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= Problemas

1. Examine de manera concisa y rigurosa los resultados presentados en las
siguientes referencias, las cuales abordan la termodinamica de la radiacion
electromagnética.

(i) Leff, Am. J. Phys. 70 (8), pag. 792 (2002)
(ii) Kelly, Am. J. Phys. 49 (8), pag. 714 (1981)
(iv) Lee, Am. J. Phys. 69 (8), pag. 874 (2001)

Se considerard de manera minima una discusién unificada, clara y critica
de dichos resultados.

2. Considere un gas ideal cléasico en tres dimensiones.

a) Suponga que un mol de dicho gas, que se encuentra inicialmente en el
estado (P, T;,V;), es sometido a una expansiéon adiabdtica reversible
llevandolo al estado (Py, Ty, Vy), con Py < P;. Calcule Ty y demuestre
que el trabajo realizado sobre el gas es W = Cy (T — T;)

b) Suponga ahora que un mol de gas es comprimido por un pistén en el
que se coloca una masa m de tal manera que la presion inicial es

P, = Py + %,
donde Py es la presion atmosférica y A es el drea del pistén (ver fi-
gura). La masa es removida instantdneamente y se asume que el gas
estd aislado térmicamente de manera perfecta y que el piston resbala
sin friccion. ;Cudl es la temperatura final 7 como funcién de T}, Py/ P,
y 7 = Cp/Cy? Dibuje curvas representativas de Ty /T; y T}/T; como
funcién de Py/P; para 0 < Py/P, < 1.

¢) {Se pudo haber predicho, sin calcular, que T} > T¢? ;En cudl de la
expansiones anteriores se proporciona mas trabajo a los “alrededores”?
En el experimento del inciso anterior reincorporamos la masa sobre el
pistén. Calcule la temperatura y volumen final, T} y V. Compare con
Ty Vi

Y
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Thermodynamics of blackbody radiation
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The thermodynamics of homogeneous, isotropic, unpolarized electromagnetic
radiation in a cavity with volume and temperature controllable as the independent
variables is analyzed. Internal energy, pressure, chemical potential, enthalpy, Gibbs
free energy, heat capacities, expansivity, and compressibility are all derived from the
Helmholtz free energy. Topics treated are the third law, isothermal, adiabatic, and
free expansion, throttling process, phase equilibrium, stability, and the Carnot cycle.

INTRODUCTION

The basic problem of this paper is to examine the ther-
modynamics of blackbody radiation. The usual emphasis
on the Planck distribution is almost completely surpressed
in favor of the overall integrated results treated as a ther-
modynamic system. A prime purpose of this study is to form
a detailed link between thermodynamics and cavity radia-
tion in such a way so as to stimulate the interest and perhaps
enhance the knowledge of the professional scientist, and to
present the material in a fashion suitable for a course in
thermodynamics.

There are probably many reasons why such a topic is
important. The historical and both the theoretical and ap-
plied aspect of blackbody radiation are well known and need
not be repeated here. Yet, the present emphasis is different
in that the interest is on the macroscopic theory rather than
the distribution law. One finds that it’s possible to simul-
taneously think in terms of electromagnetic theory and
thermodynamics, so that the problem tends to force a unity
of thought between seemingly two unrelated subjects in
physics. From a pedagogical viewpoint, the student learns
(sometimes with considerable surprise) that thermody-
namics can be applied to other systems besides the usual
solids, liquids, and (ordinary) gases.

Many texts contain specialized treatments of blackbody
thermodynamics. Rather than review the literature at this
point, those that I've found most useful will be referenced
in the body of the paper. Some of the topics treated here,
as specifically applied to radiation, such as the third law,
free expansion, phase change, Carnot cycle, couldn’t be
found in any of the source material, so that only general
references to these phenomena are made. The historical
aspect of the problem is well treated by Kangro.!

The paper begins with a presentation of the Helmholtz
free energy as a function of temperature and volume, from
which all of the other thermodynamic parameters follow.
In particular, the various relations are summarized in Table
1. By the usual definitions, the heat-capacities, volume ex-
pansivity, and isothermal compressibility are derived. A
short section is devoted to the Gibbs free energy and the
chemical potential because of their unique (yet trivial) roles
in cavity radiation. Likewise, a separate section is reserved
for the third law of thermodynamics for similar reasons.
This section includes also a brief discussion of zero-point
entropy and energy. The emphasis then changes from the-
oretical to the more engineering type processes such as
isothermal, adiabatic, and free expansions, a throttling
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process, phase equilibrium, stability, and the Carnot cycle.
The paper concludes with some comments and discussion
of the treated topics.

FUNDAMENTAL RELATIONS

The system to which the thermodynamics is being ap-
plied is certainly a strange one when compared to typical
problems encountered in, say, engineering thermodynamics.
This system consists of electromagnetic radiation in ther-
modynamic equilibrium inside a closed, completely evac-
uated cavity of arbitrary shape with volume ¥ and tem-
perature T. Volume and temperature represent the two
independent and measureable parameters in terms of which
all thermodynamic variables may be expressed. Since
equilibrium is assumed, one may define the radiation
temperature as that of the walls. The system is an isother-
mal enclosure, and every point has the property that the
intensity is independent of position. Furthermore, the ra-
diation is isotropic and unpolarized.

A typical approach taken by most modern physics texts23
is to treat the radiation as a series of standing waves. The
normal-mode density and energy per mode are calculated,
and this leads to the Planck law. An alternate viewpoint is
taken in most statistical mechanics texts where one con-
siders the system to consist of a photon gas that obeys
Einstein-Bose statistics. In a way, the latter school of
thought may be more appealing in that gases are so familiar,
especially when it is realized that the photon gas is very
much an ideal gas, since there is no interaction between the
particles (other than negligibly small quantum-mechanical
effects). The fact that photons do not interact prevents a
relaxation mechanism for energy transfer between photon
states (corresponding to different frequencies) necessary
to establish thermodynamic equilibrium. A small, black
dust particle with very small heat capacity may be intro-
duced into the cavity to serve as a coupling mechanism
between states. The reader interested in the history of
blackbody radiation would do well to read the article by
Lewis* on Einstein’s derivation of the Planck law.

The theme of this paper is to treat blackbody radiation
as a thermodynamic system, although statistical concepts
will sometimes be used, mainly in a qualitative fashion. In
order to arrive at the various thermodynamic parameters
as a function of T and V, many texts, such as Crawford,’
use nonthermodynamic information to derive the fact that
the radiation pressure is one third the energy density and
then proceed to calculate other quantities of interest, such
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Table I. Thermodynamic relations for blackbody radiation.

F S H P N G "
—(1/3)bVT*  (4/3) bVT? (4/3) BVT*  bVT* (1/3) bT* [305(3)/x%] bV T? 0 0
-PV 4/3) Uyt “4/3)HU 3PV /3y
- (1/4) TS 4(b/3)1 /4y P3s4 TS (3S/8)43(BVy~1/3
-(1/3)U (4/3) (bV)1 741314 4PV

S(3P/b)1/4
as the equation of state, as is done in Zemansky® and in U=F+ TS =bVT (6)

Desloge.” One could take the pressure-energy density re-
lationship or the equation of state as an experimental fact
and then continue. The point here is, that because of the
tremendous generality of thermodynamics, the latter is
incapable of generating an equation of state on first prin-
ciples; external information is required, whether theoretical
_or experimental.

An alternate approach is perhaps more appealing to
students. A clue is contained in the natural choice of T and
V as the independent (and controllable) variables. This
immediately suggests the Helmholtz free energy F as the
potential from which all thermodynamic information may
be derived. Recall that

dF = ~SdT — PdV, 1)

where S is entropy and P is pressure. Usually, Eq. (1) in-
cludes a udN term where u is the chemical potential and
N is the number of particles in the system. This would imply
that NV is an independent variable, which it is not for
blackbody radiation. Thus if we have F as a function of T
and V, then S and P are both known from

- _|°F = _[9F
S = (a;)V' P (alli)r' (2)

All other thermodynamic quantities may then be calculated.
But how do we get F = F(T,V)? A successful solution at this
point in a junior-level course is to take perhaps a half period
to qualitatively explain the concept of a partition function,
how it’s calculated (in words), and its relationship with the
Helmbholtz function in general. Students seem to appreciate
this. Then, without explicit derivation, the F function is
written down for the problem, namely,

F=—(1/3)bVT*, 3)

where b is a known constant, b = 8m3k*/(15h3¢3). I've
found this method, after many years of trial, to be accepted
and better understood by undergraduates, especially be-
cause complete thermodynamic information for blackbody
radiation is contained in Eq. (3).

Other parameters follow immediately:

d 4
- = = — 3
S (alr'y FoVT, (4)

--|°f 1
B

Notice that Eq. (5) is the equation of state for the system,
and it is very important to note the independence of volume.
By definition, F = U — TS (where U is internal energy),
therefore
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By combining Eqgs. (5) and (6), one derives simply and
routinely the relationship between energy density u = U/V
and pressure P = u/3. The enthalpy H follows immediately
from its definition, H = U + PV, giving

H = (4/3)bVT*. (7)

Likewise, the Gibbs free energy G, by definition, is H
— T8, thus

G = (4/3)bVT* = T[(4/3)bVT?)] = 0. (8)

The fact that G is identically zero presents a simplification
in a formal calculation of physical results, but also marks
a possible complication in interpretation. This null result
may be traced to the fact that pressure is uniquely deter-
mined by temperature; thus G is not really definable for the
present case where P and T are not independent.
The fact that G is zero also causes the chemical potential
i to be zero. Assume there are N particles (photons) in the
single-component system, then G = uN = 0, which
forces
r=0, )]

where N = 0; otherwise no system exists! A more funda-
mental viewpoint for the zero value of u is that the chemical
potential is defined only with respect to a conserved particle
number NV, which is not the case for the blackbody system.
Thus in a formal sense, G and u are both zero; actually
neither are defined for the present thermodynamic
system.

Although N (which depends upon the Planck distribu-
tion) will be examined in more detail later, the equation for
it will be quoted without derivation,?? since it doesn’t follow
from the treatment in this paper:

N = [308(3)/ 74k ]bVT3, (10)

where {(3) is the zeta function of argument three, equal to
1.202. Notice that N is strictly a function of 7 and ¥ and
must not be considered an independent parameter; that is,
we're dealing with an open system where the number of
particles is not conserved.

So far, P, U, F, S, H, and N have been expressed as
functions of T and V (with G and u both zero). However,
it’s often desirable for theoretical interpretation to present
these parameters in terms of other combinations. Fur-
thermore, while complete thermodynamic information is
contained in Eq. (3) with F = F(T,V), one may exhibit
exactly the same information in terms of U = U(S,V), S
= S(U,V), H = H(S,P). Table 1 presents the various useful
combinations of the thermodynamic variables.
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HEAT CAPACITIES, COMPRESSIBILITY,
EXPANSION COEFFICIENT

A simple calculation leads to C,, the heat capacity at
constant volume:

=Y - 3
(o (b?)v 4bVT3. (11)

On the other hand, the heat capacity at constant pressure
C,, the volume expansivity 3, and the isothermal com-
pressibility x are undefined for this system, because P and
T are not independent variables, which is a requirement for
the derivatives in their definitions, although one might make
a heuristic case for assigning infinite values to all three. For
a physical interpretation, consider C, as an example. By
virture of its definition, we’re essentially asking how much
energy must be added to the system to change the temper-
ature by AT at constant pressure. But at fixed P, AT = 0,
so that no finite amount of energy can increase the tem-
perature.

In the case of C, [Eq. (11)], notice that the temperature
dependence is identical to that of a crystal at low temper-
ature, as derived from the Debye theory. The reason for this
is that the frequency distribution of the normal modes has
the same mathematical form in both theories, and the mean
energy of each mode is that of a harmonic oscillator. Thus
just as photons are a result of the quantization of electro-
magnetic waves, phonons correspond to the quantization
of elastic waves. Incidentally, a numerical evaluation of Eq.
(11) shows that C, is extremely small, being about 10712
that of an equal volume of water at room temperature.

THIRD LAW OF THERMODYNAMICS

Consider two forms of the third law of thermody-
namics, !9

weak form: lim ASy =0
T—0

strong form: lim S = 0.
T—0

The weak form says that the change in entropy for an
isothermal, reversible process approaches zero as temper-
ature approaches zero, whereas the strong form decrees that
entropy itself is zero at T = 0. Notice that the strong form
contains the weak form as a special case. Historically,
Nernst had considered the original statement of the third
law to be restricted to condensed media, but he later mod-
ified it to apply to gases.!!

If Eq. (3) is correct for blackbody radiation, then the
entropy follows from Eq. (4), which shows that S — 0 as
T — 0, corresponding to the strong form.!2 This also follows
from the fact that at 7 = 0, NV = 0, so there are no particles
in the system.

From Eq. (1), it follows that (3S/dV)r = (0P/0T)y (a
Maxwell equation) hence, from the third law,

oS
li =0,
TI—I-I}) ovir
resulting in
oP
lim |-——| =0,
TIE.I}) (aT |4

which should be true in general. The latter is correct for
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blackbody radiation because (dP/dT)y = 4bT3/3 [from
Eq. (5)], and this goes to zero as T approaches zero.
Consider the behavior of C, as absolute zero is ap-
proached. Assume S = S(T,V), then
oS oS
is=[28) ar+[28) .
Then for constant volume, dS = (dS/0T),dT and

AS=fT[b f Sour.
o \oT

This is an improper integral at the lower limit, so in order
for the change in entropy to be finite at T = 0, one concludes
that

lim C, = 0,

T—0
as can clearly be seen for blackbody radiation from Eq. (11).
On the other hand, one cannot repeat the argument with
pressure substituted for volume, because P and T are de-
pendent variables. Thus no conclusion for C, similar to C,
can be made at absolute zero.

There is a subtlety so far overlooked in applying the third
law to this exotic system. Equation (10) shows that the
number of particles is a function of ¥ and T alone, in fact,
proportional to ¥'T3. As temperature approaches zero, N
also approaches zero. Since thermodynamics is an average
over the microscopic states, it becomes questionable to apply
statistics to such small numbers at low temperature. In
particular, at T =0, N = 0, it may appear that there is no
system to which any statistics or thermodynamics may be
applied, whereas this is really just a particular state of a still
well-defined system. In this respect, the interested reader
may want to consult two related papers pertaining to
blackbody radiation in small cavities at low tempera-
ture.!3.14

The question of a zero-point entropy Sy has been ad-
dressed by Sychev!3 and by Epstein.!® Since S = S(V,T),
one may write

S(V.T)
f ds = S(V.T) - 5(0.0)
5(0.0)

N
f (bTu =0 0 (bV)TdV’

where S(0,0) is the entropy evaluated at both zero tem-
perature and volume. Consider a process at constant tem-
perature, then d7 = Q. In particular, evaluate the expression
as volume goes to zero, which results in $(0,7) = 5(0,0).
Unless $(0,0) is zero, then the result is a nonzero entropy
for a system void of particles, hence the zero-point entropy
may be taken as zero, as in the strong form of the third
law.

If one adopts the modified Planck view of the system as
an assembly of harmonic oscillators with energies given by
€ = [n + 1/2]hw, then the energy density per unit frequency
interval contains a temperature-independent term that
becomes infinite upon ‘integration.!”!® Thus one is con-
fronted with an infinite zero-point energy. The usual
argument is that the infinite term may be omitted because
radiated energy corresponds to energy differences, and the
infinities “subtract out.” Clearly this is a very unsatisfactory
situation from a theoretical viewpoint.!® Actually, the
zero-point energy is infinite only for an idealized cavity
whose walls reflect radiation of all frequencies; such a cavity
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would have an infinite inertial mass. An upper limit would
exist for the frequency of radiation contained in a real cavity
and result in a finite contribution to the inertial mass.20-22

ISOTHERMAL EXPANSION

Suppose the system is expanded (or compressed) iso-
thermally and reversibly. The amount of heat absorbed
from an external source (in order to keep the temperature
constant) may be quickly found from

0= frds = TAS = (4/3)bT*AV,  (12)

where Eq. (4) has been used for S. Note that this result is
also immediate from the enthalpy [Eq. (7)] AH
= 4bT*AV /3, since constant temperature also corresponds
to constant pressure, in which case Q = AH. The change
in internal energy is AU = bT*AV, as seen from Eq. (6).

By the first law of thermodynamics, the difference be-
tween Q and AU should be the amount of work involved in
reversibly changing the volume, namely, 574AV /3. This
_may be verified by computing the work directly,

W= deV=PAV= (1/3)bT4AV. (13)
Note that just as Q may be found from AH for a process at
constant pressure (hence, temperature in this case), W may
be computed from AF at constant temperature (hence,
pressure).

ADIABATIC EXPANSION

An adiabatic expansion is especially interesting be-
cause of its statistical and quantum-mechanical implica-
tions. Assuming the process is performed reversibly, then
from dQ = TdS, entropy is conserved. Since S = 4bVT3/3,
this implies that the product ¥'73 is constant. Or by solving
this for T, one gets,

3s\is
=122 —1/3.
i (41;) e

and by combining this expression with P = bT4/3, a fa-
miliar equation is derived (PV*/3 = const.), which is of the
form PV” = const., as is well known for an ideal gas for an
adiabatic process. Yet, note that “y” for the blackbody
radiation is not C,/Cy.

It’s then a simple matter to use PV*/3 = const. in order
to calculate the work done by the system in expanding from
P, V:to Pf, Vf:

W= J‘PdV= s 3(PV; — PfVy). (14)

Recall from elementary thermodynamics that the work
done in an adiabatic process is W= (P;V; — PeVy)/(y — 1),
which checks the above result since v here is 4/3. Note also
that from Table I, U = 3PV, so that the work done by the
system is simply U; — Uy; that is, the energy necessary to
produce the expansion is extracted from the internal energy
of the radiation. Likewise, since NV is also proportional to
VT3, the number of photons is conserved for an adiabatic
change.

Up to this point in the whole paper, no use of the spectral
distribution of energy in frequency has been made, but the
present topic is ideal for the illustration of an adiabatic in-
variant. Suppose the volume is expanded uniformly in all
directions, then the mode wavelengths increase directly as
the linear dimensions in such a way that the wavelength A
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is proportional to the cube root of the volume.23 Thus, A is
proportional to ¥'/3 and VT3 = const., resulting in AT
= const., which will be recognized as the Wien displacement
law. Furthermore, since A goes as ¥1/3 and A = ¢/, one
arrives at the fact that »3V is an adiabatic invariant.

The occupation numbers are also adiabatic invariants?4;
that is, the work done by the blackbody system in an adia-
batic expansion causes a lowering of the energy levels
without any transfer of particles between the levels. In other
words, the particles ride up or down with the energy levels

for an adiabatic compression or expansion, respectively.

FREE EXPANSION AND THROTTLING
PROCESS

To achieve a free-expansion experiment with the pho-
ton gas, assume the cavity is thermally insulated with rigid,
perfectly reflecting walls and divided by an opaque, insu-
lated partition. One side of the partition is assumed to be
at T =0, hence, P = 0. A free expansion results when the
partition is removed. Because of the nature of the walls as
described, there is no heat transferred outside the cavity,
and no work is done; hence, the internal energy remains
constant. Since U = bV'T*, it is easy to see that the tem-
perature decreases in a free expansion, because volume
increases while U remains the same. This is in contrast to
the ordinary ideal gas where T doesn’t change. The reason
for the different behavior may be traced to the fact that the
blackbody internal energy is volume dependent, whereas
the internal energy of an ideal gas is independent of volume,
proyided that the number of molecules is held fixed, as is
usually assumed. The blackbody pressure decreases as may
be seen from P = bT*/3, and the entropy increases, as noted
from .S = 4U/(37).

Suppose a system, described by the relations in Table I,
undergoes a throttling process from high to low pressure.
As is well known,?’ the enthalpy remains unchanged. Since
H = 4U/3, this means that the internal energy is constant.
Also because P = hT*/3, and the fact that pressure drops,
this implies that the final temperature is less than the
original. This can be seen by directly computing the
Joule-Thomson coefficient u from P = bT4/3:

(o7 - L
”’(a:)fz @

Thus u is positive for all 7, meaning that the photon gas
always cools in a throttling process.

PHASE EQUILIBRIUM

Can we carry the thermodynamics of blackbody radia-
tion so far as to consider different phases? The answer is yes,
provided that the interpretation is that of a single system
in a two-phase equilibrium state.?6 This possibility is
strongly hinted via the fact that the equation of state, P
= bT*/3, is independent of volume, so that P = P(T) only,
which is characteristic of first-order phase equilibria. As
a matter of fact, the system may be considered to be a gas
that is in equilibrium with the cavity walls, a solid. The
latter serves as a particle reservoir for photons such that a
continual exchange of particles between the gas and solid
is maintained with all thermodynamic parameters re-
maining constant.

Suppose now the system volume is expanded isothermally
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by an amount AV. Photons are then removed from the
walls, since the number of particles depends upon V73, Eq.
(1). The analogy here is sublimation. The amount of heat
required to maintain the temperature constant has already
been calculated in Eq. (12), @ = 4bT*AV/3, which is
analogous to the heat of sublimation. The entropy clearly
changes.

If the radiation is truly like a single system in two phases,
then the Clapeyron equation?’ dP/dT = Q/(TAV) should
apply. Thus

dp

Q=TAV

but P = bT*/3, so
0 = TAV(4/3)bT? = (4/3)bT*AV,

as before.

An application of the phase rule?® illustrates the sim-
plicity of the system and verifies the interpretation as a
situation involving phase equilibrium. Let f be the number
of intensive parameters capable of independent variation,
r be the number of components in the system, and M be the
number of phases, then the phaseruleis f=r — M + 2. As
applied to blackbody radiation, r = 1 and M = 2 [gas plus
condensed media (walls)], therefore f = 1, saying that only
one intensive variable may be independently varied. This
checks, since i = 0 and P = P(T) only. On the other hand,
one may reverse the argument to verify that there are ac-
tually two phases in the system; that is, knowing that f'and
r are both unity, this tells us that M = 2. The fact that the
system is stable is reasonably apparent from physical con-
siderations, but recall that to be so, both (37/2S)y and
—(dP/dV)r must be positive.?’ Both are satisfied for
blackbody radiation.

CARNOT CYCLE

Consider the typical Carnot cycle consisting of an iso-
thermal expansion from A4 to B (points on, say a P~V or
T-S diagram), an adiabatic expansion from B to C, an
isothermal compression from C to D, and finally, an adia-
batic compression from D back to 4. Let the working sub-
stance be a photon gas, or in general, a gas whose equation
of state is P = bT*/3. The amount of heat transferred and
the work done may be easily calculated for each of the four
steps; in fact, this has already been done in Egs. (12}, (13),
and (14). Let pressure, volume, and temperature at points
A, B, C, D be denoted by PV, Ty Py, Vo, Ty P, Vi, T,
Ps, Va4, T,, respectively. Note that P, = Py and P4 = P3:

A= B:Qp = (4/3)bT3(Va=Vy), W=P(V2- V1)
B—’C§Q=0, W=3(P3V3"P2V2);
C—D: Q. = (4/3)THVs— V3),
W= (1/3)bTH(Va~ V3);

D_’A:Q=0, W=3(P1V1‘—P4V4);

The efficiency ¢ of the engine is found from its defini-
tion,

€ =net W= lQhI — |Q£l =1- |Qc|
On | Qx| |Onl
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_@/BTHV = Vo) _ [ - Tc(S3—S4)
(4/3)6TH(V2— V1) Th(S>—Sy)

But, S3 = .8, and 4 = S, so that (S5 — S4)/(S2 - S
= 1, giving

=1

e=1 _Tc/Th,

which is the familiar result for Carnot efficiency. This ex-
ample may be considered as a special case of the general
result that the same expression will always occur for a re-
versible process when all heat is taken in at a constant
temperature and all heat rejected at a constant lower tem-
perature.3? The above calculation makes a good homework
or test problem in an undergraduate course as a contrast to
using the ideal gas as a working substance.

COMMENTS AND DISCUSSION

One of the more common mistakes made in thermody-
namics is the failure to define the system (and its bounda-
ries) to which the theory is to be applied. In the present case,
one might say loosely that thermodynamics has been ap-
plied to “nothing™ (or vacuum), whereas in fact, the system
has been chosen as the electromagnetic field within a cavity
of volume V and temperature T. Or, perhaps more des-
criptively, the system consists of N photons within the
cavity, with N not conserved. The thermodynamics has been
shown to be simple, mainly because volume is absent in the
equation of state; that is, pressure and temperature are
uniquely related in a simple way.

There are two somewhat different historical approaches
to blackbody radiation. The first, due to Planck in 1900,
considered the system as an assembly of harmonic oscilla-
tors with quantized energies of (n + 1/2)hw (although
Planck did not include the zero-point energy). The second
viewpoint originated with Bose in 1924 and then Einstein
in 1925, which considered the photon distribution over the
energy levels. The two interpretations are actually the same;
for example, in Planck’s method, an oscillator of energy (n
+ 1/2)hw in the eigenstate n is equivalent to n photons in
the energy level Aw.3!

A microscopic observer would find experiments to be
rather dull at any point immersed in the blackbody radiation
field. Since the field is isotropic and homogeneous, the lu-
minosity would be independent of direction and he would
be unaware of the cavity size in any direction. Furthermore,
no polarization effects would be detected. If the temperature
were varied, then he would measure changes in intensity and
energy distribution (corresponding to a color change).

From a pedagogical point of view, I've found that the
most satisfactory method of solution and presentation to
a class is by simply stating the Helmholtz equation (3)
without any derivation, although students seem to appre-
ciate a word description of the partition function. Keep in
mind that complete thermodynamic information is con-
tained in F = —bVT*/3; the whole theory unfolds from it.
The form of the Helmholtz function, together with that of
the parameter b, is completely determined, apart from a
numerical factor, by dimensional requirements, given that
the photon is massless. This argument alone requires the
presence of both 4 and ¢, showing that both quantum theory
and relativity are necessarily involved in a complete un-
derstanding of the system.

One finds that the thermodynamics of this peculiar sys-
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tem is similar to those usually considered but with some
exceptions. For example, the system obeys both the strong
and weak forms of the third law, but in contrast to-some
conclusions normally associated with the third law, neither
the limiting values of the expansivity or the heat capacity
at constant pressure have meaning as temperature ap-
proaches zero. Both results can be traced back to the fact
that the equation of state contains only pressure and tem-
perature. In this respect, another unique feature is that, as
T decreases, the number of particles also decreases.

The present problem can serve as a simple example of
adiabatic invariants. As has been seen, V73 and PV (y
= 4/ 3) are both constant for an adiabatic change Since the
number of photons is proportional to ¥'T3, N is also a con-
stant. By a geometrical argument, we were able to derive
the Wien law, AT = const., and also show that ¥'/A3is an
adiabatic invariant.

The analogy with an ideal gas is especially evident when
thesystem is considered to be composed of photons, but the
analogy continues, since the equation of state may be
written as PV =~ 0.9NkT. Yet there are some subtle dif-
ferences in, for example, a free expansion and a throttling
process. Recall that an ideal gas experiences no temperature
change after a free expansion, but, in contrast, the tem-
perature of the radiation always falls.
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Given a large supply of identical uniform bricks each of
length /, determine the maximum possible overhang that
can be obtained by stacking them in a cantilever structure.
Make numerical estimates for the cases (a) N = 106 bricks
and (b) a 105-m overhang of 20-cm bricks. (Solution on
page 775.) '
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I. INTRODUCTION

The monatomic classical ideal gas, which is called the
ideal gas in this paper, is a staple of introductory physics. It
is understandable in the context of a system of noninteracting
point particles,' and its equations of state are tractable math-
ematically. These virtues of the ideal gas are summarized in
Table 1. With them come several less desirable characteris-
tics. First, it is based on classical physics or the semiclassical
limit of a quantum ideal gas, and hence does not provide
insights on quantum or relativistic phenomena. Second, the
internal energy is independent of volume, a property that
holds only in the low density limit for real gases. Third, the
ideal gas gives no insight into changes of state such as the
vapor to liquid transition. Finally, because it is usually the
only system for which equations of state are encountered,
students tend to come away with a sense that every system
behaves as an ideal gas.

In contrast, the photon gas is a quantum mechanical sys-
tem of particles (quanta of the electromagnetic field) called
photons.? The thermal behavior of photons in blackbody ra-
diation has played a pivotal role in the development of quan-
tum mechanics. In addition, because photons move with the
speed of light, the photon gas is a relativistic system. Thus it
reflects two major developments of 20th century physics:
quantum mechanics and relativity. Over a decade ago, the
Introductory University Physics Project called for more 20th
century physics in introductory courses.® Inclusion of the
photon gas would work toward this goal.

The quantum mechanical probability amplitudes for pho-
tons can interfere constructively or destructively with one
another, but photons do not ordinarily affect one another’s
energies, momenta, or polarizations, which simplifies their
thermodynamic behavior. Unlike the ideal gas, the internal
energy function for the photon gas is volume dependent. Re-
markably, despite its nonatomic nature, the photon gas can
provide insights into the liquid—vapor phase transition. Fi-
nally the very notion of the photon gas disabuses students of
the thought that every thermodynamic system behaves as an
ideal classical gas.

A key feature of the photon gas is that it has a variable
particle number, N. Consider a container of volume V,
whose walls are maintained at temperature 7. Suppose it has
been emptied of matter by a vacuum pump. It cannot be
entirely “empty” because the walls radiate photons into the
container. Some photons scatter off the walls, with some be-
ing absorbed and new ones being emitted continually. A dy-
namic equilibrium exists when the average absorption and
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emission rates are equal. Thus, an apparently empty con-
tainer actually is filled with a photon gas, a fact that can
intrigue students.

Unlike the ideal gas, for which there are three independent
variables, N, T, and V, the photon gas has just two indepen-
dent, controllable variables, 7 and V. We can envisage build-
ing a photon gas from energy stored in the container walls.
Consider the container in Fig. 1. Imagine purging it of all
atoms with a vacuum pump, and then moving the piston to
the left until it touches the left wall. The volume is then zero
and the walls (including the piston) have temperature 7.
Now slowly move the piston to the right, keeping the wall
temperature constant using a reservoir. Photons will pour out
of the walls as the volume increases, until the dynamic equi-
librium described above occurs. In this way, we mentally
construct a photon gas of volume V and temperature 7', with
average photon number N(7,V). Building the photon gas
using this thought experiment can help develop an under-
standing of the nature of the variable particle photon gas.

The most straightforward approach for introducing the
photon gas in introductory physics is to define it in a way
similar to that in the preceding paragraphs, and to then dis-
play the relevant thermodynamic equations of state and ex-
amine their implications. The extent to which the equations
of state are used can vary. At minimum, the equations can be
presented and interpreted. If time allows and the interest
level is sufficient, they also can be used to analyze isother-
mal and adiabatic processes for the photon gas, as is done in
the body of this paper.

A more ambitious approach is to use kinetic theory to
establish the connection between internal energy and pres-
sure for the photon gas, and to use calculus to derive the
equations of state. This procedure is presented in the Appen-
dix as a resource for teachers.

A rich literature, mainly related to blackbody radiation,
exists in books on modern physics,* quantum physics,’
optics,® and classical and statistical thermodynamics.”'* Nu-
merous citations to the literature are given in Ref. 14. Nev-
ertheless, the photon gas has not found its way into introduc-
tory physics textbooks. The main purpose of this paper is to
encourage teachers of introductory physics and textbook au-
thors to adopt the photon gas as a supplement to the ideal
gas. Some of the ideas here might also be useful to teachers
of modern physics and junior-senior level thermal physics.

II. PHOTON GAS EQUATIONS OF STATE AND
PROCESSES

The equations of state for the internal energy U(7,V) and
pressure P(T) are
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Table I. Summary of monatomic classical ideal gas properties.

Property type Description

N, V,T

Collection of N noninteracting
point particles, each with mass m,
described by classical mechanics

Independent variables
System

Temperature-independent result U= %pv

from kinetic theory, relating the

internal energy U and pressure P

Internal energy U= %NkT
Pressure P=NkTIV
Entropy® S=Nk[In(T**V/N)

+ InQmmk/h)**+ 3]
Work W on the gas for isothermal W= —NkT In(1+AV/V)
volume change by AV
Energy QO added to gas by heat
process for isothermal volume
change by AV
Entropy change of gas for isothermal
volume change by AV
Reversible adiabatic condition,
where the heat capacity ratio
C,/Cy=5/3

Q=NkT In(1+AV/V)

AS=Nk In(1+AV/IV)

PV*3=constant

“The expression for the entropy is the Sackur—Tetrode equation, the classical

limit for Bose—Einstein and Fermi—Dirac quantum ideal gases with atoms
of mass m. Planck’s constant & connotes the Sackur—Tetrode equation’s
quantum origin, and k reflects the thermodynamic nature of the gas.

U(r,v)=bvT* (1)

and
P(T)= ibT*. (2)

The constant b cannot be determined from thermodynamics,
but its value can be borrowed from statistical physics or ex-
perimental results. It is given by

8 mk*

b=m=7.56X10_16JK_4m_3. (3)

Note that b depends on Planck’s constant &, which reflects
the quantum mechanical nature of the photon gas, the speed
of light ¢, which reflects its relativistic nature, and Boltz-
mann’s constant k, which reflects its thermodynamic nature.
At the introductory level, we can introduce Egs. (1) and (2)
and give the numerical value of b, without broaching the
formula in Eq. (3).

A% ———

AV

Fig. 1. Photon gas in a container with wall temperature 7" and volume V.
The right wall is movable and its quasistatic movement can alter V revers-
ibly by AV.
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Given the foregoing, it is straightforward to analyze iso-
thermal processes for the photon gas. Consider a quasistatic
volume change from V to V+AV. From Eq. (1), if T is
constant,

AU=bT*AV. 4)

From the first law of thermodynamics, AU=Q + W, where
W=~ [P(T)dV is the work done on the photon gas. When
T is constant, so is P(T), and Eq. (2) implies that

W=— {bT*AV. (5)

Thus the energy gained by the photon gas from the concomi-
tant increase or decrease in the number of photons, which
constitutes a radiative heat process, is

0= 31bT*AV. (6)

The slow isothermal volume change under consideration is
reversible, and the entropy change, Q/T, of the photon gas is

AS= 3bT3AV. (7)

This entropy change, which is linear in AV, is very different
from the logarithmic volume dependence of the correspond-
ing entropy change for an ideal gas, which is shown in Table

Now suppose we build the photon gas as described earlier
by choosing the initial volume in Eq. (7) to be zero and the
final volume to be V. We then allow the piston to move to
the right slowly to volume V, creating the photon gas. Be-
cause at zero volume, the photon number N=0, evidently
S§=0; that is, there can be no entropy if there are no photons.
Equation (7) then implies that at volume V,

S=3%bpvT3. (8)

Notice that Egs. (1) and (2) imply that the enthalpy'® H
=U+PVis

H=$bVT*. )

Clearly for an isothermal volume change, AH=Q and for an
expansion from zero volume to volume V, H=Q=TS. This
example makes clear that enthalpy is the energy needed to
form the photon gas and to do the work needed to make
available the volume V it occupies.'®

Next, consider a slow adiabatic volume change. Adiabatic
means that no photons are emitted or absorbed by the con-
tainer walls. For a photon gas, the only possible type of heat
process is via radiation; that is, energy can be exchanged
with the container only by the emission and absorption of
photons. An adiabatic volume change requires that the con-
tainer walls be perfectly reflecting mirrors. Under such a
process the photon number cannot change because a perfect
reflector is also a nonemitter of photons. Because the number
of photons cannot change, N(7,V)=constant. Furthermore,
a slow, reversible adiabatic process leaves the entropy of the
photon gas unchanged, so S(7,V)=constant. The constancy
of both N(T,V) and S(T,V) implies that N(T',V)=constant
X S(T,V), which along with Eq. (8), leads to the conclusion
that

N(T,V)=rVT3, (10)
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Fig. 2. A plot of pressure P versus volume V for a reversible Carnot cycle
using a photon gas as the working fluid. The horizontal segments 1-2 and
3—4 are isothermals at temperatures 7, and T, respectively. Segment 2—3
is a reversible adiabatic expansion. Segment 4—1 occurs at zero volume and
therefore entails only the container walls and not the photon gas.

where r is a constant. As was the case for b, r cannot be
evaluated within the domain of thermodynamics, but its
value can be borrowed from statistical physics,'”

k 3
r=60.4(ﬁ) =2.03%10" m 3K 3. (11)
As before, the constants 4, ¢, and k illustrate the quantum
mechanical, relativistic, and thermodynamic nature of the
photon gas. Also as before, to keep the discussion elemen-
tary, the value of r can be stated without broaching the for-
mula in Eq. (11).

From Egs. (8) and (2), it is clear that the condition of
constant entropy is

T°V=constant or PV*3=constant. (12)

Interestingly, the second form in Eq. (12) is similar to the
corresponding condition in Table I for an ideal gas, for which
PV7=constant, where y=C p/ Cy=>5/3. However, the simi-
larity is only formal because for the photon gas, C,, does not
even exist, because one cannot vary the temperature at con-
stant pressure for a photon gas.

Having found Egs. (2) and (12), we can sketch a reversible
Carnot cycle on a pressure—volume diagram. We take advan-
tage of the fact that the photon gas can be brought to zero
volume, so that the Carnot cycle looks as shown in Fig. 2.
The horizontal isotherms 1-2 and 3—4 come from the fact
that P=P(T). The adiabatic segment 2—3 is qualitatively
similar to reversible adiabatic curves for the ideal gas. The
vertical segment 4—1 corresponds to heating the container
walls from T, to T),, with zero photons in the zero volume
container. Along this segment, the walls undergo a heat pro-
cess, but there is no photon gas present and thus Q=0 for a
photon gas working fluid.

Figure 2 makes it clear that the pressure—volume represen-
tation of a Carnot cycle does not necessarily appear as it does
for an ideal gas. The purpose here is not to exhibit a real
working fluid, but rather to illustrate that a Carnot cycle’s
P—V plot can differ from that obtained for the ideal gas. It is
a good exercise for students to use the photon gas equations
to show that, as expected, the thermal efficiency is n=1
—T./T,, the reversible Carnot cycle efficiency for any
working fluid.

III. COMPARISON: IDEAL AND PHOTON GASES

After introducing the photon gas and examining its behav-
ior under isothermal and adiabatic processes, it is useful to
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Table II. Comparison of equations for classical ideal and photon gases.

Classical ideal gas Photon gas
N is specified and fixed N=rvT?
U=3NkT U=bVT*=2INkT
P=NKT/V P=3bT*=09NKT/V

S=NK[In(T*2V/N) + InQmmk/h)**+ 3] S=3bVT3=3.6Nk

compare it with the ideal gas. One comparison examines
corresponding equations of state of the two gases. Such a
comparison is shown in Table II, using the fact that N
=2.03X% 107 VT?. In this view, the pressure and internal en-
ergy functions are remarkably similar if the dependent vari-
able N is displayed explicitly for the photon gas. Thus for
example, the average energy per photon in a photon gas is
2.7 kT, compared with 1.5 kT for the ideal gas. Similarly,
the pressure P of the photon gas is 0.9 NkT/V compared
with NkT/V for the ideal gas. Keep in mind, however, that N
is not an independent variable for the photon gas, so the
similarities are strictly formal. The entropy functions are
very different looking for the photon and ideal gases. Nota-
bly, the entropy per photon is 3.6k, independent of tempera-
ture.

A numerical comparison is shown in Table III. The ideal
gas is taken to have the mass of monatomic argon and is at
300 K and normal atmospheric pressure. The numerical val-
ues of N, U, P, and S for the photon gas are all approxi-
mately 10 or more orders of magnitude smaller than for the
ideal gas, which is why we can ignore the photon gas when
discussing the thermodynamics of an ideal gas in the vicinity
of room temperature and atmospheric pressure.

On the other hand, for sufficiently high temperatures, the
number of photons can exceed the number of ideal gas atoms
in an equal volume V. Indeed, it is straightforward to show
that if 1.00 mol of argon ideal gas is at standard atmospheric
pressure, 1.01X10° Pa, the corresponding average number
of photons exceeds the number of atoms for any V if T
>1.38X10° K. The equations in Table II imply that for T
~1.41x10° K, the ideal and photon gases have nearly the
same internal energies and pressures, while the ideal gas en-
tropy is still significantly larger than the photon gas entropy.
Of course, because of the T° behavior of N and S, and the T*
behavior of P and U, the photon gas will dominate the ideal
gas in all respects for sufficiently high 7. In this discussion
we have ignored the ionization of the ideal gas atoms that
would occur at such high temperatures.

Other comparisons are possible. For example, the ideal
gas entropy becomes negative for sufficiently small 7 and
diverges to negative infinity in the limit 7—0. This inad-

Table III. Numerical comparison of classical ideal and photon gas functions.
Here the ideal gas is 1.00 mol of monatomic argon at P=1.01X 10° Pa,
V=247x10"? m*, and T=300 K.

Function Classical ideal gas Photon gas
N 6.02X 10% atoms 1.35X 10" photons
U 3.74X10% J 1511077 ]
P 1.01X10° Pa 2.04X107° Pa
N 155 J/KK 6.71x1071° J/K
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equacy of the ideal gas model comes from its classical char-
acter. In contrast, the photon gas entropy approaches zero in
the 7=0 limit. Similarly, the ideal gas constant volume heat
capacity is constant and remains so in the zero temperature
limit, unlike real gases, whose heat capacities approach zero,
consistent with the third law of thermodynamics. The photon
gas heat capacity at constant volume, C,=4bVT>, ap-
proaches zero in this limit, as the number of photons ap-
proaches zero. The behavior of the photon gas reflects its
quantum mechanical nature.

The ideal gas gives no indication of the condensation phe-
nomenon that a real gas experiences at temperatures below
its critical temperature. As a real gas is compressed isother-
mally at a temperature below its critical temperature, part of
it begins to condense into the liquid state, keeping the pres-
sure constant. Although it is a very different kind of system,
with very different physics, the photon gas can shed light on
this phenomenon because under isothermal compression,
photons get absorbed, becoming part of the energy of the
walls, providing an analogy to the vapor-to-liquid transition:
the photons play the role of the vapor molecules, and the
absorbed energy of the walls are the analog of the liquid
molecules. The energy of compression to zero volume for the
photon gas is the rough analog of the heat of condensation
for the real gas.

For the photon gas, the pressure remains constant as the
volume decreases at constant temperature because the num-
ber of photons decreases while the energy of the walls in-
creases. For a real gas, the pressure remains constant during
isothermal compression because the number of gas mol-
ecules decreases as gas molecules become liquid molecules.
Condensation phenomena occur because of attractive forces
between molecules, while photon absorption occurs because
atoms and molecules continually absorb and emit radiation,
as their electronic energies increase and decrease. Although
the physics differs for the two phenomena, both are charac-
terized by constant temperature, constant pressure, and a
variable number of gas particles. Discussion of these matters
can shed light not only on radiation, but on the phenomenon
of condensation.

IV. TWO BRIEF EXAMPLES

Perhaps the most exciting example of a g)hoton gas is the
cosmic microwave background radiation.'® The latter is in
essence a gas of “old” photons that was created in the early,
hot Universe approximately 13 billion years ago, and which
has cooled to 2.7 K. Inserting the latter temperature and the
value of r in Eq. (I11) into Eq. (10) gives N/V
=416 photons/cm>. Such photons, which make even dino-
saur bones seem rather young, are in our vicinity all the time.
An awareness of the photon gas opens the door to an under-
standing of this remarkable phenomenon.

A second example uses a well-known result from kinetic
theory'” together with Eq. (10). Suppose a photon gas exists
in a cavity within a solid that is at temperature 7', and that
photons can leak out through a small opening in the walls.
The kinetic theory result for the particle flux is $(N/V)c
= ircTS, and the energy flux, measured in watts/m?, is
HN/V)(UIN)=3cbT*. This result is the well-known energy
flux from a blackbody, where c¢b/4=0=5.67X 108
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Wm 2K *, is the Stefan—Boltzmann constant. In appropri-
ate contexts, one can move on to study Planck’s radiation
law and, ultimately, quantum mechanics.

V. CONCLUSIONS

The photon gas can enrich the introduction to thermody-
namics. Its basic equations lead students into new territory
involving creation and annihilation of photons, which pro-
vides a thought provoking introduction to modern physics
ideas.

An important related point is that photons are everywhere.
That is, because all matter radiates, it is literally impossible
to have a region of space that is free of photons. In this
sense, the photon gas has the distinction of being ubiquitous,
another point that can pique the intellectual curiosity of stu-
dents.

Despite the evident richness of the photon gas, its equa-
tions of state are tractable and have straightforward interpre-
tations. In addition to its potential for enriching the study of
thermal physics, the photon gas serves as a good foundation
for subsequent introduction to cavity radiation.

In summary, the photon gas has much to offer teachers and
students. Its study can supplement the ideal gas or can be
initiated in a course on modern physics. A more in-depth
treatment is appropriate for junior or senior level thermal
physics.
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APPENDIX

The objective of the Appendix is to derive Egs. (1) and
(2). Kinetic theory enables us to deduce a simple relationship
between the internal energy U and pressure P of a photon
gas,

1 u(r,v) 1
P(T)= 3 v 3 u(T). (A1)
The right-hand side defines the energy density u(T).

To obtain Eq. (Al), we make several assumptions. First,
we assume isotropy, namely, the average number of right-
ward moving photons within a specified range of velocity is
the same as the corresponding average number of leftward
moving photons. Denote the number of photons per unit vol-
ume with x components of velocity between c¢, and c,
+dc, by n(c,)dc,. The assumed isotropy implies n(c,)
=n(—c,). (Because photons all have speed c, c, varies
solely because of differing velocity directions.) Integration
over ¢, gives

fc n(cx)dcx=2fcn(cx)dcx=g, (A2)

e 0 14
where N is the (average) number of photons. The function
Vn(c,)/N is a probability distribution function that can be
used to calculate averages such as

— (¢ Vn(c,) cVn(c,)
2 X 2 X 2
= =2 . A3
cy f—c N Cx dc, fo N Cx dc, (A3)
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The last step follows because n(cx)c)zc is an even function of
¢, . Equation (A3) will be used in our derivation of Eq. (A1).

Our second assumption is that there is a well-defined av-
erage photon energy (e), which depends solely on the wall
temperature and not on the system volume V. This assump-
tion is motivated by the expectation that the energy distribu-
tion of the emitted photons depends on the wall temperature.
In contrast, the average number of photons N must depend
on both temperature 7 and volume V because in equilibrium,
the absorption and emission rates can be equal only if N
achieves a sufficiently large value, which increases with V.
Our last assumption is that N is proportional to the system
volume; that is, N(T,V)=n(T)V. We now proceed with the
kinetic theory derivation.

Fix the right wall in Fig. 1 and denote the container’s
horizontal length by L and its cross sectional area by A.
Choose a small time interval At<<L/c, and consider right-
ward moving photons with x-components of velocity be-
tween ¢, and c,+dc,, located within distance ¢, At from
the right wall. The latter region has spatial volume Ac, Az,
and an average number of photons, (Ac,Af)n(c,)dc,,
within it will collide with the right wall in time interval Az.
The momentum magnitude for a photon with energy e is e/c
and the x component of its momentum is (e/c)(c,/c). In an
elastic collision with the right wall a photon’s momentum
change is 2(e/c)(c,/c), and the average force it exerts on
the wall during time A7 is 2ec, /(c2Ar).?° The average force
for all such collisions by photons with average energy (e)
and x component of velocity between c, and c,+dc, is
(2{eYc /c?)(Ac)n(c)de, .

If we integrate over c, from O to ¢ and divide by area A,
the average pressure on the wall from photons impinging at
all angles is

2

e) (¢ e)N— 1 (e)N
p=2 [weoctae 0= LON
The penultimate step follows from Eq. (A3) and the last step
follows from the isotropy condition, cf=c2/3. In Eq. (A4),
N{e)=U, the internal energy of the photon gas. With our
assumptions that (e) is solely a function of 7 and N
=n(T)V, Eq. (A4) reduces to Eq. (Al), P(T)=3u(T),
where u(T)=U/V. It is clear from Eq. (A1) that pressure is
solely a function of temperature and thus, the pressure—
volume isotherms for a photon gas form a family of
constant—pressure curves. We now use the forms P=P(T)
and U=u(T)V, along with the Carnot cycle in Fig. 2 to
derive Eq. (1). Along segments 1-2, 2—3, 3—-4, and 41, the
internal energy changes of the photon gas are AU,
=u(T)V, AUp=—5V"* u(T)dV, AUy=—u(T)(V
+AV), and AU, =0, respectively. Because U is a state
function, these changes must add to zero along the cycle.
Simplification occurs when 7,—T.<T, and AV<V, in
which case we replace AV by dV. Then the addition of the
four internal energy changes gives u(T,)V—3u(T)dV
—u(T.)(V+dV)=0, where T.<T<T,. Replacement of
u(T) with u(T,) induces an additive error <du=u(T))
—u(T_.). Thus to first order in du and dV the sum of the

internal energy changes around the cycle reduces to
Vdu— 5udV=0. (A5)
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The individual entropy changes of the photon gas along
the Carnot cycle are AS,=3u(T,)V/T,, AS,;=0, ASy,
=—3u(T.)(V+dV)/T,, and AS, =0, respectively. Be-
cause S is a state function, these changes also must add to
zero along the cycle. Using dV<V and dT=T,—-T.<T,,
we have 1/T,~(1—dT/T,)/T., and the condition for zero
entropy change along the cyclic path becomes

4[(w(Ty)—u(T )V w(T.)dV  u(T,)VdT]
3 T, 1. T B

(A6)

Replacing 7. with T and T, with T+dT, and retaining only
first order terms, Eq. (A6) becomes

uVdr
Vdu—udV— T =0

(A7)

We can eliminate dV by combining Egs. (A5) and (A7) to
obtain

ld udT
Z M—? .

(AB)
Finally, integration of Eq. (A8) gives u(T)=bT", which is
equivalent to Eq. (1). As mentioned, the numerical value of b
is obtained from statistical mechanics. The combination of
Egs. (1) and (A1) gives Eq. (2).

YElectronic mail: hsleff@csupomona.edu
'Weak interactions must exist in order for the gas to achieve thermody-
namic equilibrium. It is assumed that these interactions have negligible
effects on the equations of state.

The term “photon”” was coined by Gilbert N. Lewis, “The conservation of
photons,” Nature (London) 118, 874-875 (1926).
3See Lawrence A. Coleman, Donald F. Holcomb, and John S. Rigden, “The
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Lissajous Figure Drawing Device. Lissajous figures are the resultant of two simple harmonic motions at right angles to each other. In this dedicated device,
the SHMs are provided by two pendula swinging at right angles to each other. Horizontal rods coupled to the tops of the pendula drive a stylus P that scrapes
the soot from a smoked glass plate held on the stage of the overhead projector. The audience thus sees a black screen with the figure being traced out in white.
The illustration is from J. A. Zahm, Sound and Music, second edition (A. C. McClurg & Co., Chicago, 1900), p. 409 (Notes by Thomas B. Greenslade, Jr.,
Kenyon College)
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Carnot cycle for photon gas?
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The Carnot cycle for a photon gas provides a useful means to illustrate the thermodynamic laws. It
is particularly useful in showing the path dependence of thermodynamic functions. Thermodynamic
relationships to a neutrino gas are also drawn. 2601 American Association of Physics Teachers.
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. INTRODUCTION F=U-TS=-1oVT% @)

Almost all standard texts on thermodynamics present th@inally the pressur® follows from
Carnot cycle based on the thermodynamic behavior of the
ideal gas. This is certainly well justified. The ideal gas ap- ok 1 _,
proximately represents the vapor phases of fluids at high P~ "Zv] =397 - ®
temperatures for which the heat engine is constructed. For T
the ideal gas we also know thievs V relationship on adia- The pressure depends only on one variable, in this Gase
batic and isothermal paths exactly. which is indicative of being at a phase boundary. Note also
Although not as practical perhaps, the thermodynamic bethat (1) and (5) give the standard resuRV=(1/3)U. We
havior of a photon gas is simpler and in some ways richenow have the knowledge of all the thermodynamic functions
than that of the ideal gas. Why not therefore construct theéieeded to construct the Carnot cycle for a photon gas. See
Carnot cycle for a photon gas? For a photon gas we know akKelly* for another way of obtaining these thermodynamic
the thermodynamic functions such @sF, S P, valid at all  functions. Also see Pearsband Massafor the applicability
temperatures. It is easy to construct the Carnot cycle not jusif thermodynamics to blackbody radiation.
in the PV plane but also in other planes, especially because
the entropy is given very simpl§not logarithmic inT as it is
for the ideal gas
For a photon gas the chemical potenjiaanishes® This ~ Ill. CARNOT CYCLE
fact permits us to regard a photon gas as being placed in a . ) .
state of coexistence. For this gas, then, there is an added The Carnot cycle expresses thermodynamic relationships

richness provided by the physics of a first-order transitionin the P andV planes. The cycle or circuit is composed of
out of reach for the conventional ideal gas. Perhaps modpur connected paths, alternatingly of constanand con-
helpful pedagogically, the thermodynamic laws are lucidlystantS. For a photon gas the path of constdnts trivial
illustrated through the Carnot cycle of a photon gas. There isince P does not depend oW. The path of constans is
no need to bring in statistical mechanics to achieve it. Wedetermined if we combinB andSto eliminateT, see(3) and
can arrive at all the thermodynamic consequences starting), giving

from just one experimental fact, the one on the energy den-

sity. PVF=1(S9), (6)
where 8=4/3 andf(S) is a function of the entropy only,

Il. THERMODYNAMIC FUNCTIONS OF A PHOTON hence a constant on an adiabatic path.

GAS Using (5) and (6) we can readily construct the Carnot

cycle as shown in Fig. 1. The paths are indicated, 1-2 and
Long ago it was already established that the energy der3—4 the isothermal and 2—3 and 4-1 the adiabatic. The iso-
sity of a photon gas depends very simply on the temperaturthermal paths are set @t andT”(T'<T”) and the adiabatic

only.2 If uis the energy density arifl the temperature, paths atS’ andS’(S'<S").
U Let X(ij)=X(j)—X(i), whereX(i) is a thermodynamic
u= V:UTA’ (1) function at theith position of the cycle, and the adjacent

positions. Observe that on thisothermal pathsU(ij)#0.
where o is the Stefan—Boltzmann constaM,the volume, Hence,Q(ij)>W(ij), whereQ andW are, respectively, the
and U the total energy. Fronil) it follows at once that the heat and work done. This behavior is different from that of
specific heat at constant volun@, is the ideal gas. But on thadiabatic pathsU(ij) = —W(ij).
Cy=4aVTe. ) For one cycleQ=W still. .
) ) ) We can also calculate the heat exchanged. SiQce
The entropyS can be obtain fronC,, by the simple integral =TAS, on the isothermal path@(12)=T"(S'—S') and
T dT 4 Q(34)=T'(S"—S"). On the two adiabatic path@=0, of
JO Cveg = §UVT3- (3)  course. We can write down the efficiengyat once

Hence the Helmholtz free energyfollows from the defini- — Q(12)—Q(34) _ m-r
tion 7 Q(12 T

)
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Fig. 1. P vs V. Isothermal and adiabatic paths are indicatedTbgnd S,
respectively. The two values dfareT’ andT” with T'<T”. Similarly the
two values ofSareS’ and S” with S'<S". The paths following 12341
constitute one cycle.

Fig. 2. U vs V. The cycle shown in Fig. 1 is redrawn in the/ plane. The
slope ofU along an adiabatic path is tiieegative pressure while the slope
along an isothermal path is the energy density.

We can also determine the angle formed by two paths at

The photon engi4ne yields the same efficiency as the conveny, intersection which amounts to a difference in the slope at
tional ideal gas:* The inequality exists sinc&' can never hat point. Let

be zero by the third law.

Since AU=0 for one cycle W=Q(12)-Q(34) by the A slopezﬂ) _ﬁ)
first law. The work done is also represented by the area en- N| g N T'
closed by the cycle. This is even simpler to demonstrate i ) ]
since on the isothermal patlsis independent oY/, so that The first term on the right-hand side may be replaced-t5y
PdV=PAV. It is also elementary to transform the Carnot PY the second law. Also, since
cycle to other sets of thermodynamic variables, dfy/,as JF
shown below. P= _(?_V)

T

®

andF=U—TS quite generally

IV. CARNOT CYCLE AND PHYSICAL PROPERTIES aS
A sIope=—T(9—V) (8a)
The Carnot cycle is particularly useful for illustrating cer-
tain physical properties defined on an isothermal or adiabatic P
path. They are given by the slope of a path of the Carnot =—T—]| . (8h)
cycle (sometimes with a negative sign or by its inveyse. Ity

As shown in Fig. 1, the isothermal patl& and 34 are o the photon gag3) may be used irf8a) or (5) in (8b). If
flat, implying that the isothermal compressibilityy is <. gq (5) is used,

That is, a photon gas is infinitely compressible on an isother-

mal path since the radiation pressure is independent of the ﬁ
volume. The adiabatic patt23 and 4} are not flat and their oT
slope(actually the negative inverseorresponds to the adia- _
batic compressibilitycs=3/(4P). Curiously a photon gas is hoting thatP does not depend ov. Hence,

_dP

ﬁ=S/V, (9)

\%

not infinitely compressible on an adiabatic path. On such a 7 slope= —TSV. (10)
path the radiation pressure does in fact depend on the vol- ) ) ) ) ) .
ume. At an intersection, say at point 2, the difference in slope is

The inequality k1> ks is trivially satisfied. Alsox;=o  determined by, the position of the volume, anfi" and
implies that Co=o from the well-known relationky/«xg T_”, the \{alues of the two intersecting pgths. .Hence at any
=Cp/Cy. The slope of an adiabatic path is thus a measurgiven point on theUV plane 9U/dV remains highly path-

of P. Observe that there is a decrease in the magnitude of tHgensitive. . ) .
slope withV (compare, e.g.P, andP5). We can also look at the differences at two different points

The above Carnot cycle can be transformed to the ©Ona path. Take, for example, points 1 and 2. The differences
plane as shown in Fig. 2. The slope of a path here is als@'e, respectively~T"S'/V, and —T"S"/V,. But they are
meaningful. By the second law, the slope of an adiabatiddentically the same since on this isothermal p&HtS’
path is negative of the pressure. The slope of an isothermat V,/V,. Now take points 2 and 3. The differences remain,
path is the energy density. increasing with the volume as may be seen from Fig. 2.
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phases coexist, the condensed and uncondensed. The entropy
of the condensed phase is zero and this phase occupies zero
volume® The other phase, made up of particles out of the
condensate, has finite entropy and occupies finite space.

A signature ofBEC is the vanishing of the chemical po-
tential . When it vanishes? does not depend ovi [cf. (5)].
Also dP/dT=S/V just as in(9). Since the latent hedt
=TS never vanishes, the transition is first orfléthe phase
boundary is given by the conditigil ~%°= const® This con-
dition also implies that whem.=0 the entropy peexcited
particle is constant. Thus tHBEC phase boundary is also an
isentropic line. Let us see whether the above physics can be
made to explain the behavior of a photon gas.

Now G=F + PV=uN, whereG is the Gibbs free energy.
, . For a photon ga$4) and (5) give G=0, henceu=0 pro-

A% vided that N<w. This result is also supported by

. . o . =dF/oN)y =0 by (4). Alternatively if we setu=0 in the
Fig. 3. T vs V. The adiabatic patlisolid line) indicates the cooling of the S .
universe starting at poirii and continuing through the present day at point Bose-Einstein f“”C“Q” and Pse the photon energy spectrum,
c. The early universe is assumed to have expanded “freely” at some starting!ll the ther_m(_JijOy namic function&l)—(5) are exactly recov-
point a (dotted ling until the adiabatic cooling began at point Pointa  ered from it=1% Hence a photon gas is fundamentally no
must lie left of the adiabatic line since the entropy must have increased wittdifferent from other Bose gases except for the special prop-
expansion until it attained the present day value. erty that its chemical potential is zero at all
From (3), pT Y3=(3/40)/(SIN). It is known that
, , , o S/kgN=27%(45((3))~3.602%° where kg is the Boltz-

We cannot end this section without looking, if only mann constant and3) Riemann’s zeta function of order 3.
briefly, at what we might call grandiosely the adiabatic pasyonce,T-13= const, also delineating an isentrofaelinear-
sage of the universe. Shown in Fig. 3 is an adiabatic path iiso sion analog of the quadratic-dispersion result men-
';hﬁ TV plane, which the expansion of the universe is said tQ[ioned above The analogy tEC in an ordinary Bose gas
ollow.

. . . . thus leads us to say that the photon gas pressurébsesnd

From pointa to point b (the dotted line of Fig. Bthe its slope, sed9), are together describing a phase boundary.

universe has undergone a “free” expansion. At pdinat a . . C 4
temperature of about 3000 K, matter and radiation have b(—:ghIS slope_ als_o gIves us the latent hEatTS—(4g/3)VT
y (3), which is finite for 0<T<, implying a first-order

come decoupled As the entropy of the universe is contrib- -
uted almost entirely by photons, the expansion of the unifransition. . : . o
The vanishing of its chemical potential at any T implies

verse falls on an adiabatic path, the solid line from pbitd ; . 7
point ¢, the latter point representing the present day at hat a photon gas, unlike an ordinary Bose gas, is in a state of
hBEC always These photons carry finite fixed entropy and

temperature of about 2.73 K. Observe that the slope of t ' _ . X
temperature line on the adiabatic path is steeper than that §}fCUPY finite space just as the ordinary Bose particles out of
he condensate do when at zero chemical potefE&C fur-

a free expansion path. Evidently the universe has cooled raﬂ) e . L
idly following an adiabatic expansion path, which, if it could ther implies that this photooncondenseghase coexists in

be imagined, is one leg of a Carnot cycle for the universe, 1€ momentum space with another phase. The photon
densedphase is the state of zero point motion, a state not

coupled to temperature. Since this ground state has infinite

V. PHOTON GAS AND STATE OF COEXISTENCE energy, it could simply refer to a photon reserv@rg., walls
a cavity in blackbody radiationhence a vacuum staté,
uch like the ground state of phonons. It is strikingly similar
o the condensate state of an ordinary Bose gas, also a par-
icle reservoir for the uncondensed phase. Such a state has
zero entropy and volume and is not coupledrto

Being at zero chemical potential also means that photons
may carry only fixed entropy. It is this fact that gives rise to
the constancy of the entropy of the universe. When the uni-
verse expands and cools, the physical process is thus con-
Strained to take place on an adiabatic path. See Fig. 3. The
adiabatic paths in the photon Carnot cycle are really the
phase boundaries of a photon gas.

It was asserted that the thermodynamics of a photon gas %f
simpler but richer than that of the ideal gas. In this sectio
we will briefly illustrate an extra feature that makes a photont
gas richer.

The form of P—depending only orT, not bothT andV
[see Eg.(5)]—is suggestive of the behavior at a phase
boundary. One might thus think thd®P/dT given by (9) is
just the slope at this phase boundary in Bieplane, hence
the latent heat.. The slope along a phase boundary betwee
two coexisting phasessay 1 and 2 is described by the
Clausius—Clapeyron equatibn

dP| S-S

d_T 1’2_V2_V1 '

11

_ _ VI. ADIABATIC EQUATION OF STATE
If one were to seS;=0 andV;=0 in (11), the right-hand

side of (11) corresponds exactly t(®). When thermodynamic functions are confined to an adia-

Now the vanishing of entropy and volume for one of the batic path, their behavior becomes constrained. The particu-
coexisting phases is not unfamiliar. It occurs in an ideal ordar relationship amond®VT on an adiabatic path may be
dinary Bose gas at a transition temperature, where twgenerally termed aadiabaticequation of state.
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On an adiabatic path, we may take=U(T,V), with T Since the neutrino pressure also depend$ only, one is
replacingS Then with the second ladU= —PdV, we de- also led to say that a neutrino gas is at a phase boundary.

duce(see the Appendix (Recall that condensation or coexistence is not a statistical
property) These neutrinos are distributed over excited states,

d_T+ ﬂ/ d_V: (12) collectively forming anuncondenseghase. It coexists with
T Vv another phase, composed of those in zero point motion, the

. ) ] ) neutrino reservoir, the same as the condensed photon phase.
Hence the relationship betwe&randV on an adiabatic path

is determined solely by the relationship between the pressure
and energy density, a fundamental relationship. For a photo}{m- CONCLUDING REMARKS

gas we obtain It may perhaps come as a surprise that the thermodynamic
TV =1(S), (13 functions of the two massless gases are so simply related in
) ) spite of their different statistics. A brief review of the recent
wherea=1/3 andf, a function of the entropy, is a constant \york unifying the statistical thermodynamics of ideal gases
on an adiabatic path. If the pressure energy—density reIauorpnay help shed some light. As is well known, ideal gases
ship is applied to the second law, we obtain a second form ofome in two species, Fermi and Bose. If their energy spec-
the adiabatic equation of state, trum is either linear or quadratic, their thermodynamic func-
PVF=g(9), (14)  tions are all expressible by a function called polylogg ),
where s and { are two parameterglt is a transcendental

Wht_areB=1+ a=4/3 andg is another constant on an gdia— function much like the Bessel functiah,(t).] In any case,
batic path. The values of these exponents can be readily Verl_ 4o+ 1 if a quadratic spectrum antt 1 if a linear spec-

fied from (3) and (5).% , S
The adiabat equation of state has but one independeﬁrtum’ whered is the dimensionality; and= +z if Bose and

variable. In several earlier te#f&129 the exponeng (of- 2 If Fermi, Whergez=exp(M/kBT) the fugacity. For the ideal
ten denoted byy) was incorrectly attributedas pointed out 92S€S,~*<{<1. . _
by Pathrid) to the ratio of the specific hea®/C, . Forthe If, for example,d=2 with a quadratic spectrure.g., or-
ideal gas in @ this ratio fortuitously is equal to 5/3. But the dinary Bose and Fermi gages—Lip(—=<{<0) can be
origin is in the pressure energy—density relationship of thenapped onto Li(0<{<1) exactly, implying that the @
ideal gasP=2u/d. Fermi and Bose gases are thermodynamically equivalent in
spite of their different statistics. This explains an old result of
May on the specific heats of the two gas&$’
VII. NEUTRINO GAS If d=3 with a linear spectrurfe.g., massless gasethere
is no such mapping property for this function. But for pho-

In the early universe, the neutrinos are thought to havéons and neutrinos{=*1, respectively, and—Li,(—1)
played an important role in its evolutidi}*As the universe =2« Li,(1), where 2&=7/8, a reflection property of this
cooled and freely expanded, the neutrinos presumably bdunction mentioned previously. What is being shown here is
came decoupled from matter and thermalized in much thé¢hat insofar as thermodynamics goes, the difference in statis-
same way as the photons. tics is far outweighed by zero chemical potential.

Neutrinos are Fermi particles. One might thus expect to Indeed the vanishing of the chemical potential implies that
find here thermodynamic functions which are very differentthe entropy is free of log ternislt implies that the entropy
from those of a photon gds.But according to a recent uni- per particle is a universal constéhtt implies that these
fication work on ideal gases, this is not the cAsecause gases are confined to a point on a phase boundary and con-
the photon and neutrino gases both have zero chemical pstrained to move along the boundary @schanges. This
tential, their thermodynamic functions are simply related.boundary is a line of first-order transition, also of constant
There is a sort of reflection symmetry between the two gasesntropy. Any expansion or cooling is thus adiabatic.

of zero chemical potential. For example, for eqWahnd T, As regards the photons and neutrinos of the early universe,
their energies are related by they must have followed the adiabatic cooling paths as the
universe has expanded. The neutrino path is the same as the
U(v)=«U(y), (15

photon path shown in Fig. 3, merely shifted accordingly by

wherex = 1/2x 7/8. Of this numbek, 1/2 is the polarization the reflection property. If we were to assume that these

degeneracy ratio between the two massless particles and 7#8meval gases had reached their adiabatic paths at approxi-

is a measure of this reflection symmetihis numberx  Mately the same time in the early universe, their present day

would go into the Stefan—Boltzmann constant for a neutrind?a@ckground temperatures would also be approximately the

gas) same. The neutrino background temperature, estimated to be
As Cy follows from U, Sfrom Cy, andF therefrom, and 195 K, is somewhat lower than the photdnThat is, the

finally P from F (see Sec. )| the neutrino thermodynamic nitial temperature of the photons is somewhat higher, attrib-

functions are those given for a photon gas adjusted by theted to the reactiore+e— y before the photons attained

constantk. Consequently all the thermodynamic conclusionsfinal thermalization.

drawn for a photon gas such as the adiabatic expansion, adia-

batic equation of state apply equally as well. For exampleAckKNOWLEDGMENTS

each neutrino carries a fixed amount of entropy, independent

of T. The neutrinos of the universe are thus on an adiabatic The author thanks W. Kwak for preparing the figures. He

path of expansion and have a background temperature just atso thanks Dale Richardson for carrying out an extensive

the photons dd**° reference search through AJP online.
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APPENDIX: ADIABATIC EQUATION OF STATE IPV
) . (A10)
P

Xp=——
The equation of state for a neutral, homogeneous fluid has P ou

two independent variables, s&-=P(V,T) if N is fixed. On Both (A5) and (A9) represent general relationships between

adiabatic paths one of them may be reduced so that only o - ; X .
remains independent. The equation of state thus should ge%?— andT, andV andP, respectively, valid on any adiabatic

erally be simpler on these paths, which might be termed thQath' Their solutions depend only on the relationship be-
adiabatic equation of state. We will show that it has a uni- WeenU andPV, expressed through, andxp .
versal structure, determined solely by the relationship be- If X\y=Xp=a, i.e., PV=aU, wherea is a pure number,

tweenU andPV. (A5) and (A9) give, respectively,
Let N be fixed henceforth. In general=U(S,V). But TVe=£(S), (A11)
when on adiabatic path§therein may be replaced blyor
P. We can consider both possibilities separately. and
(1) Let U=U(T,V) with S=constant. Then, PVA=g(S), (A12)
duzﬂ) dT+E dv (A1) where 8= a+ 1, andf andg are functions ofS only, hence
Tl N|ig constant on a given adiabatic path.

If «=1/3 and 2/3, hencg8=4/3 and 5/3, respectively,
(A11) and(A12) yield the familiar results for the photon gas
du=-PdW. (A2) and the classical ideal gas im3respectively.

For systems whoseV is related taJ by a simple number,

11) and (A12) are two form of the adiabatic equation of
state. There is just one independent thermodynamic variable
and also only one independent exponenton adiabatic
paths.

On adiabatic paths the second law gives

Combining the two equations, and henceforth suppressingA
the subscrip (since our consideration is on adiabatic paths
only) we have

au

aT

oU
dT+{—| +P{dV=0. (A3)
oV . .

\Y T 3E|ectronic mail: mhlee@uga.edu
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