
FÍSICA ESTADÍSTICA I-PCF
TAREA 10
Fecha de entrega: miércoles 13 de noviembre de 2013

Problemas

1. Calcule la función de partición de tres part́ıculas indistinguibles,

Z3(β) = Tr{e−βĤ3},

donde Ĥ3 es el hamiltoniano de tres part́ıculas independientes (sin inter-
acción entre ellas). Considere el caso cuando las part́ıculas se encuentran
en una caja tridimensional e impenetrable de volumen V = L3.

a) Describa expĺıcitamente los estados sobre los cuales se realiza la traza
para cada caso (bosones y fermiones).

Ver problema 7.3 (pág. 357) del libro: A Modern Course in Statistical
Physics (2da edición) de L. Reichl.

2. Demuestre que la función de partición canónica de N part́ıculas indistin-
guibles puede escribirse como:

ZN(β) =
N∑
k=1

(±1)k+1Z1(kβ)ZN−k(β)

con Z0 = 1. (Ver Borrmann y Franke J. Chem. Phys. 98 (3), 1993. Anexo)

3. Partiendo de la función de partición canónica ZN(β), deduzca la distribu-
ción de Fermi-Dirac

〈nk〉 =
1

eβ(εk−µ) + 1

y la de Bose-Einstein

〈nk〉 =
1

eβ(εk−µ) − 1
,

siguiendo el método presentado en el apéndice B de la referencia Eur. J.
Phys. 33, Number 3, 709 (2012). Anexo
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I. INTRODUCTION 

We consider a system of N particles for which the 
energy can be written as a sum of one particle energies such 
as ideal gases or simple shell models. We aim at a recursion 
of Z in terms of Z for subsystems. The idea may be seen as 
a vague analogy to cluster expansion methods. 

A. Theorem 

The one particle energy of the kth particle being in 
state rk will be denoted by e( rk), the partition function by 
Z(N). Then for the partition function holds l 

Z(N) =; k$r ( f l)k+lS(k)Z(N-k) , (1) 

with Z(0) = 1 and S(k), which can be identified as the 
Boltzmannian partition function of a cluster of size k, 
given by 

S(k):= cexp[--Pkd j>] . (2) 
i 

The minus and the plus sign stand for Fermi-Dirac and 
Bose-Einstein statistics, respectively. The sum in Eq. (2) 
runs over all possible states. 

B. Proof 
1. Fermi-Dirac sfafisfics 

In the case of Fermi-Dirac statistics the partition func- 
tion may be written as ’ 

Z,(N)=$ c --** 2 
* ‘I rzfq f’&‘,,‘2.....‘N-, 

Splitting the inner sum into two terms gives 

(3) 

exP 
‘-N-l#‘~,‘2....,‘N-~ 

-fl F, drk) 

N-l 

z exp[-&(rN)]- c eXp[-flE(rj)] (4) 
j=l 

The term in square brackets is just ZFD (N- 1)) the first term in the curly brackets is S( 1) . Thus Eq. (4) takes the form 

Zm(N)=~scl)Z~(N-l)-a~~~ ( c c --- rNBIzr~2...rN-2exp 

N-l 

-0 kz, drk) eXP[-&(Yj)] . 
‘1 r25% 1 I , 

Because of permutational symmetry the term in the brackets is independent ofj. Hence, the outer sum gives simply a factor 
(N-I) and j can be chosen arbitrary. 

1 
ZFD(N)=NS(~)ZFD(N-~~)- ew 

‘N-~#~1.‘2k-N-2 
(-P rz: E(r*))exp[-zpt(r,-,)1 

(N- 1) (N-2) 
=~S”‘ZF~‘N-“-~S’2)ZpD(~-2)+ nn 

xcc-* c exp 
‘1 ‘27% ‘,,L2#++.,rN-3 

(-P rii: ~(r,))exp[_3~~~r,_,)1 . 

Repeated use of these transformations yields Eq. ( 1) . 
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2. Bose-fins tein statistics 
For bosons the partition function takes the form,’ 

and Nk being the number of particles in state k. 

Using the definition of g in a recursive way 

Z,,(N) = c gh&-,rN)exp (5) N-l ‘1,‘2..-,‘N 
-fi kil drk) 

1 

where g is 
gbm,..., TN) =j+rl,..., rN-I> 1-k 2 bjrN 

j=l 

g(%r2,-dN) =- 
il? jgoNh and dividing the sums in Eq. (5) in two parts gives 

Z&N) = c, g(w2,..., 
‘1,‘2,...,‘N- 1 

rN-l)exp( -P Ni’ drkj) z $ (l+ y$ bjrN)ew[-flE(rN) 1 
k=l 

1v Iv j= 1 rl&.,~~~~‘N- 1 

In the second step again advantage has been taken of the 
permutational symmetries. Proceeding in the same manner 
as done above for Fermi-Dirac statistics yields the theo- 
rem. 

II. CONCLUSIONS 

The recursion formula given in the theorem is exact. 
For practical purposes the sums may be done only over 
finite number of states which yields a good approximation 
up to temperatures where the occupation numbers of 
higher states are sufficiently small. Using the derived re- 
cursion formulas for the partition functions the computa- 
tional effort increases approximately with the number y1,,, 
of states taken into account for the functions S(k), (k 
= l,...,N), and with the square of the particle number for 

\ k=l / 

Eq. ( 1). In contrast, the numerical effort to evaluate the 
usual Eqs. (3) and (5) directly, increases roughly with 
(n jN. max 

The given recursion formulas may be applied in cluster 
physics as well as in the framework of simple models in 
nuclear physics. Recently, Mende12 applied our results in a 
special model of quantum chrome dynamics. 
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Appendix B. Derivation of mean occupancy for an ideal quantum gas with
intermediate quantum statistics of order j

Our starting point to derive 〈nk〉 j is the observation that ZN can be written as a sum over all
possible values of nk for each k, i.e.

ZN =
j∑

n1=0

j∑
n2=0

. . . e−β(n1ε1+n2ε2+···)δn1+n2+···,N, (B.1)

where δi, j is the Kronecker delta and the factor δn1+···+nk+···,N has been introduced to guarantee
the conservation of N. To proceed further [4], we write the last expression as

ZN =
j∑

nk=0

e−βnkεk

⎡
⎣ j∑

n1=0

j∑
n2=0

. . . e−β(n1ε1+n2ε2+···)δn1+n2+···,N−nk

⎤
⎦ (B.2)

=
j∑

nk=0

e−βnkεk

⎡
⎣∑

{nl}

′e−βE ′
{nl }δn1+n2+···,N−nk

⎤
⎦ . (B.3)

The term within square brackets corresponds to the partition function of N − nk particles with
the energy level k excluded, Z(k)

N−nk
; we use the superindex (k) to denote all quantities which

have been computed in this way. In terms of this, we have

ZN =
j∑

nk=0

e−βnkεk Z(k)
N−nk

. (B.4)

A general formula to compute average number of particles that occupy the energy level k,
given by 〈nk〉 j = Z−1

N

∑ j
n1=0

∑ j
n2=0 . . . nke−β(n1ε1+n2ε2+···), is derived by noting that

〈nk〉 j = − 1

β

∂ ln ZN

∂εk
; (B.5)

thus,

〈nk〉 j = 1

ZN

j∑
nk=0

nke−βnkεk Z(k)
N−nk

. (B.6)

The evaluation of equation (B.6) requires us to compute Z(k)
N−nk

from nk = 0 to j which
makes the calculation rather cumbersome (see [19] and [4] for details). We avoid this difficulty
by noting that the ratio Z(k)

N−nk
/Z(k)

N can be written as the product of the ratios of partition
functions that differ only in one particle, i.e.

Z(k)
N−nk

Z(k)
N

= Z(k)

N−1

Z(k)
N

· Z(k)

N−2

Z(k)

N−1

· · · Z(k)
N−nk

Z(k)

N−nk+1

. (B.7)

Consider the energy of N − nk particles distributed over the energy levels distinct to εk

E (k)
N−nk

=
∑

{nl}
′E ′

{nl}e
−βE ′

{nl }δn1+n2+···,N−nk∑
{nl}

′e−βE ′
{nl }δn1+n2+···,N−nk

= − ∂

∂β
ln Z(k)

N−nk
. (B.8)

The difference �E (k) = E (k)
N−nk

− E (k)

N−nk+1, i.e. the change in energy when withdrawing only
one particle, is given by

�E (k) = − ∂

∂β
ln

Z(k)
N−nk

Z(k)

N−nk+1

. (B.9)
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Since the energy change has been done at constant T and V, we must have that β�E (k) +
ln

[
Z(k)

N−nk

/
Z(k)

N−nk+1

] = �S(k)/kB, where �S(k) denotes the entropy change of the system when
withdrawing only one particle.

Using the first law of thermodynamics, we can identify the chemical potential with

μ
(k)

N−nk+1 = kBT ln
Z(k)

N−nk

Z(k)

N−nk+1

, (B.10)

which corresponds exactly with the expression μ
(k)

N−nk+1 = F (k)

N−nk+1 − F (k)
N−nk

with F (k)
N =

−kBT ln Z(k)
N the Helmholtz free energy of N particles. Thus, equation (B.7) can be written as

Z(k)
N−nk

Z(k)
N

= eβμN eβμN−1 · · · eβμN−nk+1 . (B.11)

In the thermodynamic limit N → ∞, we can write eβμN = · · · = eβμN−nk+1 ≈ eβμ, and
therefore

ZN = Z(k)
N

j∑
nk=0

e−βnk(εk−μ) = Z(k)
N

e−β(εk−μ)( j+1) − 1

e−β(εk−μ) − 1
. (B.12)

Consequently, by the use of (B.6) and after some algebra, we finally get

〈nk〉 j = 1

eβ(εk−μ) − 1
− j + 1

eβ(εk−μ)( j+1) − 1
. (B.13)

The generalization presented here shows how the chemical potential μ emerges from the
particle conservation requirement for any order of the IQS.
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