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We present a novel method for the efficient generation of even, odd, and helical Mathieu–Gauss beams of
arbitrary order and ellipticity by means of a phase-only spatial light modulator (SLM). Our method con-
sists of displaying the phase of the desired beam in the SLM; the reconstructed field is obtained on-axis
following a spatial filtering process with an annular aperture. The propagation invariance and topolo-
gical properties of the generated beams are investigated numerically and experimentally. © 2010 Op-
tical Society of America
OCIS codes: 070.3185, 090.1995, 070.6120, 120.5060.

1. Introduction

Propagation invariant optical fields (PIOFs) are so-
lutions of the wave equation in cylindrical coordinate
systems with different geometries in the transverse
plane; their name is owed to the fact that their trans-
verse intensity profile is independent of the axial
propagation coordinate z. There are four families
of PIOFs; each one of them constitutes a complete
orthogonal basis in terms of which any arbitrary
light beam can be expanded. The best-known mem-
ber of these families is the plane wave and, in the
context of PIOFs, some particular combinations
thereof whose transverse intensity profiles form sta-
tionary waves along the x and/or the y directions,
such as fcos ktx; cos ktyg. On the other hand, Bessel
beams correspond to the case of circular cylindrical
geometry and were introduced in 1987 by Durnin
et al. [1]. Mathieu beams, brought in by Gutierrez-
Vega et al. [2] in 2001, are associated with elliptic
transverse geometry, but in fact, they can also be as-
sociated with hyperbolic geometry, since the ellipti-
cal cylindrical coordinate system is formed by

orthogonal families of confocal elliptic and hyperbolic
cylinders that intersect each other [3]. Finally, para-
bolic PIOFs were introduced in 2004 by the latter
group [4]. There are also different vector families of
PIOFs, which satisfy the vector wave equation [5,6].
PIOFs share several properties, for example, their
wave vectors lie on the surface of a cone with axial
and transverse components denoted here by kz and
kt, respectively [7]. In consequence, the Fourier spec-
trum of any PIOF is constituted by a single ring of
radius kt in the frequency domain; the amplitude
and phase modulation around this ring defines each
particular PIOF [2,4]. Another characteristic shared
by all the PIOFs is that they, in principle, carry in-
finite energy just as is commonly accepted with the
plane wave, and therefore, ideal PIOFs are not rea-
lizable in the laboratory. In this context, finite ver-
sions of the ideal PIOFs known as Bessel–Gauss
beams in the case of circular geometry [8], and more
recently designated as Helmholtz–Gauss waves in
general, have been studied [9]. In this paper, we
focus our attention on Mathieu–Gauss beams, which
are also a special case of the so-called elliptical
beams [10].

Mathieu beams and Mathieu–Gauss (MG) beams
have been the focus of considerable attention in
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the last few years because their topological proper-
ties depend on the interfocal distance 2f . This para-
meter provides elliptic light beams with richness
that their circular and rectangular counterparts do
not possess. In the limit when f ¼ 0, one recovers the
case of circular geometry and Mathieu beams trans-
form into Bessel beams. The tailoring of topological
properties of Mathieu beams has found relevant ap-
plications in nonlinear optics. For instance, it has
been found that a variation of f from 0 to ∞ can be
used for shaping solitons in Mathieu lattices of the
lowest order [11].

In circular geometry, the even and odd solu-
tions of the wave equation, JmðktρÞ cosmφ and
JmðktρÞ sinmφ, respectively, are degenerate with re-
spect to the eigenvalue m. This allows a straightfor-
ward construction of complex superpositions that
give rise to rotating modes called optical vortices,
with azimuthal phase dependence of the form
fexpð�imφÞg, where the eigenvalue m is known as
the topological charge of the vortex. Optical vortices
are highly relevant in optics, not only due to their to-
pological properties, as they exhibit a screw-type sin-
gularity [12], but also due to their dynamical
properties. They possess a well-defined orbital angu-
lar momentum [13,14]. Both characteristics have led
to a great number of applications [15–20]. In elliptic
coordinates, in contrast, the eigenvalues of even and
odd solutions of the wave equation are different;
the larger the interfocal distance f , the more the ei-
genvalues differ from one another. Nevertheless,
complex superpositions of even and odd Mathieu
beams that are analogous to Bessel vortices have
been proposed for generating what has been called
elliptic vortices [21] or helical Mathieu (HM) beams,
which have been used, for instance, for rotating mi-
croscopic particles [22]. In nonlinear optics, theoreti-
cal predictions show that HM lattices support stable
solitons that may either oscillate or rotate around an
elliptical ring of the lattice as they propagate, pro-
vided the launched field initially possesses a trans-
verse linear momentum component tangent to the
lattice ring [23]. Elliptic vortices may be supported
as well in HM lattices whenever the energy flow ex-
ceeds certain minimum value, in contrast with circu-
lar vortices [24]. Recently, the dynamical effects of
vector Mathieu beams on cold atoms trapped in a
far-off resonance optical trap were investigated [25].
In that case, the Mathieu modes were characterized
by a single eigenvalue, which allowed the identifica-
tion of a new dynamical constant associated with el-
liptical symmetry, analogous to the orbital angular
momentum in circular geometry.

In spite of the increasing attention that Mathieu
and MG beams have recently received in connection
with new proposed applications, there are just few
reports on the experimental generation of these
kinds of beams [26–28]. The first experimental de-
monstration was limited to the lowest order Mathieu
beam [26]. The second approach was based on phase-
only computer generated holograms (CGH), for

which the produced MG beams of arbitrary order
and ellipticity are reconstructed off-axis, giving rise
to a relatively low efficiency [27]. Finally, all the fa-
milies of Helmholtz–Gauss beams, including MG
modes, were generated experimentally by means of
Fourier CGHs, which are computed as the interfer-
ence pattern between the interest field and an
inclined plane wave [28]. The latter approach pro-
duces good quality beams, but the efficiency is lower
than that obtained with the phase holograms.

In this article, we present a versatile method for
the generation of Mathieu–Gauss beams of arbitrary
order and ellipticity by using a phase spatial light
modulator (SLM). Our code is simple and more effi-
cient than its predecessors, since the structured light
beams are generated on-axis. It consists in display-
ing the phase of the desired beam in the SLM and
making a spatial filtering process with an annular
aperture. In Section 2, we present a numerical ana-
lysis of our system for the generation of even, odd,
and helical MG modes. The experimental setup and
results are discussed in Section 3, including a char-
acterization of the propagation and topological prop-
erties of the generated light fields. Section 4 is
dedicated to the conclusions.

2. Numerical Analysis

The generation of Bessel beams (BBs) by means of
digital holography was accomplished shortly after
these optical fields were introduced [29]. Similar en-
coding techniques were implemented some years la-
ter using spatial light modulators [30], with the
significant advantage offered by the dynamical re-
configuration. However, in most of these methods
the encoded fields are reconstructed off-axis, which
gives rise to relatively low efficiencies. Very recently,
a new encoding technique was introduced for gener-
ating BBs with a phase-only SLM, which dramati-
cally improves the output power efficiency [31,32].
Here we follow the same method: the phase of
the ideal nondiffracting beam of interest is displayed
on the SLM and the field is reconstructed on-axis.
As we illuminate the SLM with a fundamental
Gaussian beam, the resulting field is a Mathieu–
Gauss beam.

The phase masks we displayed for the generation
of even, odd, and helical Mathieu beams of order r
can be expressed, respectively, as

Me
rðu; vÞ ¼ sgnfcerðv; qÞJerðu; qÞg; ð1Þ

Mo
rðu; vÞ ¼ sgnfserðv; qÞJorðu; qÞg; ð2Þ

Mh
r ðu;vÞ

¼exp
�
�iarctan

�
ArðqÞcerðv;kt;qÞJerðu;kt;qÞ
BrðqÞserðv;kt;qÞJorðu;kt;qÞ

��
: ð3Þ

We have followed here the notation used in Ref. [2],
where cerðv; qÞ and serðv; qÞ represent the even and
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odd ordinary Mathieu functions, also known as ellip-
tic cosine and sine, respectively, while Jerðu; qÞ and
Jorðu; qÞ denote the even and odd modified Mathieu
functions. The ellipticity parameter is defined as
q ¼ f 2k2t =4, and the elliptic transverse coordinates
ðu; vÞ are related with the Cartesian coordinates
ðx; yÞ by means of the transformation x ¼
f coshu cos v; y ¼ f sinhu sin v. In Eqs. (1) and (2),
sgnf⋅g represents the binary signum function. Its
two possible values are mapped to phase values of
0 and π in our SLM display. The coefficients ArðqÞ
and BrðqÞ in Eq. (3) are defined according to Ref.
[21]. In our numerical analysis, we multiply each
of the above functions by a Gaussian amplitude of ra-
dius w0, G0 ¼ expð−ρ2=w2

0Þ, and this constitutes our
initial condition at the plane z ¼ 0. We study the gen-
erated optical field by means of standard Fresnel
propagation algorithms. The field is propagated
through a conventional 4f system, consisting of
two lenses of focal length f L and an annular aperture
filter at the Fourier plane.

Figures 1 and 2 show simulations of the optical
fields generated with phasemasks corresponding, re-
spectively, to an even Mathieu beam of order r ¼ 6
and ellipticity parameter q ¼ 18 and a helical
Mathieu beam of order r ¼ 6 and ellipticity para-
meter q ¼ 12. In both cases, the transverse spatial
frequency is kt ¼ 10 mm−1. In each of the figures,
we show the transverse optical field at different
planes z (a–e), the phase mask (f), and the resulting
field along the propagation axis (g). The axial dis-
tance z has been scaled respect to the focal length
f L and the transverse coordinates ðx; yÞ with respect
to the beam waist w0. In order to facilitate the visua-
lization of the Fourier spectrum (FS), the wavelength

was taken sufficiently large (λ ¼ 0:05 mm), which
means that the real spectrumwill be 100 times smal-
ler for a wavelength of 500 nm, for instance. The FS
in both cases consists of a main ring in which most of
the energy is concentrated and has additional sur-
rounding structure of much lower energy. The radius
and width of the annular filter at the Fourier plane
were set in order to allow the transmission of the
light from the main ring, while blocking the rest.
It has been demonstrated that the FS of any
Helmholtz–Gauss beam is constituted by a single
ring whose mean radius in the frequency domain
is kt, which is associated with the FS of the corre-
sponding ideal PIOF, and whose width is associated
with the Gaussian envelope [9]. Accordingly, we have
set the radius and width of the annular filter as R ¼
ktλf L=2π and ΔR ¼ 2λf L=w0π, respectively.

The generated MG beams are approximations to
ideal Mathieu nondiffracting beams within a certain
region of space, since their transverse intensity
profiles remain approximately unaltered along this
region. The propagation invariance distance is di-
rectly proportional to the radius of the Gaussian en-
velope [9,32]. In the case of helical MG beams, there
is an additional effect arising from the finite size of
the Gaussian modulation. Consider, for example, the
helical MG beam shown in Fig. 2(d), whose trans-
verse intensity distribution has a set of r ¼ 6 vortices
with unit topological charge lined up along the major
axis of the ellipse [21]. From a comparison with
Figs. 2(c) and 2(e), it can be seen that the line of vor-
tices exhibits a slight rotation on propagation. This
behavior was predicted and observed for corotating
vortices nested in a Gaussian beam [33], and it has
been also observed in the specific case of helical MG

Fig. 1. (Color online) Simulation of the propagation of an input Gaussian beam impinging on a phase mask located at z ¼ −4f L encoding
the phase of an even Mathieu beam of order r ¼ 6 and ellipticity parameter q ¼ 18. (a), (b) Fourier spectrum just before and after the
annular screen. (c)–(e) Transverse intensity distribution of the reconstructed field at different planes. (f) Phase mask. (g) Axial intensity
distribution along propagation through the 4f optical system. The dashed lines indicate the planes where the transverse profiles (c)–(e)
were taken. The phase in the mask varies from 0 to π.
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beams [27]. Ideal nondiffracting Mathieu beams
would not exhibit this rotation. Therefore, this
effect can be minimized by enlarging the Gaussian
envelope.

The output power efficiency of the optical fields
generated with the proposed phase masks, calcu-
lated as the ratio of the power remaining after the
annular filter to the incident power, can be as high
as ∼80%, but it depends on the involved parameters.
Specifically, the efficiency decreases as a function of
the ellipticity parameter q, for instance, for r ¼ 3,
kt ¼ 10 mm−1 and w0 ¼ 2:35 mm, it drops from
76% when q ¼ 1 to 63% when q ¼ 80. Regarding
the beam order r, we found that the efficiency can
drop from 77% to 28% for r ¼ 5 and r ¼ 20, respec-
tively, for q ¼ 20, kt ¼ 10 mm−1 and w0 ¼ 2:35 mm.
We also found that the efficiency depends strongly
on the beam waist of the Gaussian envelope w0.
As an example, it drops from 77% when w0 ¼
2:35 mm down to 30% when w0 is five times larger.
According to this last result, we infer that the light
diffracted from the central region of the mask has a
more important contribution to the main ring of the
FS than the light coming from the outer region. Fi-
nally, we found that kt does not have an important
effect on the efficiency, although this is an important
parameter in terms of the pixel structure of an SLM.
A larger value for kt implies smaller details to be re-
solved with the SLM.

It is worth pointing out that our numerical analy-
sis is based on ideal conditions, while in practice,
there are several effects that may considerably dete-
riorate the efficiency and performance of the phase
masks displayed in the SLM. For instance, the par-
tial specular reflection at the front surface of the
SLM contributes with unmodulated light traveling
on-axis, and there is an additional widespread dif-
fraction pattern associated with the pixel structure

of the SLM. Both of these contributions are ruled
out by means of the spatial filtering process, but they
may decrease the efficiency by approximately 8% to
15%. Furthermore, another issue that can signifi-
cantly affect the quality of the generated field is a
curvature exhibited by many SLM chips, which
sometimes demands a correction of the phase masks.
This fact may become more important if the trans-
verse size of the generated beams is reduced down
to characteristic dimensions on the order of microns.
In our experiments, the transverse size of the gener-
ated fields was relatively large; we did not note any
distortion due to a curvature of the SLM chip.

3. Experiment and Results

In this work, we use a reflection spatial phase mod-
ulator (Holoeye LC-R-2500). The experimental setup
for the generation of Mathieu beams corresponds to a
conventional 4f spatial filtering system (Fig. 3). A

Fig. 2. (Color online) Same as Fig. 1, for a phase mask encoding a helical Mathieu beam of order r ¼ 6 and ellipticity parameter q ¼ 12.
The phase in the mask varies from 0 to 2π.

Fig. 3. (Color online) Experimental setup. HWP, half-wave plate;
SLM, spatial light modulator; P, polarizer; L, lenses; CCD, camera.

6906 APPLIED OPTICS / Vol. 49, No. 36 / 20 December 2010



continuous wave linearly polarized laser beam
(wavelength, 532 nm) passes through a half-wave
plate (HWP) and impinges on the SLM with an angle
of approximately π=15, the minimum allowed by our
optical mounts. The fast axis of the HWP and the
transmission axis of a linear polarizer P, placed after
the SLM, are oriented in such way that the perfor-
mance of the SLM is optimized. In our case, the
lenses L1 and L2 have focal lengths of 25 cm and,
as discussed above, the spatial filtering is performed
by means of an annular aperture.

In Fig. 4, we present examples of the experimental
results for different MG beams (left column) and
their corresponding Fourier spectra at the far field
(right column). From top to bottom, the images cor-
respond to even, odd, and helical MG beams with r ¼
6 and q ¼ 12. Figure 5 shows two sets of images illus-
trating the propagation invariance for two examples
of the generated light beams. Specifically, the left col-
umn corresponds to an evenMG beamwith r ¼ 3 and
q ¼ 12, while the right column illustrate the case of
an odd MG mode of order r ¼ 16 and q ¼ 18. The
transverse plane with the best field reconstruction
is the back focal plane of the second lens, which
was set here as z ¼ 0. The waist of the incident beam
was relatively small: w0 ¼ 2:35 mm, giving rise to a
correspondingly short propagation invariance dis-
tance of approximately 50 cm.

In order to characterize the topological properties
of the helical MG beams, we used two different

methods: direct interference with a plane wave,
and the knife-edge probe [34], illustrated in Figs. 6
and 7, respectively. In Fig. 6, we analyzed two cases
of helical MG beams: (a)–(d) r ¼ 6 and q ¼ 18 and
(e)–(h) r ¼ 3 and q ¼ 12. The left column corresponds
to simulations and the right column, to experimental
results. A number of two-pronged fork-like patterns
can be clearly identified along the focal line of each of
the two beams. Each two-pronged fork is the finger-
print of the interference between a single-charged
vortex and a plane wave [33]. In this way, we can
see that each of the two helical MG beams has a
set of r individual single-charged vortices. The sets
of forks are inverted in (c)–(d) with respect to (g)–
(h), because the two beams we are characterizing ro-
tate in opposite directions, which means that the

Fig. 4. Experimental images of Mathieu–Gauss beams with r ¼ 6
and q ¼ 12 (left) and their corresponding Fourier spectra (right).
From top to bottom: even MG beam, odd MG beam, and helical
MG beam.

Fig. 5. Test of the propagation invariance of the generated optical
fields. Left column: even MG beam with r ¼ 3 and q ¼ 12. Right
column: odd MG beam with r ¼ 6 and q ¼ 18. The plane z ¼ 0 cor-
responds to the back focal plane of the second lens in the 4f system.
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corresponding phase masks have opposite signs in
the phase term of Eq. (3). In addition, there is a π-
phase shift between consecutive rings of the beam,
which can be noted from the shift of the interference
fringes. Finally, Fig. 7 illustrates the results of the
knife-edge probe for a helical MG beam with r ¼ 6
and q ¼ 12. Figure 7(a) is a simulation showing
the knife edge obstructing the beam at the back focal
plane of the second lens. In Fig. 7(b), we show simu-
lations (left) and experimental images (right) when
the CCD camera is placed at a distance of 10 cm from
the knife edge. The top and bottom rows correspond
to helical beams rotating in opposite directions. It is
seen that the diffraction pattern spreads asymmetri-
cally in both cases, but the asymmetry is opposite.

This is an indicative of the rotating energy flux in
the case of beams with a helical phase [34].

4. Conclusions

We have proposed a simple and efficient experimen-
tal scheme for generating Mathieu–Gauss beams of
arbitrary order and ellipticity using a spatial light
modulator. Our scheme is based on the display of
phase masks in the SLM, which correspond to the
phase of the ideal Mathieu beams. The generated
fields are filtered by means of an annular aperture
whose dimensions (radius and width) are determined
by the calculated Fourier spectrum of the light beam
of interest. We verified that the resultant optical
fields are propagation invariant over a distance, in
our case of tens of centimeters, which is in agreement
with the simulations, according to the size of the in-
cident light beam. We also analyzed the phase beha-
vior or topological properties of the different light
fields by means of direct interference with a plane
wave and also by determining the energy flux direc-
tion with the knife-edge test [34]. We offer, in this
way, a simple tool for implementing new experiments
involving Mathieu beams, such as the interesting
systems studied recently from a theoretical perspec-
tive [11,23–25]. The same method can be employed
for the generation of other kinds of optical fields,
such as parabolic nondiffracting beams [4].
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Nacional Autónoma de México (DGAPA-UNAM),
project PAPIIT-IN100110. Ibis Ricardez-Vargas

Fig. 6. Numerical simulations (left column) and experimental re-
sults (right column) of the transverse intensity distribution of two
helical Mathieu–Gauss beams and their interference patterns
with a plane wave propagating at a small angle relative to each
other. (a)–(d) r ¼ 6 and q ¼ 18, (e)–(h) r ¼ 3 and q ¼ 12.

Fig. 7. Knife-edge test for helical Mathieu–Gauss beams with
r ¼ 6 and q ¼ 12. (a) Simulation of the knife edge obstructing
the beam at the plane z ¼ 0. (b) Numerical simulations (left)
and experimental results (right) at the plane z ¼ 10 cm from
the knife edge. The top and bottom rows correspond to helical
beams rotating in opposite directions.
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