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Problemas

1. Examine de manera concisa y rigurosa los resultados presentados en las
siguientes referencias, las cuales abordan la termodinámica de la radiación
electromagnética.

(i) Leff, Am. J. Phys. 70 (8), pág. 792 (2002)

(ii) Kelly, Am. J. Phys. 49 (8), pág. 714 (1981)

(iv) Lee, Am. J. Phys. 69 (8), pág. 874 (2001)

Se considerará de manera mı́nima una discusión unificada, clara y cŕıtica
de dichos resultados.

2. Considere un gas ideal clásico en tres dimensiones.

a) Suponga que un mol de dicho gas, que se encuentra inicialmente en el
estado (Pi, Ti, Vi), es sometido a una expansión adiabática reversible
llevándolo al estado (Pf , Tf , Vf ), con Pf < Pi. Calcule Tf y demuestre
que el trabajo realizado sobre el gas es W = CV (Tf − Ti)

b) Suponga ahora que un mol de gas es comprimido por un pistón en el
que se coloca una masa m de tal manera que la presión inicial es

Pi = Pf +
mg

A
,

donde Pf es la presión atmosférica y A es el área del pistón (ver fi-
gura). La masa es removida instantáneamente y se asume que el gas
está aislado térmicamente de manera perfecta y que el pistón resbala
sin fricción. ¿Cuál es la temperatura final T ′

f como función de Ti, Pf/Pi

y γ = CP/CV ? Dibuje curvas representativas de Tf/Ti y T ′
f/Ti como

función de Pf/Pi para 0 ≤ Pf/Pi ≤ 1.

c) ¿Se pudo haber predicho, sin calcular, que T ′
f > Tf? ¿En cuál de la

expansiones anteriores se proporciona más trabajo a los “alrededores”?
En el experimento del inciso anterior reincorporamos la masa sobre el
pistón. Calcule la temperatura y volumen final, T ′′

f y V ′′
f . Compare con

Ti y Vi.



Downloaded 25 Jun 2013 to 132.248.209.200. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



Downloaded 25 Jun 2013 to 132.248.209.200. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



Downloaded 25 Jun 2013 to 132.248.209.200. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



Downloaded 25 Jun 2013 to 132.248.209.200. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



Downloaded 25 Jun 2013 to 132.248.209.200. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



Downloaded 25 Jun 2013 to 132.248.209.200. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



Teaching the photon gas in introductory physics
Harvey S. Leffa)
Department of Physics, California State Polytechnic University, Pomona, 3801 West Temple Avenue,
Pomona, California 91768

!Received 19 October 2001; accepted 28 March 2002"

The ideal gas is often the only thermodynamic system for which equations of state are studied in
introductory physics. The photon gas can be a rich supplement to the ideal gas, and a vehicle for
introducing 20th century physics concepts. © 2002 American Association of Physics Teachers.
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I. INTRODUCTION

The monatomic classical ideal gas, which is called the
ideal gas in this paper, is a staple of introductory physics. It
is understandable in the context of a system of noninteracting
point particles,1 and its equations of state are tractable math-
ematically. These virtues of the ideal gas are summarized in
Table I. With them come several less desirable characteris-
tics. First, it is based on classical physics or the semiclassical
limit of a quantum ideal gas, and hence does not provide
insights on quantum or relativistic phenomena. Second, the
internal energy is independent of volume, a property that
holds only in the low density limit for real gases. Third, the
ideal gas gives no insight into changes of state such as the
vapor to liquid transition. Finally, because it is usually the
only system for which equations of state are encountered,
students tend to come away with a sense that every system
behaves as an ideal gas.
In contrast, the photon gas is a quantum mechanical sys-

tem of particles !quanta of the electromagnetic field" called
photons.2 The thermal behavior of photons in blackbody ra-
diation has played a pivotal role in the development of quan-
tum mechanics. In addition, because photons move with the
speed of light, the photon gas is a relativistic system. Thus it
reflects two major developments of 20th century physics:
quantum mechanics and relativity. Over a decade ago, the
Introductory University Physics Project called for more 20th
century physics in introductory courses.3 Inclusion of the
photon gas would work toward this goal.
The quantum mechanical probability amplitudes for pho-

tons can interfere constructively or destructively with one
another, but photons do not ordinarily affect one another’s
energies, momenta, or polarizations, which simplifies their
thermodynamic behavior. Unlike the ideal gas, the internal
energy function for the photon gas is volume dependent. Re-
markably, despite its nonatomic nature, the photon gas can
provide insights into the liquid–vapor phase transition. Fi-
nally the very notion of the photon gas disabuses students of
the thought that every thermodynamic system behaves as an
ideal classical gas.
A key feature of the photon gas is that it has a variable

particle number, N . Consider a container of volume V ,
whose walls are maintained at temperature T . Suppose it has
been emptied of matter by a vacuum pump. It cannot be
entirely ‘‘empty’’ because the walls radiate photons into the
container. Some photons scatter off the walls, with some be-
ing absorbed and new ones being emitted continually. A dy-
namic equilibrium exists when the average absorption and

emission rates are equal. Thus, an apparently empty con-
tainer actually is filled with a photon gas, a fact that can
intrigue students.
Unlike the ideal gas, for which there are three independent

variables, N , T , and V , the photon gas has just two indepen-
dent, controllable variables, T and V . We can envisage build-
ing a photon gas from energy stored in the container walls.
Consider the container in Fig. 1. Imagine purging it of all
atoms with a vacuum pump, and then moving the piston to
the left until it touches the left wall. The volume is then zero
and the walls !including the piston" have temperature T .
Now slowly move the piston to the right, keeping the wall
temperature constant using a reservoir. Photons will pour out
of the walls as the volume increases, until the dynamic equi-
librium described above occurs. In this way, we mentally
construct a photon gas of volume V and temperature T , with
average photon number N(T ,V). Building the photon gas
using this thought experiment can help develop an under-
standing of the nature of the variable particle photon gas.
The most straightforward approach for introducing the

photon gas in introductory physics is to define it in a way
similar to that in the preceding paragraphs, and to then dis-
play the relevant thermodynamic equations of state and ex-
amine their implications. The extent to which the equations
of state are used can vary. At minimum, the equations can be
presented and interpreted. If time allows and the interest
level is sufficient, they also can be used to analyze isother-
mal and adiabatic processes for the photon gas, as is done in
the body of this paper.
A more ambitious approach is to use kinetic theory to

establish the connection between internal energy and pres-
sure for the photon gas, and to use calculus to derive the
equations of state. This procedure is presented in the Appen-
dix as a resource for teachers.
A rich literature, mainly related to blackbody radiation,

exists in books on modern physics,4 quantum physics,5
optics,6 and classical and statistical thermodynamics.7–13 Nu-
merous citations to the literature are given in Ref. 14. Nev-
ertheless, the photon gas has not found its way into introduc-
tory physics textbooks. The main purpose of this paper is to
encourage teachers of introductory physics and textbook au-
thors to adopt the photon gas as a supplement to the ideal
gas. Some of the ideas here might also be useful to teachers
of modern physics and junior-senior level thermal physics.

II. PHOTON GAS EQUATIONS OF STATE AND
PROCESSES

The equations of state for the internal energy U(T ,V) and
pressure P(T) are
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U!T ,V "!bVT4 !1"

and

P!T "! 1
3 bT4. !2"

The constant b cannot be determined from thermodynamics,
but its value can be borrowed from statistical physics or ex-
perimental results. It is given by

b!
8%5k4

15h3c3 !7.56"10#16 J K#4 m#3. !3"

Note that b depends on Planck’s constant h , which reflects
the quantum mechanical nature of the photon gas, the speed
of light c , which reflects its relativistic nature, and Boltz-
mann’s constant k , which reflects its thermodynamic nature.
At the introductory level, we can introduce Eqs. !1" and !2"
and give the numerical value of b , without broaching the
formula in Eq. !3".

Given the foregoing, it is straightforward to analyze iso-
thermal processes for the photon gas. Consider a quasistatic
volume change from V to V$&V . From Eq. !1", if T is
constant,

&U!bT4&V . !4"

From the first law of thermodynamics, &U!Q$W , where
W!#'P(T)dV is the work done on the photon gas. When
T is constant, so is P(T), and Eq. !2" implies that

W!# 1
3 bT4&V . !5"

Thus the energy gained by the photon gas from the concomi-
tant increase or decrease in the number of photons, which
constitutes a radiative heat process, is

Q! 4
3 bT4&V . !6"

The slow isothermal volume change under consideration is
reversible, and the entropy change, Q/T , of the photon gas is

&S! 4
3 bT3&V . !7"

This entropy change, which is linear in &V , is very different
from the logarithmic volume dependence of the correspond-
ing entropy change for an ideal gas, which is shown in Table
I.
Now suppose we build the photon gas as described earlier

by choosing the initial volume in Eq. !7" to be zero and the
final volume to be V . We then allow the piston to move to
the right slowly to volume V , creating the photon gas. Be-
cause at zero volume, the photon number N!0, evidently
S!0; that is, there can be no entropy if there are no photons.
Equation !7" then implies that at volume V ,

S! 4
3 bVT3. !8"

Notice that Eqs. !1" and !2" imply that the enthalpy15 H
!U$PV is

H! 4
3 bVT4. !9"

Clearly for an isothermal volume change, &H!Q and for an
expansion from zero volume to volume V , H!Q!TS . This
example makes clear that enthalpy is the energy needed to
form the photon gas and to do the work needed to make
available the volume V it occupies.16
Next, consider a slow adiabatic volume change. Adiabatic

means that no photons are emitted or absorbed by the con-
tainer walls. For a photon gas, the only possible type of heat
process is via radiation; that is, energy can be exchanged
with the container only by the emission and absorption of
photons. An adiabatic volume change requires that the con-
tainer walls be perfectly reflecting mirrors. Under such a
process the photon number cannot change because a perfect
reflector is also a nonemitter of photons. Because the number
of photons cannot change, N(T ,V)!constant. Furthermore,
a slow, reversible adiabatic process leaves the entropy of the
photon gas unchanged, so S(T ,V)!constant. The constancy
of both N(T ,V) and S(T ,V) implies that N(T ,V)!constant
"S(T ,V), which along with Eq. !8", leads to the conclusion
that

N!T ,V "!rVT3, !10"

Fig. 1. Photon gas in a container with wall temperature T and volume V .
The right wall is movable and its quasistatic movement can alter V revers-
ibly by &V .

Table I. Summary of monatomic classical ideal gas properties.

Property type Description

Independent variables N , V , T
System Collection of N noninteracting

point particles, each with mass m ,
described by classical mechanics

Temperature-independent result
from kinetic theory, relating the
internal energy U and pressure P

U!
3
2PV

Internal energy U!
3
2NkT

Pressure P!NkT/V
Entropya S!Nk# ln(T3/2V/N)

$ln(2%mk/h)3/2$ 5
2$

Work W on the gas for isothermal
volume change by &V

W!#NkT ln(1$&V/V)

Energy Q added to gas by heat
process for isothermal volume
change by &V

Q!NkT ln(1$&V/V)

Entropy change of gas for isothermal
volume change by &V

&S!Nk ln(1$&V/V)

Reversible adiabatic condition,
where the heat capacity ratio
Cp /CV!5/3

PV5/3!constant

aThe expression for the entropy is the Sackur–Tetrode equation, the classical
limit for Bose–Einstein and Fermi–Dirac quantum ideal gases with atoms
of mass m . Planck’s constant h connotes the Sackur–Tetrode equation’s
quantum origin, and k reflects the thermodynamic nature of the gas.
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where r is a constant. As was the case for b , r cannot be
evaluated within the domain of thermodynamics, but its
value can be borrowed from statistical physics,17

r!60.4! khc " 3!2.03"107 m#3 K#3. !11"

As before, the constants h , c , and k illustrate the quantum
mechanical, relativistic, and thermodynamic nature of the
photon gas. Also as before, to keep the discussion elemen-
tary, the value of r can be stated without broaching the for-
mula in Eq. !11".
From Eqs. !8" and !2", it is clear that the condition of

constant entropy is
T3V!constant or PV4/3!constant. !12"

Interestingly, the second form in Eq. !12" is similar to the
corresponding condition in Table I for an ideal gas, for which
PV(!constant, where (!Cp /CV!5/3. However, the simi-
larity is only formal because for the photon gas, Cp does not
even exist, because one cannot vary the temperature at con-
stant pressure for a photon gas.
Having found Eqs. !2" and !12", we can sketch a reversible

Carnot cycle on a pressure–volume diagram. We take advan-
tage of the fact that the photon gas can be brought to zero
volume, so that the Carnot cycle looks as shown in Fig. 2.
The horizontal isotherms 1–2 and 3–4 come from the fact
that P!P(T). The adiabatic segment 2–3 is qualitatively
similar to reversible adiabatic curves for the ideal gas. The
vertical segment 4–1 corresponds to heating the container
walls from Tc to Th , with zero photons in the zero volume
container. Along this segment, the walls undergo a heat pro-
cess, but there is no photon gas present and thus Q!0 for a
photon gas working fluid.
Figure 2 makes it clear that the pressure–volume represen-

tation of a Carnot cycle does not necessarily appear as it does
for an ideal gas. The purpose here is not to exhibit a real
working fluid, but rather to illustrate that a Carnot cycle’s
P–V plot can differ from that obtained for the ideal gas. It is
a good exercise for students to use the photon gas equations
to show that, as expected, the thermal efficiency is )!1
#Tc /Th , the reversible Carnot cycle efficiency for any
working fluid.

III. COMPARISON: IDEAL AND PHOTON GASES

After introducing the photon gas and examining its behav-
ior under isothermal and adiabatic processes, it is useful to

compare it with the ideal gas. One comparison examines
corresponding equations of state of the two gases. Such a
comparison is shown in Table II, using the fact that N
!2.03"107 VT3. In this view, the pressure and internal en-
ergy functions are remarkably similar if the dependent vari-
able N is displayed explicitly for the photon gas. Thus for
example, the average energy per photon in a photon gas is
2.7 kT , compared with 1.5 kT for the ideal gas. Similarly,
the pressure P of the photon gas is 0.9 NkT/V compared
with NkT/V for the ideal gas. Keep in mind, however, that N
is not an independent variable for the photon gas, so the
similarities are strictly formal. The entropy functions are
very different looking for the photon and ideal gases. Nota-
bly, the entropy per photon is 3.6k , independent of tempera-
ture.
A numerical comparison is shown in Table III. The ideal

gas is taken to have the mass of monatomic argon and is at
300 K and normal atmospheric pressure. The numerical val-
ues of N , U , P , and S for the photon gas are all approxi-
mately 10 or more orders of magnitude smaller than for the
ideal gas, which is why we can ignore the photon gas when
discussing the thermodynamics of an ideal gas in the vicinity
of room temperature and atmospheric pressure.
On the other hand, for sufficiently high temperatures, the

number of photons can exceed the number of ideal gas atoms
in an equal volume V . Indeed, it is straightforward to show
that if 1.00 mol of argon ideal gas is at standard atmospheric
pressure, 1.01"105 Pa, the corresponding average number
of photons exceeds the number of atoms for any V if T
%1.38"105 K. The equations in Table II imply that for T
*1.41"105 K, the ideal and photon gases have nearly the
same internal energies and pressures, while the ideal gas en-
tropy is still significantly larger than the photon gas entropy.
Of course, because of the T3 behavior of N and S , and the T4
behavior of P and U , the photon gas will dominate the ideal
gas in all respects for sufficiently high T . In this discussion
we have ignored the ionization of the ideal gas atoms that
would occur at such high temperatures.
Other comparisons are possible. For example, the ideal

gas entropy becomes negative for sufficiently small T and
diverges to negative infinity in the limit T→0. This inad-

Fig. 2. A plot of pressure P versus volume V for a reversible Carnot cycle
using a photon gas as the working fluid. The horizontal segments 1–2 and
3–4 are isothermals at temperatures Th and Tc , respectively. Segment 2–3
is a reversible adiabatic expansion. Segment 4–1 occurs at zero volume and
therefore entails only the container walls and not the photon gas.

Table II. Comparison of equations for classical ideal and photon gases.

Classical ideal gas Photon gas

N is specified and fixed N!rVT3

U!
3
2NkT U!bVT4!2.7NkT

P!NkT/V P!
1
3bT4!0.9NkT/V

S!Nk# ln(T3/2V/N)$ln(2%mk/h)3/2$ 5
2$ S!

4
3bVT3!3.6Nk

Table III. Numerical comparison of classical ideal and photon gas functions.
Here the ideal gas is 1.00 mol of monatomic argon at P!1.01"105 Pa,
V!2.47"10#2 m3, and T!300 K.

Function Classical ideal gas Photon gas

N 6.02"1023 atoms 1.35"1013 photons
U 3.74"103 J 1.51"10#7 J
P 1.01"105 Pa 2.04"10#6 Pa
S 155 J/K 6.71"10#10 J/K
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equacy of the ideal gas model comes from its classical char-
acter. In contrast, the photon gas entropy approaches zero in
the T!0 limit. Similarly, the ideal gas constant volume heat
capacity is constant and remains so in the zero temperature
limit, unlike real gases, whose heat capacities approach zero,
consistent with the third law of thermodynamics. The photon
gas heat capacity at constant volume, CV!4bVT3, ap-
proaches zero in this limit, as the number of photons ap-
proaches zero. The behavior of the photon gas reflects its
quantum mechanical nature.
The ideal gas gives no indication of the condensation phe-

nomenon that a real gas experiences at temperatures below
its critical temperature. As a real gas is compressed isother-
mally at a temperature below its critical temperature, part of
it begins to condense into the liquid state, keeping the pres-
sure constant. Although it is a very different kind of system,
with very different physics, the photon gas can shed light on
this phenomenon because under isothermal compression,
photons get absorbed, becoming part of the energy of the
walls, providing an analogy to the vapor-to-liquid transition:
the photons play the role of the vapor molecules, and the
absorbed energy of the walls are the analog of the liquid
molecules. The energy of compression to zero volume for the
photon gas is the rough analog of the heat of condensation
for the real gas.
For the photon gas, the pressure remains constant as the

volume decreases at constant temperature because the num-
ber of photons decreases while the energy of the walls in-
creases. For a real gas, the pressure remains constant during
isothermal compression because the number of gas mol-
ecules decreases as gas molecules become liquid molecules.
Condensation phenomena occur because of attractive forces
between molecules, while photon absorption occurs because
atoms and molecules continually absorb and emit radiation,
as their electronic energies increase and decrease. Although
the physics differs for the two phenomena, both are charac-
terized by constant temperature, constant pressure, and a
variable number of gas particles. Discussion of these matters
can shed light not only on radiation, but on the phenomenon
of condensation.

IV. TWO BRIEF EXAMPLES

Perhaps the most exciting example of a photon gas is the
cosmic microwave background radiation.18 The latter is in
essence a gas of ‘‘old’’ photons that was created in the early,
hot Universe approximately 13 billion years ago, and which
has cooled to 2.7 K. Inserting the latter temperature and the
value of r in Eq. !11" into Eq. !10" gives N/V
!416 photons/cm3. Such photons, which make even dino-
saur bones seem rather young, are in our vicinity all the time.
An awareness of the photon gas opens the door to an under-
standing of this remarkable phenomenon.
A second example uses a well-known result from kinetic

theory19 together with Eq. !10". Suppose a photon gas exists
in a cavity within a solid that is at temperature T , and that
photons can leak out through a small opening in the walls.
The kinetic theory result for the particle flux is 1

4(N/V)c
! 1

4rcT3, and the energy flux, measured in watts/m2, is
1
4(N/V)(U/N)! 1

4cbT4. This result is the well-known energy
flux from a blackbody, where cb/4!+!5.67"108

Wm#2 K#4, is the Stefan–Boltzmann constant. In appropri-
ate contexts, one can move on to study Planck’s radiation
law and, ultimately, quantum mechanics.

V. CONCLUSIONS

The photon gas can enrich the introduction to thermody-
namics. Its basic equations lead students into new territory
involving creation and annihilation of photons, which pro-
vides a thought provoking introduction to modern physics
ideas.
An important related point is that photons are everywhere.

That is, because all matter radiates, it is literally impossible
to have a region of space that is free of photons. In this
sense, the photon gas has the distinction of being ubiquitous,
another point that can pique the intellectual curiosity of stu-
dents.
Despite the evident richness of the photon gas, its equa-

tions of state are tractable and have straightforward interpre-
tations. In addition to its potential for enriching the study of
thermal physics, the photon gas serves as a good foundation
for subsequent introduction to cavity radiation.
In summary, the photon gas has much to offer teachers and

students. Its study can supplement the ideal gas or can be
initiated in a course on modern physics. A more in-depth
treatment is appropriate for junior or senior level thermal
physics.
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APPENDIX

The objective of the Appendix is to derive Eqs. !1" and
!2". Kinetic theory enables us to deduce a simple relationship
between the internal energy U and pressure P of a photon
gas,

P!T "!
1
3
U!T ,V "

V !
1
3 u!T ". !A1"

The right-hand side defines the energy density u(T).
To obtain Eq. !A1", we make several assumptions. First,

we assume isotropy, namely, the average number of right-
ward moving photons within a specified range of velocity is
the same as the corresponding average number of leftward
moving photons. Denote the number of photons per unit vol-
ume with x components of velocity between cx and cx
$dcx by n(cx)dcx . The assumed isotropy implies n(cx)
!n(#cx). !Because photons all have speed c , cx varies
solely because of differing velocity directions." Integration
over cx gives

#
#c

c
n!cx"dcx!2#

0

c
n!cx"dcx!

N
V , !A2"

where N is the !average" number of photons. The function
Vn(cx)/N is a probability distribution function that can be
used to calculate averages such as

cx
2!#

#c

c Vn!cx"
N cx

2 dcx!2#
0

c Vn!cx"
N cx

2 dcx . !A3"
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The last step follows because n(cx)cx
2 is an even function of

cx . Equation !A3" will be used in our derivation of Eq. !A1".
Our second assumption is that there is a well-defined av-

erage photon energy ,e-, which depends solely on the wall
temperature and not on the system volume V . This assump-
tion is motivated by the expectation that the energy distribu-
tion of the emitted photons depends on the wall temperature.
In contrast, the average number of photons N must depend
on both temperature T and volume V because in equilibrium,
the absorption and emission rates can be equal only if N
achieves a sufficiently large value, which increases with V .
Our last assumption is that N is proportional to the system
volume; that is, N(T ,V)!n(T)V . We now proceed with the
kinetic theory derivation.
Fix the right wall in Fig. 1 and denote the container’s

horizontal length by L and its cross sectional area by A .
Choose a small time interval &t&L/c , and consider right-
ward moving photons with x-components of velocity be-
tween cx and cx$dcx , located within distance cx&t from
the right wall. The latter region has spatial volume Acx&t ,
and an average number of photons, (Acx&t)n(cx)dcx ,
within it will collide with the right wall in time interval &t .
The momentum magnitude for a photon with energy e is e/c
and the x component of its momentum is (e/c)(cx /c). In an
elastic collision with the right wall a photon’s momentum
change is 2(e/c)(cx /c), and the average force it exerts on
the wall during time &t is 2ecx /(c2&t).20 The average force
for all such collisions by photons with average energy ,e-
and x component of velocity between cx and cx$dcx is
(2,e-cx /c2)(Acx)n(cx)dcx .
If we integrate over cx from 0 to c and divide by area A ,

the average pressure on the wall from photons impinging at
all angles is

P!
2,e-
c2 #

0

c
n!cx"cx

2 dcx!
,e-N
Vc2 cx

2!
1
3

,e-N
V . !A4"

The penultimate step follows from Eq. !A3" and the last step
follows from the isotropy condition, cx

2!c2/3. In Eq. !A4",
N,e-!U , the internal energy of the photon gas. With our
assumptions that ,e- is solely a function of T and N
!n(T)V , Eq. !A4" reduces to Eq. !A1", P(T)! 1

3u(T),
where u(T)!U/V . It is clear from Eq. !A1" that pressure is
solely a function of temperature and thus, the pressure–
volume isotherms for a photon gas form a family of
constant–pressure curves. We now use the forms P!P(T)
and U!u(T)V , along with the Carnot cycle in Fig. 2 to
derive Eq. !1". Along segments 1–2, 2–3, 3–4, and 4–1, the
internal energy changes of the photon gas are &U12
!u(Th)V , &U23!# 1

3'V
V$&Vu(T)dV , &U34!#u(Tc)(V

$&V), and &U41!0, respectively. Because U is a state
function, these changes must add to zero along the cycle.
Simplification occurs when Th#Tc&Tc and &V&V , in
which case we replace &V by dV . Then the addition of the
four internal energy changes gives u(Th)V# 1

3u(T)dV
#u(Tc)(V$dV)!0, where Tc.T.Th . Replacement of
u(T) with u(Tc) induces an additive error .du/u(Th)
#u(Tc). Thus to first order in du and dV the sum of the
internal energy changes around the cycle reduces to

V du# 4
3 u dV!0. !A5"

The individual entropy changes of the photon gas along
the Carnot cycle are &S12! 4

3u(Th)V/Th , &S23!0, &S34
!# 4

3u(Tc)(V$dV)/Tc , and &S41!0, respectively. Be-
cause S is a state function, these changes also must add to
zero along the cycle. Using dV&V and dT/Th#Tc&Tc ,
we have 1/Th*(1#dT/Tc)/Tc , and the condition for zero
entropy change along the cyclic path becomes

4
3 $ !u!Th"#u!Tc""V

Tc
#
u!Tc"dV

Tc
#
u!Th"V dT

Tc
2 %!0.

!A6"

Replacing Tc with T and Th with T$dT , and retaining only
first order terms, Eq. !A6" becomes

V du#u dV#
uV dT
T !0. !A7"

We can eliminate dV by combining Eqs. !A5" and !A7" to
obtain

1
4 du!

u
T dT . !A8"

Finally, integration of Eq. !A8" gives u(T)!bT4, which is
equivalent to Eq. !1". As mentioned, the numerical value of b
is obtained from statistical mechanics. The combination of
Eqs. !1" and !A1" gives Eq. !2".

a"Electronic mail: hsleff@csupomona.edu
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I. INTRODUCTION

Almost all standard texts on thermodynamics present the
Carnot cycle based on the thermodynamic behavior of the
ideal gas.1 This is certainly well justified. The ideal gas ap-
proximately represents the vapor phases of fluids at high
temperatures for which the heat engine is constructed. For
the ideal gas we also know theP vs V relationship on adia-
batic and isothermal paths exactly.

Although not as practical perhaps, the thermodynamic be-
havior of a photon gas is simpler and in some ways richer
than that of the ideal gas. Why not therefore construct the
Carnot cycle for a photon gas? For a photon gas we know all
the thermodynamic functions such asU, F, S, P, valid at all
temperatures. It is easy to construct the Carnot cycle not just
in the PV plane but also in other planes, especially because
the entropy is given very simply~not logarithmic inT as it is
for the ideal gas!.

For a photon gas the chemical potentialm vanishes.2,3 This
fact permits us to regard a photon gas as being placed in a
state of coexistence. For this gas, then, there is an added
richness provided by the physics of a first-order transition,
out of reach for the conventional ideal gas. Perhaps most
helpful pedagogically, the thermodynamic laws are lucidly
illustrated through the Carnot cycle of a photon gas. There is
no need to bring in statistical mechanics to achieve it. We
can arrive at all the thermodynamic consequences starting
from just one experimental fact, the one on the energy den-
sity.

II. THERMODYNAMIC FUNCTIONS OF A PHOTON
GAS

Long ago it was already established that the energy den-
sity of a photon gas depends very simply on the temperature
only.2 If u is the energy density andT the temperature,

u[
U

V
5sT4, ~1!

wheres is the Stefan–Boltzmann constant,V the volume,
andU the total energy. From~1! it follows at once that the
specific heat at constant volumeCV is

CV54sVT3. ~2!

The entropyS can be obtain fromCV by the simple integral

S5E
0

T

CV

dT

T
5

4

3
sVT3. ~3!

Hence the Helmholtz free energyF follows from the defini-
tion

F[U2TS52 1
3sVT4. ~4!

Finally the pressureP follows from

P52
]F

]VD
T

5
1

3
sT4. ~5!

The pressure depends only on one variable, in this caseT,
which is indicative of being at a phase boundary. Note also
that ~1! and ~5! give the standard resultPV5(1/3)U. We
now have the knowledge of all the thermodynamic functions
needed to construct the Carnot cycle for a photon gas. See
Kelly4 for another way of obtaining these thermodynamic
functions. Also see Pearson5 and Massa6 for the applicability
of thermodynamics to blackbody radiation.

III. CARNOT CYCLE

The Carnot cycle expresses thermodynamic relationships
in the P and V planes. The cycle or circuit is composed of
four connected paths, alternatingly of constantT and con-
stant S. For a photon gas the path of constantT is trivial
since P does not depend onV. The path of constantS is
determined if we combineP andS to eliminateT, see~3! and
~5!, giving

PVb5 f ~S!, ~6!

where b54/3 and f (S) is a function of the entropy only,
hence a constant on an adiabatic path.

Using ~5! and ~6! we can readily construct the Carnot
cycle as shown in Fig. 1. The paths are indicated, 1–2 and
3–4 the isothermal and 2–3 and 4–1 the adiabatic. The iso-
thermal paths are set atT8 andT9(T8,T9) and the adiabatic
paths atS8 andS9(S8,S9).

Let X( i j )5X( j )2X( i ), whereX( i ) is a thermodynamic
function at thei th position of the cycle, andij the adjacent
positions. Observe that on theisothermalpathsU( i j )Þ0.
Hence,Q( i j ).W( i j ), whereQ andW are, respectively, the
heat and work done. This behavior is different from that of
the ideal gas. But on theadiabatic pathsU( i j )52W( i j ).
For one cycleQ5W still.

We can also calculate the heat exchanged. SinceQ
5TDS, on the isothermal pathsQ(12)5T9(S92S8) and
Q(34)5T8(S92S8). On the two adiabatic pathsQ50, of
course. We can write down the efficiencyh at once

h[
Q~12!2Q~34!

Q~12!
5

T92T8

T9
,1. ~7!
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The photon engine yields the same efficiency as the conven-
tional ideal gas.1,4 The inequality exists sinceT8 can never
be zero by the third law.

Since DU50 for one cycle.W5Q(12) –Q(34) by the
first law. The work done is also represented by the area en-
closed by the cycle. This is even simpler to demonstrate,
since on the isothermal pathsP is independent ofV, so that
PdV5PDV. It is also elementary to transform the Carnot
cycle to other sets of thermodynamic variables, e.g.,UV as
shown below.

IV. CARNOT CYCLE AND PHYSICAL PROPERTIES

The Carnot cycle is particularly useful for illustrating cer-
tain physical properties defined on an isothermal or adiabatic
path. They are given by the slope of a path of the Carnot
cycle ~sometimes with a negative sign or by its inverse.!

As shown in Fig. 1, the isothermal paths~12 and 34! are
flat, implying that the isothermal compressibilitykT is `.
That is, a photon gas is infinitely compressible on an isother-
mal path since the radiation pressure is independent of the
volume. The adiabatic paths~23 and 41! are not flat and their
slope~actually the negative inverse! corresponds to the adia-
batic compressibilitykS53/(4P). Curiously a photon gas is
not infinitely compressible on an adiabatic path. On such a
path the radiation pressure does in fact depend on the vol-
ume.

The inequalitykT.kS is trivially satisfied. AlsokT5`
implies that CP5` from the well-known relationkT /kS

5CP /CV . The slope of an adiabatic path is thus a measure
of P. Observe that there is a decrease in the magnitude of the
slope withV ~compare, e.g.,P2 andP3!.

The above Carnot cycle can be transformed to theUV
plane as shown in Fig. 2. The slope of a path here is also
meaningful. By the second law, the slope of an adiabatic
path is negative of the pressure. The slope of an isothermal
path is the energy density.

We can also determine the angle formed by two paths at
an intersection which amounts to a difference in the slope at
that point. Let

D slope[
]U

]V D
S

2
]U

]V D
T

. ~8!

The first term on the right-hand side may be replaced by2P
by the second law. Also, since

P52
]F

]VD
T

andF5U2TS quite generally

D slope52T
]S

]VD
T

~8a!

52T
]P

]T D
V

. ~8b!

For the photon gas,~3! may be used in~8a! or ~5! in ~8b!. If
Eq. ~5! is used,

]P

]T D
V

5
dP

dT
5S/V, ~9!

noting thatP does not depend onV. Hence,

D slope52TS/V. ~10!

At an intersection, say at point 2, the difference in slope is
determined byV2 , the position of the volume, andS9 and
T9, the values of the two intersecting paths. Hence at any
given point on theUV plane ]U/]V remains highly path-
sensitive.

We can also look at the differences at two different points
on a path. Take, for example, points 1 and 2. The differences
are, respectively,2T9S8/V1 and 2T9S9/V2 . But they are
identically the same since on this isothermal pathS8/S9
5V1 /V2 . Now take points 2 and 3. The differences remain,
increasing with the volume as may be seen from Fig. 2.

Fig. 1. P vs V. Isothermal and adiabatic paths are indicated byT and S,
respectively. The two values ofT areT8 andT9 with T8,T9. Similarly the
two values ofS are S8 and S9 with S8,S9. The paths following 12341
constitute one cycle.

Fig. 2. U vs V. The cycle shown in Fig. 1 is redrawn in theUV plane. The
slope ofU along an adiabatic path is the~negative! pressure while the slope
along an isothermal path is the energy density.
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We cannot end this section without looking, if only
briefly, at what we might call grandiosely the adiabatic pas-
sage of the universe. Shown in Fig. 3 is an adiabatic path in
the TV plane, which the expansion of the universe is said to
follow.

From point a to point b ~the dotted line of Fig. 3! the
universe has undergone a ‘‘free’’ expansion. At pointb, at a
temperature of about 3000 K, matter and radiation have be-
come decoupled.7 As the entropy of the universe is contrib-
uted almost entirely by photons, the expansion of the uni-
verse falls on an adiabatic path, the solid line from pointb to
point c, the latter point representing the present day at a
temperature of about 2.73 K. Observe that the slope of the
temperature line on the adiabatic path is steeper than that on
a free expansion path. Evidently the universe has cooled rap-
idly following an adiabatic expansion path, which, if it could
be imagined, is one leg of a Carnot cycle for the universe.

V. PHOTON GAS AND STATE OF COEXISTENCE

It was asserted that the thermodynamics of a photon gas is
simpler but richer than that of the ideal gas. In this section
we will briefly illustrate an extra feature that makes a photon
gas richer.

The form of P—depending only onT, not bothT and V
@see Eq. ~5!#—is suggestive of the behavior at a phase
boundary. One might thus think thatdP/dT given by ~9! is
just the slope at this phase boundary in thePT plane, hence
the latent heatL. The slope along a phase boundary between
two coexisting phases~say 1 and 2! is described by the
Clausius–Clapeyron equation1

dP

dTU
1,2

5
S22S1

V22V1
. ~11!

If one were to setS150 andV150 in ~11!, the right-hand
side of ~11! corresponds exactly to~9!.

Now the vanishing of entropy and volume for one of the
coexisting phases is not unfamiliar. It occurs in an ideal or-
dinary Bose gas at a transition temperature, where two

phases coexist, the condensed and uncondensed. The entropy
of the condensed phase is zero and this phase occupies zero
volume.8 The other phase, made up of particles out of the
condensate, has finite entropy and occupies finite space.

A signature ofBEC is the vanishing of the chemical po-
tentialm. When it vanishes,P does not depend onV @cf. ~5!#.
Also dP/dT5S/V just as in ~9!. Since the latent heatL
5TS never vanishes, the transition is first order.8 The phase
boundary is given by the conditionrT22/35const.8 This con-
dition also implies that whenm50 the entropy perexcited
particle is constant. Thus theBECphase boundary is also an
isentropic line. Let us see whether the above physics can be
made to explain the behavior of a photon gas.

Now G5F1PV5mN, whereG is the Gibbs free energy.
For a photon gas~4! and ~5! give G50, hencem50 pro-
vided that N,`. This result is also supported bym
5]F/]N)V,T50 by ~4!. Alternatively if we setm50 in the
Bose–Einstein function and use the photon energy spectrum,
all the thermodynamic functions~1!–~5! are exactly recov-
ered from it.8–10 Hence a photon gas is fundamentally no
different from other Bose gases except for the special prop-
erty that its chemical potential is zero at allT.

From ~3!, rT21/35(3/4s)/(S/N). It is known that
S/kBN52p4/(45z(3))'3.602,8,9 where kB is the Boltz-
mann constant andz~3! Riemann’s zeta function of order 3.
HencerT21/35const, also delineating an isentrope~a linear-
dispersion analog of the quadratic-dispersion result men-
tioned above!. The analogy toBEC in an ordinary Bose gas
thus leads us to say that the photon gas pressure, see~5!, and
its slope, see~9!, are together describing a phase boundary.
This slope also gives us the latent heatL5TS5(4s/3)VT4

by ~3!, which is finite for 0,T,`, implying a first-order
transition.

The vanishing of its chemical potential at any T implies
that a photon gas, unlike an ordinary Bose gas, is in a state of
BEC always. These photons carry finite fixed entropy and
occupy finite space just as the ordinary Bose particles out of
the condensate do when at zero chemical potential.BEC fur-
ther implies that this photonuncondensedphase coexists in
the momentum space with another phase. The photoncon-
densedphase is the state of zero point motion, a state not
coupled to temperature. Since this ground state has infinite
energy, it could simply refer to a photon reservoir~e.g., walls
of a cavity in blackbody radiation!, hence a vacuum state,11

much like the ground state of phonons. It is strikingly similar
to the condensate state of an ordinary Bose gas, also a par-
ticle reservoir for the uncondensed phase. Such a state has
zero entropy and volume and is not coupled toT.

Being at zero chemical potential also means that photons
may carry only fixed entropy. It is this fact that gives rise to
the constancy of the entropy of the universe. When the uni-
verse expands and cools, the physical process is thus con-
strained to take place on an adiabatic path. See Fig. 3. The
adiabatic paths in the photon Carnot cycle are really the
phase boundaries of a photon gas.

VI. ADIABATIC EQUATION OF STATE

When thermodynamic functions are confined to an adia-
batic path, their behavior becomes constrained. The particu-
lar relationship amongPVT on an adiabatic path may be
generally termed anadiabaticequation of state.

Fig. 3. T vs V. The adiabatic path~solid line! indicates the cooling of the
universe starting at pointb and continuing through the present day at point
c. The early universe is assumed to have expanded ‘‘freely’’ at some starting
point a ~dotted line! until the adiabatic cooling began at pointb. Point a
must lie left of the adiabatic line since the entropy must have increased with
expansion until it attained the present day value.
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On an adiabatic path, we may takeU5U(T,V), with T
replacingS. Then with the second lawdU52PdV, we de-
duce~see the Appendix!

dT

T
1

]PV

]U D
V

dV

V
50. ~12!

Hence the relationship betweenT andV on an adiabatic path
is determined solely by the relationship between the pressure
and energy density, a fundamental relationship. For a photon
gas we obtain

TVa5 f ~S!, ~13!

wherea51/3 andf, a function of the entropy, is a constant
on an adiabatic path. If the pressure energy–density relation-
ship is applied to the second law, we obtain a second form of
the adiabatic equation of state,

PVb5g~S!, ~14!

whereb511a54/3 andg is another constant on an adia-
batic path. The values of these exponents can be readily veri-
fied from ~3! and ~5!.12~a!

The adiabat equation of state has but one independent
variable. In several earlier texts12~a!,12~b! the exponentb ~of-
ten denoted byg! was incorrectly attributed~as pointed out
by Pathria8! to the ratio of the specific heatsCP /CV . For the
ideal gas in 3d this ratio fortuitously is equal to 5/3. But the
origin is in the pressure energy–density relationship of the
ideal gasP52u/d.

VII. NEUTRINO GAS

In the early universe, the neutrinos are thought to have
played an important role in its evolution.13,14As the universe
cooled and freely expanded, the neutrinos presumably be-
came decoupled from matter and thermalized in much the
same way as the photons.

Neutrinos are Fermi particles. One might thus expect to
find here thermodynamic functions which are very different
from those of a photon gas.11 But according to a recent uni-
fication work on ideal gases, this is not the case.9 Because
the photon and neutrino gases both have zero chemical po-
tential, their thermodynamic functions are simply related.
There is a sort of reflection symmetry between the two gases
of zero chemical potential. For example, for equalV andT,
their energies are related by9

U~y!5kU~g!, ~15!

wherek51/237/8. Of this numberk, 1/2 is the polarization
degeneracy ratio between the two massless particles and 7/8
is a measure of this reflection symmetry.~This numberk
would go into the Stefan–Boltzmann constant for a neutrino
gas.!

As CV follows from U, S from CV , andF therefrom, and
finally P from F ~see Sec. II!, the neutrino thermodynamic
functions are those given for a photon gas adjusted by the
constantk. Consequently all the thermodynamic conclusions
drawn for a photon gas such as the adiabatic expansion, adia-
batic equation of state apply equally as well. For example,
each neutrino carries a fixed amount of entropy, independent
of T. The neutrinos of the universe are thus on an adiabatic
path of expansion and have a background temperature just as
the photons do.14,15

Since the neutrino pressure also depends onT only, one is
also led to say that a neutrino gas is at a phase boundary.
~Recall that condensation or coexistence is not a statistical
property.! These neutrinos are distributed over excited states,
collectively forming anuncondensedphase. It coexists with
another phase, composed of those in zero point motion, the
neutrino reservoir, the same as the condensed photon phase.

VIII. CONCLUDING REMARKS

It may perhaps come as a surprise that the thermodynamic
functions of the two massless gases are so simply related in
spite of their different statistics. A brief review of the recent
work unifying the statistical thermodynamics of ideal gases
may help shed some light. As is well known, ideal gases
come in two species, Fermi and Bose. If their energy spec-
trum is either linear or quadratic, their thermodynamic func-
tions are all expressible by a function called polylogs Lis(z),
where s and z are two parameters.@It is a transcendental
function much like the Bessel functionJv(t).] In any case,
s5d/211 if a quadratic spectrum andd11 if a linear spec-
trum, whered is the dimensionality; andz51z if Bose and
2z if Fermi, wherez5exp(m/kBT) the fugacity. For the ideal
gases,2`,z,1.9

If, for example,d52 with a quadratic spectrum~e.g., or-
dinary Bose and Fermi gases!, 2Li2(2`,z,0) can be
mapped onto Li2(0,z,1) exactly, implying that the 2d
Fermi and Bose gases are thermodynamically equivalent in
spite of their different statistics. This explains an old result of
May on the specific heats of the two gases.16,17

If d53 with a linear spectrum~e.g., massless gases!, there
is no such mapping property for this function. But for pho-
tons and neutrinos,z561, respectively, and2Li4(21)
52k Li4~1!, where 2k57/8, a reflection property of this
function mentioned previously. What is being shown here is
that insofar as thermodynamics goes, the difference in statis-
tics is far outweighed by zero chemical potential.

Indeed the vanishing of the chemical potential implies that
the entropy is free of log terms.9 It implies that the entropy
per particle is a universal constant.8 It implies that these
gases are confined to a point on a phase boundary and con-
strained to move along the boundary asT changes. This
boundary is a line of first-order transition, also of constant
entropy. Any expansion or cooling is thus adiabatic.

As regards the photons and neutrinos of the early universe,
they must have followed the adiabatic cooling paths as the
universe has expanded. The neutrino path is the same as the
photon path shown in Fig. 3, merely shifted accordingly by
the reflection propertyk. If we were to assume that these
primeval gases had reached their adiabatic paths at approxi-
mately the same time in the early universe, their present day
background temperatures would also be approximately the
same. The neutrino background temperature, estimated to be
1.95 K, is somewhat lower than the photon.15 That is, the
initial temperature of the photons is somewhat higher, attrib-
uted to the reactione1ē→g before the photons attained
final thermalization.
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APPENDIX: ADIABATIC EQUATION OF STATE

The equation of state for a neutral, homogeneous fluid has
two independent variables, sayP5P(V,T) if N is fixed. On
adiabatic paths one of them may be reduced so that only one
remains independent. The equation of state thus should gen-
erally be simpler on these paths, which might be termed the
adiabaticequation of state. We will show that it has a uni-
versal structure, determined solely by the relationship be-
tweenU andPV.

Let N be fixed henceforth. In generalU5U(S,V). But
when on adiabatic paths,S therein may be replaced byT or
P. We can consider both possibilities separately.

~1! Let U5U(T,V) with S5constant. Then,

dU5
]U

]T D
V,S

dT1
]U

]V D
T,S

dV. ~A1!

On adiabatic paths the second law gives

dU52P dV. ~A2!

Combining the two equations, and henceforth suppressing
the subscriptS ~since our consideration is on adiabatic paths
only! we have

]U

]T D
V

dT1H ]U

]V D
T

1PJ dV50. ~A3!

Using the well-known general relation

]U

]V D
T

5T
]P

]T D
V

2P, ~A4!

and rearranging a little we can put~A3! in the final form

dT

T
1xV

dV

V
50, ~A5!

where

xV5
]PV

]U D
V

. ~A6!

Note that if we had taken]U/]V)T,S50 in ~A1!, it would
not have affected~A5! since the same term is also present in
~A4!.

~2! Now let U5U(P,V). Then,

dU5
]U

]P D
V

dP1
]U

]V D
P

dV. ~A7!

Hence together with the second law~A2!,

]U

]P D
V

dP1H ]U

]V D
P

1PJ dV50. ~A8!

We can rewrite~A8! in parallel to~A5! as

dP

P
1~xV1xV /xP!

dV

V
50, ~A9!

where

xP5
]PV

]U D
P

. ~A10!

Both ~A5! and ~A9! represent general relationships between
V and T, andV and P, respectively, valid on any adiabatic
path. Their solutions depend only on the relationship be-
tweenU andPV, expressed throughxV andxP .

If xV5xP5a, i.e., PV5aU, wherea is a pure number,
~A5! and ~A9! give, respectively,

TVa5 f ~S!, ~A11!

and

PVb5g~S!, ~A12!

whereb5a11, andf andg are functions ofS only, hence
constant on a given adiabatic path.

If a51/3 and 2/3, henceb54/3 and 5/3, respectively,
~A11! and~A12! yield the familiar results for the photon gas
and the classical ideal gas in 3d, respectively.

For systems whosePV is related toU by a simple number,
~A11! and ~A12! are two form of the adiabatic equation of
state. There is just one independent thermodynamic variable
and also only one independent exponenta on adiabatic
paths.
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