FISICA ESTADISTICA I-PCF
TAREA 3
Fecha de entrega: viernes 30 de agosto de 2013

s Problemas

1. Cuando una maquina de Carnot opera cuasi-estaticamente la potencia de
la maquina se anula debido al tiempo infinito que requiere para realizar un
ciclo. Demuestre que la eficiencia 1 a potencia maxima esta dada por
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donde T} > T5 son las temperaturas de los reservorios en los que opera la

maquina (ver Curzon, Am. J. Phys. 43, 22 1975, adjunto a este documento).

2. Demuestre que:

a) En una transformacién termodindmica de un sistema aislado mecanica-
mente y mantenido a temperatura constante, la energia libre de Helm-
holtz no aumenta y que el estado de equilibrio termodinamico corres-
ponde al estado que la minimiza.

b) En una transformacién termodindmica de un sistema mantenido a tem-
peratura y presion constantes, el potencial de Gibbs nunca aumenta y
que el estado de equilibrio termodinamico corresponde al estado que lo
minimiza.

3. Construya el potencial termodinamico correspodiente a la situacion fisica
en la que temperatura 7', volumen V' y potencial quimico p corresponden a
las variables termodindmicas del sistema (variables que se pueden controlar
en el laboratorio). Dicho potencial es llamado gran potencial. Discuta
sobre la concavidad de este potencial respecto a cada variable asi como las

condiciones de estabilidad.
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es consecuencia de la tercera ley de la termodinamica.

4. Pruebe que

5. Experimentalmente se encuentra que la capacida calorifica a presion cons-
tante C'p puede escribirse a bajas temperaturas como

Cp =T° [Ag(P) + Ai(P)T + Ay(P)T? + .. ]

con o > 0, V el volumen y « el coeficiente de expansién térmica. A;(P),
1=20,1,2,... son funciones sélo de P. Muestre que
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y discuta, como consecuencia de este resultado, que no es posible enfriar un
sistema hasta cero Kelvin realizando un cambio finito de sus parametros

termodinamicos.
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The effictency of a Carnot engine s treated for the case
where the power output is limited by the rates of heat
transfer to and from the working substance. It is shown
that the efficiency, n, at maztmum power output is given
by the expression n=1—(To/Ti)1* where T and T
are the respective temperatures of the heat source and
heat sink. It is also shown that the efficiency of existing
engines 18 well described by the above result.

INTRODUCTION

It is well known that practical heat engines
are not as efficient as the classical Carnot cycle.
Standard texts point out that inefficiencies occur
because of heat leaks, or degradation of kinetic
energy into heat by means of friction, etc.'~?

We have found it instructive in our classes on
thermodynamics to consider another fundamental
limitation on efficiency which is eaused by the
rate at which heat can be exchanged between the
working material and the heat reservoirs.

To achieve the theoretical efficiency, the iso-
thermal parts of the eycle have to be carried out
infinitely slowly so that the working substance
can come into thermal equilibrium with the heat
reservoirs (i.e., no temperature gradients occur
across the walls of the container which encloses
the working material). Under these conditions
the power output is clearly zero since it takes an
infinite time to do a finite amount of work.
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To obtain a finite power output the cycle is
speeded up. However, to drive the heat flux dur-
ing the isothermal expansion of the working sub-
stance, the substance must be colder than the
heat source. Conversely, during the isothermal
compression the working substance cannot reject
heat to the sink unless it is hotter than the sink.
Ultimately, the two isothermal stages take place
with no change in temperature of the working
substance, so that heat flows straight from the
source to the sink, and no mechanical work is
performed by the engine. Hence the power output
is zero and the engine has zero efficiency. Some-
where between these two extremes of zero power
(i.e., optimum or zero efficiency) the engine
clearly has a maximum power output. The
efficiency under conditions of maximum power
output is evaluated below.

THEORETICAL MODEL

We assume that heat fluxes through the vessel
containing the working substance are propor-
tional to the temperature difference across the
walls of the vessel. In the isothermal expansion
stage we therefore have

F1=a(T1—le) (1)

where F is the heat flux, « is a constant depend-
ing on the thickness and thermal conductivity
of the wall; 7, is the temperature of the heat
source and Th., the temperature of the working
substance. If the isothermal expansion lasts 4
seconds, the input energy W, is

W1=F1t1=at1(T1_T1w)- (2)

We assume the adiabatic expansion is com-
pletely reversible (no heat exchanges with the
surroundings). On the isothermal compression,
heat W is rejected to the heat sink where

Wo=8t(T2—T5). (3)
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In the above equation & is the duration of the
compression, T, is the temperature of the heat
sink, @3, its heat transfer coefficient, and T, the
temperature of working material. The final adi-
abatic compression brings the working substance
back to its original volume and temperature.

Since the adiabatic stages are reversible, we
must have that

(Wy/Tw) = (Wa/T)
ie.,

(tl/tz) =BT1w(T2w‘ Tz)/Tzwa(Tl— le) (4)

(see Egs. 2 and 3 above).
The power (P) of the engine is then given by
the expression

P=(W—W2)/(ti+t)v, (5)

where (y—1) (t;+1,) is the time taken to complete
the adiabatic cycles. Hence we assume that as
the heat engine is speeded up, the time to com-
plete the adiabatic processes remains proportional
to the time required for the isothermal processes.

Using Eq. (4) to eliminate ¢/t leads to the
results

__ opzy(Th—To—z—y)
vyBTw+aTsz+zy(a—B)]’

Tr= T],— le;

(6)
y= Tzw'— Tz. (7)

P is maximized by values of « and y satisfying
the following equations:

(oP/dx) =0,
i.e.,
BTy (T —Tr—z—y)
\ =z2[BTw+alx+zy(a—B)] (8a)
(aP/dy) =0,
ie.,
alox (T —To—2—y)
=y[BTw+aT:z+ay(«—B)]. (8b)
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From this it follows that
y=(aly/BT1)*z (9)
which is then used to eliminate y from Eq. (8a)

to give the following quadratic equation for
Z/ T1=M.'

(1~ (a/B) Ju*—2[(aTs/BT1)*+1]u
+[1—(72/T1)]=0. (10)

Since p<1, the physically relevant solution of
this equation is readily shown to be:

1—-(T,/Ty)v2

z
T 1w/ )
From Eq. (9) it follows that
Yy (TW/Te)2—1
Ty 14+(8/a)2 12

The efficiency of the engine (') at maximum
power is given by

7= (W1—W2)/W1
= 1 - (Tgw/le)
=1-[(Ta+y)/(T1—2) ] (13)

Using Eqs. (11) and (12) to eliminate z and y
from the expressions for n’ leads to the result

7' =1—(Te/Ty)2 (14)

At maximum power, it follows from Eqgs. (4) and
(7) that

(/) =BTry/aTswz. (15)
Eliminating (y/z) by using Eq. (9) and noting

that Top/Trw= (T2/T1)V? [see Eq. (14)] leads to
the conclusion that

h/t=(B/a)'. (16)

From Eqs. (11) and (12), the working tempera-
tures in the isothermal parts of the Carnot cycle
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TasLE I. Observed performance of real heat engines.
T T 7 7 n
Power source (°C) (°0C) (Carnot) (Eq. 14)  (observed)
West Thurrock (U.K.)? Coal Fired Steam ~25 565 64.1%, 409, 369,
Plant
CANDU (Canada)* PHW Nuclear Reactor ~25 300 48.0 289, 30%
Larderello (Italy)® Geothermal Steam Plant 80 250 32.3% 17.59%, 169,

are:

le = CT11/2: T2w = CTZIIZ; ( 17)

where

C=[(aT)"*+ (8T)"*]/[(a)*+ ()]  (18)

Finally, using the above equations, it is readily
shown that the maximum power (Pumax) is

Prwx= (af/v) [(T1?—=T?) /(a2 +6V) . (19)

The most interesting feature of the above results
is Eq. (14) which shows that the efficiency does
not depend on the heat transfer coefficients («
and B8), and has the attractive feature, that, as
with the efficiency for an ideal Carnot engine
[n=1—(T,/T1)] it depends only on the temper-
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ature of the heat reservoirs. However the result
also has the interesting property that it serves as
quite an accurate guide to the best observed

performance of real heat engines, as is shown by
Table 1.
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