FÍSICA ESTADÍSTICA FC

TAREA 3

Fecha de entrega sábado 24 de octubre del 2015

Problemas

- 1. Un sistema ideal (sin interacción entre sus elementos) consiste de N átomos distinguibles. Cada átomo solo tiene acceso a dos niveles de energía, por lo que su estado queda definido por el nivel que ocupa. La energía de cada uno de los niveles es $E_0 = 0$ y $E_1 = \epsilon > 0$, respectivamente. El número de átomos en el nivel de energía E_0 es n_0 y el número de átomos en el nivel de energía E_1 es n_1 . La energía total de sistema es $U = n_0 E_0 + n_1 E_1$.
 - Calcule la entropía del sistema como función de la energía.
 - Calcule la temperatura del sistema. ¿Bajo qué condiciones puede ser negativa?
 - Calcule la capacidad calorífica cuando el número de átomos es fijo.
- 2. Una red contiene N sitios "normales" y N sitios intersticiales. Todos los sitios de la red son distinguibles. N átomos idénticos yacen sobre la red, M sobre los sitios intersticiales, y N-M sobre los sitios normales (asuma $N\gg M\gg 1$). Un átomo que ocupa un sitio normal tiene energía E=0 y uno que ocupa un sitio intersticial $E=\epsilon$.
 - Calcule la energía interna y la capacidad calorífica del sistema como función de la temperatura. Discuta sus resultados.
 - Calcule la probabilidad que un átomo intersticial tenga energía $E=\epsilon,$ como función de la temperatura. Discuta sus resultados.
- 3. Considere una red con N espínes distinguibles, el valor de cada espín puede tener los valores $s_i = -1, 0, 1. n_{-1}, n_0, n_1$ denotan el número de espínes en cada uno de los estados de espín mencionados.
 - Encuentre la entropía total del sistema.
 - ¿Cuál es la configuración que máximiza la entropía total?
 - ¿Cuál es la máxima entropía?
- 4. Un sistema está conformado por tres moléculas distinguibles en reposo, cada una puede tener solo dos valores de momento magnético a lo largo de la dirección z, $-\frac{1}{2}\mu$ o $+\frac{1}{2}\mu$.
 - Halle una expresión para la distribución de probabilidad P_i (i denota la i-ésima configuración o microestado del sistema) que maximiza la entropía cuando dicha distribución está sujeta a normalización $\sum_i P_i = 1$ y a la condición $\sum_i M_{i,z} P_i = \gamma \mu$ donde $M_{i,z}$ es el momento magnético total del sistema en el microestado i.
 - Calcule la entropía y P_i cuando $\gamma = \frac{1}{2}$.
- 5. Considere un sistema cuya energía está dada por N entidades indistinguibles, si la energía total del sistema está fija a $E = \epsilon_0 M$, donde $M = n_1 + n_2 + \ldots + n_N$ es un número entero no-negativo (cada n_i es también un entero no-negativo)

- Calcule el número de microestados compatibles con la constricción $E = \epsilon_0 M$, es decir, de cuántas manera se pueden elegir N enteros cuya suma es M. Tome en cuenta la indistinguibilidad de las N entidades, explícitamente, el resultado de intercambiar los subíndices de las entidades en un microestado dado no corresponden a distintos microestados.
- Calcule la entropía y la temperatura del sistema.
- Calcule la energía interna del sistema y escríbala en términos de la temperatura.