion. The distanceal,, exceeds the initial deformatiofixg,
and it can be even significantly larger than the roll wave
length (. In the configuration shown in Fig. &ystem of
size 256< 256), the magnitude of the perturbation was delib- dF I &q°

erately chosen relatively largesXo=X\,), so that, at late a=j df[ —dd,Fo+ TC052(QY)
times, the modulated region completely disappears by anni-
hilation of the two grain boundaries.

We now report our results fad,, in a bigger system of
size 51512, and withq=3q/32. Figure 4 shows our re-
sults for the total traveled distanck, as a function of6x,.

The complete relaxation of the perturbation requires timesip to orderdx?. F, is the free-energy density of a planar
around 16, and the location of thénearly flat boundary is  boundary, andi=x— « 5x(t)cos@y)—d(t). The term involv-
again defined to be the poirt at whichB(x*)=0[9]. This ing F, vanishes sinceFy(x= +x)=Fy(x=—=). In Eq.
point if obtained from the field) through the relatioB(x) (5.5, we have neglected the contributions from the terms
=[(x,y=No) — ¢(x,y=3\o/2)]/2 for a flat interfacelsee  d,Ao(u) and d,By(u); they are of ordere'’? smaller than
Eq. (2.1)]. We observe in the figure that the total traveled Ay(u)a,e'? because of the slow variations of the amplitudes
distance increases nonlinearly wiéix,. The following sec-  compared with the roll periodicity. In addition, we have

tion gives an interpretation of this feature, and further dis-,geq the approximatioon(u):—d&XAo(u) by neglecting

cussion of the results. — k&X(t)cos@qy)aAu); the contributions proportional to
this last term vanish witlf cos@y)dy at leading order ine
when spatial integration overis performed in Eq(5.5). For
the same reason, all terms proportionabtoin Eqg. (5.5 do
We study in this section a more general form for the pernot contribute.

2
+

dA
ot

B
ot

2
), (5.9

irectly derived from Eqgs(2.2—(2.3).

The left-hand side of Eq5.4) can be calculated approxi-
mately by substituting Eq$5.1) and(5.2) into Eq.(2.3), and
_taking the time derivative. After some algebra, we find

X[26x8xA5(U)— 8x2da,Ad(u)]f, (5.9

V. DEFECT MOTION THROUGH ENERGY RELAXATION

turbed amplitudes than those given in E¢3.14—(3.15.
We assume a perturbed solution of the form

By using similar considerations, the right-hand side of Eq.
(5.4) at leading order ire and 6x(t) reads
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-2 J dr{d{[ axAg(u) 12+ [ 9Bo(u) 1%}

+(8%)%g5 co(qy)Aj(u)}. (5.6)

By combining Eqs(5.5) and(5.6), and by using Eq(5.3
for 8x(t), we find that all terms that do not involekcancel,
and obtain

d(t):(f_‘z’m) € [Goox()]”
4q; ) 49 F dX[(9xAg)?+ (9,Bo)?]

(5.7

where we have used the identitie%ﬁ(Jroo):e/g and

fgdyco§(qy)/L=1/2, wherelL is the length of the grain

boundary. Equatiort5.7) shows thatd>0; i.e., in the con-
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pendicular rolls remain straight. Therefore, the energy of the
modulated configuration can decrease by both linear relax-
ation of the initially curved rolls and by nonlinear net dis-
placement of the grain boundary, the effect of which is to
replace curved rolls by straight ones. Close to onset, relax-
ation through the nonlinear mode is dominant, and even a
small perturbatiorsx, can induce a large boundary displace-
mentd.,> dxy. Of course, for fixede, d,, goes to zero with
OXq. It is precisely the observation that the amplitude of this
nonlinear mode diverges &t—0 that suggests that the lin-
earized problem discussed in Sec. lll may not have any
bounded eigenfunctions.

At fixed e, it is instructive to obtain the magnitude 6%,
above which the velocity of the boundary is much larger than
the phase velocity of the rolls; i.e.,

d(t=0)>|x(t=0)|. (5.9

figuration shown in Fig. 1 the motion of the boundary is suchin this limit, boundary motion occurs at approximately con-

that the modulated rolls are progressively replaced by theiont roll phase. Given thaix(0)= o8,
advancing perpendicular straight rolls. Furthermore, an '
contrary to the usual motion of kinks, the velocity is not

constant but decreases &g(t)2. Since at long timesx(t)

=0, the boundary eventually stops. In Appendix A, we show
that Eq.(5.7) generalizes the equation describing the uniform

and by using Eg.
5.7) for d(0), Eq. (5.9 leads to

Ao

OXo> 4
0 E —

[ ax,a07+ (3,807,

motion of a grain boundary through a time-independent

modulated background. The method presented in Appendixith the numerical solutions obtained fi(x) and Bg(x)

A also provides a simpler alternative way to extend the resulfrom the coupled Ginzburg-Landau equations, we find that
(5.7) to the case in which the transversally modulated rollséx,>5.0 10 2\, for e=0.04, anddx,>7.4 10 2\, for €

are not parallel to the grain boundary.

=0.1. Therefore we conclude that nonlinear motion domi-

Equationg5.3) and(5.7) can now be used to calculate the nates linear relaxation even for relatively small initial pertur-

total distance traveled by the grain boundaly, allowing

bations. We recall that our perturbative calculation is valid if

further comparison with the numerical results of Sec. IV. Weédxy<\,.

find
€ (0o6%o)?

dOC:_ oo
89 f AX] (,20)2+ (9xBo)?]

(5.9

Note that, in contrast td, d.. does not depend on the wave

number of the modulatiorg, for small g. Since Ay(X)
= Jelgf(\Jex/ &) at leading order ire, and if a similar form
is assumed foB,,, it is easy to see from Eq¢5.7) and(5.8)

thatd andd., are proportional ta~ 2 [24]. Hence the dis-

We have verified thatl,, does not appreciably depend on
the wavelength of the modulation, as shown in E§8).
Figure 4 shows our analytical and numerical results of the
total distance traveled by the grain boundary as a function of
6Xo. The theoretical curve has no adjustable parameters, and
is based on the numerical resolution of E¢54)—(2.5) with
the valuegy=3/4 andg, = 3/2 that correspond to the Swift-
Hohenberg equation. We performed two series of runs, for
€=0.04 ande=0.1. At €=0.04, Eq.(5.8) is in quantitative
agreement with the numerical data for small modulations.
The discrepancy observed at large modulation indicates the
breakdown of the linear relaxation @x(t); perturbations

placement of the boundary diverges close to onset, regardlesgart decaying at a faster rate than E8.16), so that Eq.

of the initial amplitude of the modulation. Equatioffs.7)

(5.9 is overestimating the traveled distance at short times.

and(5.9) also show that the magnitude of this displacemeniat ¢=0.1, we expect a smaller displacemeht, for fixed

depends quadratically on the perturbatiéry, explaining

X, than in the case=0.04. This is what we observe. How-

why it cannot be derived from the linear analysis presente@ver, the numerical results show ththt does not vary con-

in Sec. Ill. Finally, we note that the velociﬂ(t) is propor-
tional to e 26x(t)%q*, at leading order ire, 8x(t), andq.

tinuously with 8xq, but rather it increases discontinuously.
As it is apparent in Fig. 4crossej d., takes now only mul-

The mechanism for net grain boundary motion can bdiple values of half the wavelength of the pattern. A lower

understood as the follows: Relaxation requires energy dethreshold is needed to displace the grain boundary, which we
crease while straight rolls have the same energy regardless etimate to beSx.=\ /7. These observations cannot be ex-
their orientation(both base states A and B, are in principle plained by the present analysis, and reveal nonadiabatic ef-
degenerate However, when the boundary is modulated infects that go beyond the amplitude equation formalism. Such
the way depicted in Fig. 2, only the rolls parallel to the effects have been previously observed in other studies of
boundary are distorted at lowest ordereinwhereas the per- fronts propagatioi1,25]. The underlying cause is that with
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increasinge the variations ofA in the slow variables*’x do  the asymptotic behavior ds- is being currently investi-
not decouple with the fast variable describing the underlyinggated.

periodic structure. In this case, the solution for the ampli-

tudes depends on the position of the rolls. ACKNOWLEDGMENTS

This research has been supported by the U.S. Department
VI. CONCLUSIONS of Energy, Contract No. DE-FG05-95ER14566, and also in

We have found an additional mechanism for grain-Part by the Supercomputer Computations Research Institute,
boundary motion in layered phases, which is driven by rollWhich is partially funded by the U.S. Department of Energy,
curvature in the vicinity of the boundary. We have analyti- Contract No. DE-FC05-85ER25000.
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the amplitude equations formalism, and numerically by di- APPENDIX A: GRAIN-BOUNDARY MOTION
rect solution of the Swift-Hohenberg equation. Transverse WITHOUT PHASE RELAXATION

perturbations of the rolls near the grain boundary decay ex- Equation(5.7) can be derived in a different way, which is

Fhoena];i?;lynlt?n’?bn: ;Vf't?hg La;ﬁlf’rrg’aﬁ?gg.o?ﬁl;géi\g/gsrwelshavesimilar to the calculation of the veIociFy of a climbing dislo-

found a nonlinear mode involving net translation 6f the av_canon[l]. Su.ppo-se thaF a set of rO"SJS moc?lula.tt(.ad along the

erage location of the boundary. On the basis of functionaffansverse direction, with wave vectgr and is rigidly held

minimization, this mode is preferred to the simple linear re-With a time-independent modulation amplitud; . Hence,

laxation near onset. The net velocity of the grain boundaryh€ System is allowed to evolve by rigid translation alone,

has been computed, and is given in E%j7). This result can gnd no roll (or boundary relaxation is gllowed. We then

be interpreted as giving the velocity as the ratio between troduce the perturbations.1)—(5.2) with ox(t)= 6.

time-dependent external force imposed by curved rolls, and §9uation(5.4) can be simply recast as

drag term or mobility that depends on the local amplitude

profile of the grsz/azin boundary. CIo;e to onset, th'e drag term dJ dy{F(x=—o0,y) — F(x=+0,y)}

goes to zero as*<, and makes the interface velocignd the

total traveled distangaliverge as=~ Y2 We have argued that _

this motion cannot be explained by linear analysis. = —2d2f drl|o,Al2+|5,B|?], (A1)
The precise relationship between these results and the re-

lated problem of coarsening of layered phases requires fur-

ther study. However, we can offer a few comments based o .
SICY. HOWEVET, W w ft-hand side of Eq(AL) represents the free energy lost per

the results presented in this paper. If the temporal evolution=". " ¢ by th h in bound h
of a disordered configuration were controlled by the relax-UNIt ime by the system as the grain boundary moves. The
traight rolls, of lower free energy, replace curved ones. The

ation of an ensemble of grain boundaries moving through & _ . ;
background of curved rolls, then E¢6.7) could be used to ifferencedF is computed that corresponds to increasing the

infer the coarsening rate. I6 is a characteristic grain- area of the domain occupied Bystraight rolls by an amount
boundary speed, and is the characteristic curvature of the ddt, and by decreasing by the same amount the area of
rolls ahead of the boundary, then E§.7) leads tov=«2. If ~ the domain occupied by curved rolls. The free-energy
self-similarity holds during the coarsening of the structuredain is easily computed by using Eq2.3 with
this last relationship would imply a coarsening lagt)  B(—%)=(e/g)"% A(—%)=0, and B(+%*)=0, A(+=)
~t13 wherel(t) is any measure of the linear scale of the = (€/9)"exfigodxcos@y)]. In the right-hand side of Eq.
structure. This result for the coarsening law disagrees withAL), |,A(B)| is replaced by d,Aq(Bo)| at leading order.
previous literature on the subjeid7,12,5,18—2D Equation (A1) yields Eg. (5.7) straightforwardly, where
Although the configuration studied in this paper is ideal-6X(t) must be replaced byx;. By using Eq.(Al), the nu-
ized, it is conceivable that it describes one among possiblynerator of Eq.(5.7) can now be interpreted as @me-
many Competing mechanisms during Coarsening_ A numeridependeﬂtexternal force acting on the line defect, the de-
cal solution of the two-dimensional Swift-Hohenberg equa_nominator being the drag term or friction coefficient. It is
tion close to onset shows that curved rolls are essentialljnteresting to note that the more rigorous analysis of the
immobile due to topological constrain{snostly disclina- combined effects of roll relaxation and front advance that
tions), whereas grain boundaries move over large distanced¢ads to Eq.(5.7) gives the same expression as when roll
It is likely that the motion of the latter is in part due to a relaxation is omitted. Beside being simpler, an additional
background of curved rolls with a characteristic curvatureadvantage of the energy argument presented here is that it
which is set by the spatial distribution of disclinations. Dis- ¢an be applied to a configuration where the set of rslend
clinations, in turn, can be eliminated by grain-boundary mo-B are not parallel nor perpendicular to the grain boundary. In
tion. If the characteristic length scales associated with bot#his case, the external forcgdy{F(x=—,y) - F(x=
defects(grain boundary perimeter and disclination separa-t+.Y)} remains unchanged, by rotational invariance. Only
tion) are proportional to each other, as required by selfthe drag term would probably differ, because of the different
similarity, thent'® would be a possible contribution to the grain-boundary profile. However, we expect that the scaling
coarsening law. Whether this mechanism would dominatdehaviords 5x?q* still holds.

hered is the constant velocity of the grain boundary. The
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