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Abstract
Rigorous solutions of the Maxwell equations describing propagation
invariant optical fields are presented in general; the elements for their specific
applications to the Bessel, Mathieu and Weber families are also provided.
Electric and magnetic transverse modes, and several polarization state
solutions, are constructed; the connections between them are explicitly
established. Their respective energy densities and Poynting vectors are also
evaluated, in order to exhibit their propagation invariant nature. The
experience with Bessel beams allows us to recognize that vector modes
exhibit new and important features compared with the corresponding scalar
fields; the results of this work constitute a first step towards the analysis of
the dynamical properties of vector Mathieu and Weber beams.

Keywords: non-diffracting beams, polarization, propagation invariant optical
fields

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It will soon be twenty years since the concept of non-
diffracting beams was introduced by Durnin and co-workers
in their study of the scalar Bessel beam [1, 2]. Of
course, the plane wave is the most elementary example of
a non-diffracting beam or propagation invariant optical field
(PIOF), characterized by a transverse intensity profile that
remains unchanged on propagation over arbitrarily extended
distances. In general, any solution of the wave equation of the
separable form �(r, t) = exp[i(kzz ± ωt)]ψ(q1, q2), where
(q1, q2) are generalized transverse cylindrical coordinates,
represents a scalar PIOF. Apart from the plane waves in
Cartesian coordinates (x, y, z) and Bessel beams in circular
cylindrical coordinates (ρ, ϕ, z), other scalar PIOFs have been
investigated in recent years: Mathieu beams in elliptical
cylindrical coordinates (u, v, z) [3], and parabolic non-
diffracting beams or Weber PIOFs in parabolic cylindrical
coordinates (ξ, η, z) [4, 5]. Each set of plane, Bessel, Mathieu
and Weber waves is a complete and orthonormal basis, with
separable transverse components ψ(q1, q2) = Q1(q1)Q2(q2)

covering the entire (q1, q2, z = z0) plane. Any arbitrary optical
field can be expanded as superpositions of the alternative PIOF
bases, underlining the latter’s special and important role. For
instance, the Gauss modulated beams of the Bessel, Mathieu
and Weber types with a finite transverse extent, introduced
in [6–8], can be constructed as superpositions of PIOFs.

On the other hand, rigorous vector solutions of the
Maxwell equations are well known for plane waves, but
they have been analysed for Bessel beams only in the last
decade [9–12]. A very recent publication introduced vector
Helmholtz–Gauss beams [13], which correspond to vector
versions of the finite paraxial approximation to PIOFs, and they
become PIOFs in the limit of the Gaussian beam waist size
infinitely large. Most of the above analyses have been restricted
to transverse electric (TE) and transverse magnetic (TM)
modes. Reference [12] includes the analysis of alternative
polarization states. Experimental approximations of both
scalar [11, 14] and vector [15] high-order Bessel beams have
been implemented in free space, allowing us to establish
that different polarization states possess different angular
momentum properties [11, 15, 16]. Therefore, a full vector
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description of PIOFs is important in order to characterize
the polarization states, and also as a first and fundamental
step towards the identification and study of the dynamical
properties of the vector optical fields.

In this paper, several solutions of the Maxwell equations
are constructed, establishing the connections between them as
well as their PIOF character. In section 2, the vector solutions
of the Maxwell equations are obtained as the successive
curls of k̂�(r, t) and (êx ± iêy)�(r, t), where � and �

are scalar PIOFs. In the first case, the resulting fields are
identified as TE and TM modes, while in the second case
they correspond to left- and right-handed ‘circularly polarized’
states; appropriate combinations of such modes or states are
also identified as alternative polarization states. In section 3,
the general connections between the ‘circularly polarized’
states associated with the respective � and � PIOFs are
explicitly established. In section 4, the energy density and
Poynting vector of the optical fields are evaluated; their
general and explicit expressions, in terms of � (�) and
their transverse derivatives, exhibit their propagation invariant
property. Appendix A contains the explicit relationships
between the Cartesian (êx , êy, êz) and ‘circularly polarized’
(ê+, ê−, êz) vector bases, and the corresponding components
of vectors and their operations. Appendix B provides the
connections between the Cartesian and circular, elliptical
and parabolic cylindrical coordinates, scale factors and unit
vectors, in order to implement the respective operations for the
specific cases of Bessel, Mathieu and Weber optical fields.

2. Construction of general vector modes of PIOFs

Vector propagation invariant optical fields, identified as
solutions of the Maxwell equations, correspond to solenoidal
electric and magnetic fields which are the curls of each other

∇ × H(r) = −iωεE(r), (1)

∇ × E(r) = iωµH(r), (2)

as required by the Maxwell and Faraday laws, respectively.
We have assumed harmonic time dependence of the form
exp{−iωt}. The decoupling of equations (1) and (2), by taking
their respective curls, leads to the Helmholtz equation for each
field (

∇2 + ω2

c2

){
E
H

}
= 0, (3)

where c = 1/
√
εµ, and ω2/c2 = k2 = k2

t + k2
z , incorporating

the distinction between the transverse (kt ) and longitudinal (kz)
components of the propagation vector.

The scalar PIOFs are also solutions of the Helmholtz
equation and the starting elements to construct the vector PIOF
solutions of (1)–(3). The basis for such a construction is
the following theorem: for a given a solution �(r) of the
Helmholtz equation, its Cartesian derivatives ∂�/∂xi , xi =
x, y, z, are also solutions of the same equation. In fact, we
follow Stratton [17] to introduce the set of vector fields:

M(r) = ∇ × [
â�(r)

] ; (4)

N(r) = 1

k
∇ × M = 1

k
∇ [∇ · (

â�(r)
)] + âk�(r), (5)

where â is an arbitrary constant unit vector. Both fields
are obviously solenoidal; they form a group under the curl
operation, since it is straightforward to prove that

1

k
∇ × N = M, (6)

and also satisfy the Helmholtz equation.
Consequently, PIOF vector solutions of (1)–(3) can be

written as linear superpositions of the M and N basis as

Es(r) = csMs(r)+ dsNs(r), (7)

Hs(r) = − ik

ωµ
[csNs(r)+ dsMs(r)] , (8)

for each selection of unit vector â and scalar PIOF

�s(r, t) = Q1(q1)Q2(q2) exp {i (kzz − ωt)} . (9)

Here s is a generic label counting the successive values of the
separation constant in the solutions of the transverse Helmholtz
equation. In the case of Bessel beams, it corresponds to
the eigenvalue of the z-component of the orbital angular
momentum [11, 16]; for Mathieu beams, it is related to
the scalar product l1 · l2 of the orbital angular momenta
with respect to the position of the foci defining the elliptical
coordinates; and for Weber beams, it is connected with the
magnitude of the Runge–Lenz vector ∇⊥ × l, involving the
cross product of the transverse Nabla and angular momentum
operators [18]. The respective transverse functions correspond
to the radial and angular Bessel–Fourier, Mathieu and Weber
functions with common values s of the separation constants.

In the following subsections the vector fields M and N are
generated for the selections: (1) â = êz and a scalar PIOF
�s , corresponding to transverse TE and TM modes, and (2)
â = ê± and a scalar PIOF�s , leading to left- and right-handed
‘circular polarization’ states. Appropriate combinations in (7)
are also constructed and identified as alternative polarization
states. Extensive use is made of the formulae in the appendices
in order to represent the vector PIOFs in general and in the
specific vector bases. Illustrative graphical representations of
some of the vector PIOFs are shown as well.

2.1. Transverse modes and some of their superposition
polarization states

For the selection of the unit vector â in the longitudinal
direction and the scalar space PIOF �s(r) = φs(ρ) exp(ikzz),
equations (4) and (5) for the basis vector fields take the explicit
forms

Ms(r) =
[

êx
∂

∂y
− êy

∂

∂x

]
φs(ρ) exp {ikzz}

=
[

ê1
1

h2

∂

∂q2
− ê2

1

h1

∂

∂q1

]
φs(q1, q2) exp {ikzz} ; (10)

Ns(r) = 1

k

[
ikz∇⊥ + k2

t êz
]
φs(q1, q2) exp {ikzz} (11)

where hi = hi(q1, q2), with i = 1, 2, denote the respective
scale factors for the curvilinear coordinates (see appendix B).
Notice that while the vector Ms has two components in the
transverse plane, the vector Ns has three components, two in
the plane and one along the propagation axis. Since their
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Figure 1. (a) Instant vector diagram (t = 0) of the electric field for a TE mode associated with the even-type Mathieu scalar PIOF
Je3(u)ce3(v) and focal semi-axis f = 5λ. (b) Transverse intensity distribution of the optical field. The ratio between the transverse and axial
components of the wave vector corresponds to kt/kz = 0.25. Length scales are in units of λ.

Figure 2. (a) Instant vector diagram (t = 0) and (b) magnitude of the transverse component of electric field for a TM mode associated with
the odd-type Mathieu scalar PIOF Jo2(u)se2(v), f = 6.25λ and kt/kz = 0.25. (c) Magnitude of the axial component of the field. The colour
bars illustrate the relative magnitudes between transverse and axial components. (d) Total intensity distribution at a given z plane. Length
scales in units of λ.

respective transverse components are associated with the curl
and transverse gradient of the scalar PIOF, both vectors are
perpendicular to each other.

The choice cs = 1 and ds = 0 in (7) and (8) leads to
the identification of the electric and magnetic fields of the TE
mode

ETE
s (r) = Ms(r), (12)

HTE
s (r) = − ik

ωµ
Ns(r). (13)

The complementary choice of cs = 0 and ds = 1 gives rise to
the TM mode fields

ETM
s (r) = Ns(r), (14)

HTM
s (r) = − ik

ωµ
Ms(r). (15)

Two examples of transverse electric and magnetic vector
modes are illustrated in figures 1 and 2. In figure 1 we show:

869



K Volke-Sepulveda and E Ley-Koo

Figure 3. ‘Left-handed’ circularly polarized Mathieu beam derived from (18) associated with the even-type scalar field
φ
(e)
3 (u, v) = Je3(u)ce3(v), with parameters kt/kz = 0.25 and f = 5λ. (a)–(c) Vector diagrams of the transverse component of the electric

field at three different instants: t = 0, t = 0.25 and t = 0.5, respectively, in units of 2π/ω. (d) and (e) Magnitude of the transverse and axial
components of the electric field, respectively. Side bars illustrate the relative magnitudes. (f) Total intensity distribution. Length scales in units
of λ.

(a) the instant vector diagram (t = 0) of the electric field for
a TE mode (or magnetic field of TM mode) associated with
the even-type Mathieu scalar PIOF φ(e)3 (u, v) = J e3(u)ce3(v)

and focal semi-axis f = 5λ; and (b) the transverse intensity
distribution. In figure 2 we show: (a) the instant vector diagram
and (b) magnitude of the transverse component of electric field
(Re{E⊥} = Re{Eq1 ê1+Eq2 ê2} and |E⊥| = (|Eq1 |2+|Eq2|2)1/2,
respectively) for a TM mode (or magnetic field for TE mode)
associated with the odd-type Mathieu scalar PIOF φ(o)2 (u, v) =
J o2(u)se2(v) and f = 6.25λ; (c) the magnitude of the
axial component of the field (|Ez|) and (d) the total intensity
distribution (I = |E⊥|2 + |Ez|2) at a fixed z plane. In both
examples kt/kz = 0.25. Also, notice that the field orientation
remains constant at each point and its magnitude oscillates in
time. Here J es and ces (J os and ses) represent the radial and
angular even (odd) Mathieu functions, respectively, and the
label s is a natural number counting the eigenvalue associated
to a particular set of functions. It is convenient to stress at this
point that the eigenvalues for even (as) and odd (bs) Mathieu
functions are different (as �= bs ), even for the same value of s.

It is interesting to rewrite (10) and (11) in the
circular polarization basis (ê+, ê−, êz), using equations (A.9)
and (A.11) from appendix A, and expressing the results in
terms of the differential operators Û±, defined in (A.12):

Ms(r) = ikt

[
ê+Û− − ê−Û+

]
φs(ρ) exp {ikzz} ; (16)

Ns(r) = ikz
kt

k

[
ê+Û− + ê−Û+ − i

kt

kz
êz

]
φs(ρ) exp {ikzz} .

(17)
This suggests the combinations to eliminate the ê+ or

the ê− components, which at the level of (7), (12) and (14)
correspond to

EL
s (r) = ETE

s + k

kz
ETM

s = ikt

[
2ê+Û− − i

kt

kz
êz

]

× φs(ρ) exp {ikzz} ; (18)

ER
s (r) = −ETE

s + k

kz
ETM

s = ikt

[
2ê−Û+ − i

kt

kz
êz

]

× φs(ρ) exp {ikzz} . (19)

The transverse components can be identified as left and right
‘circular polarization’ states; but of course, both fields also
have the common longitudinal component. The associated
magnetic fields at the level of equations (8), (13) and (15)
follow from the respective linear combinations, which are not
written here explicitly for the sake of space. It is recognized
that the electric and magnetic fields of each ‘circularly
polarized’ state are not orthogonal Ei

s · Hi
s �= 0 for i = L,R.

Figure 3 illustrates the case of a ‘left-handed’ circularly
polarized Mathieu beam associated with the even-type scalar
function φ(e)3 (u, v) = J e3(u)ce3(v) with f = 5λ. Frames (a)–
(c) show vector diagrams of the transverse component of the
electric field at three different instants: t = 0, t = 0.25 and
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Figure 4. ‘Right-handed’ circularly polarized Mathieu beam derived from (19) associated with the odd-type scalar field
φ
(o)
2 (u, v) = Jo2(u)se2(v) with kt/kz = 0.25 and f = 6.25λ. (a)–(c) Vector diagrams of the transverse component of the electric field at

three different instants: t = 0, t = 0.25 and t = 0.5, respectively, in units of 2π/ω. (d) and (e) Magnitude of the transverse and axial
components of the electric field, respectively. (f) Total intensity distribution. Length scales in units of λ.

t = 0.5, respectively, in units of 2π/ω. Frames (d) and (e)
show the magnitude of the transverse and axial components
of the electric field, respectively, and (f) corresponds to the
total intensity distribution. On the other hand, figure 4 shows
the same quantities for a ‘right-handed’ polarized Mathieu
beam associated with the odd-type scalar function φ(o)2 (u, v) =
J o2(u)se2(v) with f = 6.25λ. In both examples kt/kz =
0.25. Following the established convention [19], at a given
z plane, it can be seen that the transverse components of the
fields rotate anti-clockwise (clockwise) for left- (right-) handed
circular polarization as t varies.

2.2. ‘Circularly polarized’ states

For the selections of the unit vector â = ±ê± and the scalar
PIOF �s(r) = ψs(ρ) exp(ikzz), (4) and (5) become

M±
s = kz

[
ê± + i

kt

kz
êzÛ

±
]
ψs(ρ) exp {ikzz} , (20)

N±
s = ±

[
kê± + kt

k
Û±∇

]
ψs(ρ) exp {ikzz} , (21)

using (A.11) and (A.13) successively. Notice that while the
M±

s fields have only two components in the (ê+, ê−, êz) basis,
the N±

s fields have three components.
In this case, we identify left and right ‘circularly polarized’

states as
E±

s = M±
s , (22)

H±
s = − ik

µω
N±

s , (23)

in which the electric and magnetic fields are not orthogonal.
The quotation marks are used in the adjective circularly
polarized recognizing that the corresponding vector PIOFs also
have longitudinal components.

Left- and right-handed ‘circular polarization’ states
defined by (20) and (22), corresponding to the plus and minus
signs in the superindices, are exemplified in figures 5 and 6
for Mathieu beams associated to the scalar fields ψ(e)

3 (u, v) =
J e3(u)ce3(v) and ψ(o)

2 (u, v) = J o2(u)se2(v), respectively, at
three different instants: t = 0.125, t = 0.25 and t = 0.375,
all the other parameters being the same as those of figures 3
and 4. Notice that the transverse component of the electric
field vector in figures 5 and 6 has the same orientation at
each point of the space for a given time, in contrast with the
circularly polarized states derived from the TE and TM modes
(figures 3 and 4). The rotation in time of the transverse electric
field vector according to the established convention of circular
polarizations in each case becomes apparent.

Other polarization states can be constructed by superpos-
ing those defined by (22), namely,

E±
s = A1M+

s + A2M−
s

= kz

[(
A1ê+ + A2ê−

) + i
kt

kz
êz

(
A1Û+ + A2Û−

)]

× ψs(ρ) exp {ikzz} . (24)
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Figure 5. ‘Left-handed’ circularly polarized Mathieu beam derived from (20) and (22) (plus sign of superindex) associated with the even-type
scalar field ψ(e)

3 (u, v) = Je3(u)ce3(v) with kt/kz = 0.25 and f = 5λ: (a)–(c) Vector diagrams of the transverse component of the electric
field at three different instants: t = 0.125, t = 0.25 and t = 0.375, respectively, in units of 2π/ω. (d) and (e) Magnitude of the transverse and
axial components of the electric field, respectively. (f) Total intensity distribution. Length scales in units of λ.

It is straightforward to demonstrate that a ‘linearly
polarized’ state follows by choosing

A1 = 1√
2
(B1 − iB2) ; A2 = A∗

1, (25)

where B1 and B2 are real constants such that B2
1 + B2

2 = 1 =
|A1|2 + |A2|2. The polarization plane is defined by the angle
θ = tan−1(B2/B1) measured from the positive x-axis.

Notice that, in the paraxial limit (corresponding in this
case to kt � kz ≈ k), the longitudinal components of the
left- and right-handed circularly polarized states, as well as for
the linear polarization state, become negligible.

3. Connections between polarization bases

In section 2.1 the left and right ‘circular polarization’ states
of (18) and (19) were constructed as superpositions of TE
and TM modes. In section 2.2 the alternative left and
right ‘circularly polarized’ states of (20)–(23) were directly
constructed and identified; their superpositions, (24), leading
to ‘linear polarization’ states with the choice of coefficients
of (25) were also identified.

Comparison of the respective ‘circular polarization’ states
of (18) and (19), and (20)–(23) allows us to identify the
connections between them. In fact, such connections between
the respective scalar PIOFs are

φs = Û±ψs, (26)

in order to go from the first set to the second one, and

ψs = −Û∓φs, (27)

for going from the second to the first. Here we used the fact
that ∇2⊥ = 2k2

t Û+Û− (equation (A.13), appendix A).
The connections given by (26) and (27) become apparent

in figures 3 and 5, since the transverse component of the field
in figure 3 corresponds to the axial component in figure 5 and
vice versa, and the same occurs between figures 4 and 6.

The two sets of polarization bases are of great importance
in optics. On the one hand, the TE and TM modes discussed
in section 2.1 are the typical propagation modes arising in
bounded media like optical fibres [13, 20], although they
can also be generated in free space with interferometric
techniques [15]. On the other hand, the sets discussed in
section 2.2 are the kind of fields usually generated in the
laboratory for free space or linear isotropic media (see for
example [11, 14]), and correspond in the paraxial limit to the
so-called scalar solutions.

4. Dynamical properties

The electromagnetic field vectors constructed for two
different polarization basis in section 2 lead directly to the
corresponding expressions for the energy density and Poynting
vector. This will allow us not only to analyse the propagation
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Figure 6. ‘Right-handed’ circularly polarized Mathieu beam derived from (20) and (22) (minus sign of superindex) associated with the
odd-type scalar field ψ(o)

2 (u, v) = Jo2(u)se2(v) with kt/kz = 0.25 and f = 6.25λ. (a)–(c) Vector diagrams of the transverse component of
the electric field at three different instants: t = 0.125, t = 0.25 and t = 0.375, respectively, in units of 2π/ω. (d) and (e) Magnitude of the
transverse and axial components of the electric field, respectively. (f) Total intensity distribution. Length scales in units of λ.

invariant condition for vector fields, but also to study some
basic dynamical properties of PIOFs.

The energy density for the transverse modes, TE or TM, is
given by

w = ε

4

[(
1 + k2

z

k2

)
|∇⊥φs|2 + k4

t

k2
|φs|2

]
. (28)

And the time averaged Poynting vector in this case is given by

〈S〉 = cε

2

[
kz

k
|∇⊥φs|2 êz − k2

t

k2
Re

{
iφs∇⊥φ∗

s

}]
. (29)

From (29) it can immediately be seen that when φs is
real, the Poynting vector has axial component only, whereas
for φs complex the energy flux will have a transverse
component. In the case of Bessel beams, for example, this
establishes the difference between standing (Jm(ktρ) cos mϕ,
Jm(ktρ) sin mϕ) and rotating (Jm(ktρ) exp{±imϕ}) transverse
modes; the transverse component of the energy flux for the case
of rotating modes is purely tangential and it is associated to
the orbital angular momentum carried by these beams [11]. In
the case of elliptic and parabolic symmetries, the respective
conserved dynamical quantities that play an analogous role to
the orbital angular momentum are identified in [18].

On the other hand, the calculation of the energy density for
the ‘circularly polarized’ fields of section 2.2, defined by (20)–

(23), leads to

w± = ε

4

k4
z

k2

[(
2 + 2

k2
t

k2
z

+ k4
t

4k4
z

)
|ψs |2 + k2

t

k2
z

(
2 + k2

t

k2
z

)

× (Û±ψs)(Û
∓ψ∗

s )+ k4
t

k4
z

{(Û±)2ψs}{(Û∓)2ψ∗
s }

]
(30)

and the Poynting vector

〈
S±〉 = cε

2

k3
z

k

(
êz

[
1 + k2

t

2k2
z

]
|ψs |2

+ 2
kt

kz

[
1 + k2

t

4k2
z

]
Im

{
ê∓ψ∗

s Û±ψs
}

− k3
t

k3
z

Im{ê±(Û±ψs)[(Û∓)2ψ∗
s ]}

)
. (31)

The expressions for the energy density and Poynting
vector for the ‘circularly polarized’ basis defined in (18)
and (19) can be obtained respectively from expressions (30)
and (31) by applying the transformation (27). In contrast
with the TE and TM modes, for ‘circularly polarized’ modes
the energy flux will always possess both longitudinal and
transverse components, regardless of the nature of the scalar
function ψs (real or complex).

The propagation invariance nature of vector Bessel PIOFs
has been established based on different conditions in [10]
and [21], which are not in contradiction to each other. The
conditions proposed in [10] are more specific, while those
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in [21] are simpler. For our present discussion, the latter are
more direct, and can be generalized for any family of PIOFs as

w(q1, q2, z > 0) = w(q1, q2, z = 0),

Sz(q1, q2, z > 0) = Sz(q1, q2, z = 0),
(32)

where Sz denotes the z-component of the Poynting vector. It
can be seen from (28), (29) and (30), (31) that all the vector
fields analysed in this work are propagation invariant according
to the definition (32).

5. Discussion

Vector propagation invariant optical fields have been con-
structed in section 2 of this paper, by using Stratton’s gen-
eral method [17] with appropriately chosen unit vectors and
scalar PIOF solutions of the Helmholtz equation. Specifically
in section 2.1, the choice of the unit vector in the longitudi-
nal direction leads to the transverse electromagnetic TE and
TM modes of equations (12), (13) and (14), (15), respectively.
Left- and right-handed ‘circular polarization’ states were also
constructed as the superpositions of TE and TM modes of
equations (18) and (19). On the other hand, the alternative
choice of the ‘circular polarization’ unit vectors ê± in sec-
tion 2.2 led to the corresponding PIOF states of equations (20)
and (23). Their superpositions in equation (24) describe other
possible polarization states. The connections between the re-
spective ‘circular polarization’ states are exhibited via equa-
tions (26) and (27) in section 3, as the connections between
the respective scalar PIOFs. Section 4 contains the expres-
sions of energy density and Poynting vector for the TE and TM
modes, (28) and (29), and for the ‘circular polarization’ states
of section 2.2, (30), (31), showing their PIOF nature. It is im-
portant to point out that the treatment shown here is completely
general in the sense that it does not depend on the specific coor-
dinate system (rectangular, circular, elliptic or parabolic cylin-
drical coordinates), so it can be applied to any family of PIOFs.

In the paraxial limit (kt � kz ≈ k), the equations
presented in section 2.2 reduce to the equations that can
be obtained from the scalar approach. The longitudinal
components of the electric and magnetic fields can be neglected
and the corresponding vectors indeed become orthogonal for
any polarization basis.

The previous experience with the case of Bessel
beams shows that important information about the different
polarization and dynamical properties of these light fields
can only be obtained from the rigorous vectorial approach.
Specifically, it has been recently demonstrated that vector
vortices with TE and TM polarizations can be generated in
free space [15] based on the full vector description of PIOFs
described in section 2.1, which exhibit different properties
compared with the scalar vortices [11, 22] obtained from the
polarization basis studied in section 2.2 in the paraxial limit.

On the other hand, in analogy with the case of
rotating Bessel beams, Jm(ktρ) exp{±imϕ}, complex linear
superpositions of Mathieu beams labelled as travelling
or helical modes have been constructed in the scalar
version [23, 24] with the form

U (u, v, z) = Cs( f )J es(u; f, as)ces(v; f )

± iSs( f )J os(u; f, bs)ses(v; f, bs ), (33)

where Cs ( f ) and Ss( f ) represent weighting constants that
depend on the interfocal distance f (related to the parameter
q = f 2k2

t /4 in [23, 24]). Here we include the
explicit dependence of the even and odd functions on their
respective eigenvalues, as and bs , in order to point out that
the components of such superpositions are associated with
different eigenvalues as �= bs . Only in the case of Bessel beams
do the even and odd angular standing solutions of the scalar
Helmholtz equation (Jm(ktρ) cos mϕ and Jm(ktρ) sin mϕ,
respectively) share the same eigenvalue, m. Therefore, the
optical field described by (33) does not possess a well defined
angular momentum state, which means that, although the
optical angular momentum density can indeed be calculated for
this [25] or any other kind of electromagnetic field according
to definitions provided by fundamental electrodynamics [26],
a quantity such as an optical angular momentum per photon
cannot be associated to those fields. In contrast with any
optical wavefield having a dependence of the form exp{±imϕ},
Mathieu beams are not eigenstates of the operator associated
with the z-component of the orbital angular momentum, ∂

∂ϕ
.

Their behaviour in interaction with microscopic particles,
however, shows interesting features by itself [24].

Similar comments could be made about the so-called
‘travelling solutions’ of parabolic non-diffracting beams [5].
In that sense, the formalism developed here allows us to
appreciate that complex linear superpositions of PIOFs sharing
the same eigenvalue, and hence having a well defined
dynamical state, can be constructed as Û±ψs , in any of the
cylindrical geometries.

In conclusion, this paper provides several complete vector
bases of PIOFs, each one with well defined polarization
properties, including the circular, elliptic and parabolic
varieties determined by the associated geometries. These bases
are of optical interest by themselves, and are on a par with
the familiar plane wave bases. The experience with the Bessel
beams—in their scalar and vector versions, and their numerous
applications—can be extended to Mathieu and Weber beams.
The results presented herein are fundamental steps in the
general scalar to vector extension. They are proper tools for
future steps like vector versions of [6–8] and the polarization
and invariants of real electromagnetic beams a la [12, 27, 28],
expressed as superpositions of vector PIOFs.
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Appendix A. Circular polarization basis

The circularly polarized and Cartesian vector bases are related
by

ê± = êx ± iêy√
2

, êz = êz (A.1)

and vice versa

êx = ê+ + ê−√
2

; êy = ê+ − ê−√
2i

. (A.2)
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The scalar products of the unit vectors in (A.1) are

ê± · ê± = ê± · (ê∓
)∗ = 0; ê± · ê∓ = ê± · (ê±

)∗ = 1;
ê± · êz = 0; êz · êz = 1.

(A.3)

Their cross products are given as

ê± × ê∓ = ∓êz; ê± × ê± = 0; ê± × êz = ±iê±.
(A.4)

Any vector can be expressed in the basis of (A.1) as

V = ê+V− + ê−V+ + êz Vz, (A.5)

where

V± = Vx ± iVy√
2

. (A.6)

Then the scalar and vector products of two vectors take the
respective forms

V · W = V−W+ + V+W− + Vz Wz, (A.7)

and

V × W = iê+(V−Wz − Vz W−)+ iê−(Vz W+ − V+Wz)

+ iêz(V+W− − V−W+). (A.8)

The gradient of a scalar function is given by

∇ f = ê+
1√
2

(
∂

∂x
− i

∂

∂y

)
f + ê−

1√
2

(
∂

∂x
+ i

∂

∂y

)
f

+ êz
∂ f

∂z
. (A.9)

The divergence of a vector field becomes

∇ ·V = 1√
2

(
∂

∂x
− i

∂

∂y

)
V+ + 1√

2

(
∂

∂x
+ i

∂

∂y

)
V− + ∂Vz

∂z
.

(A.10)
And the curl of the vector field is expressed as

∇ × V = iê+
[

1√
2

(
∂

∂x
− i

∂

∂y

)
Vz − ∂V−

∂z

]

+ iê−
[
∂V+
∂z

− 1√
2

(
∂

∂x
+ i

∂

∂y

)
Vz

]

+ iêz
1√
2

[(
∂

∂x
+ i

∂

∂y

)
V− −

(
∂

∂x
− i

∂

∂y

)
V+

]
.

(A.11)

Notice the presence of the same combinations

1√
2

(
∂

∂x
± i

∂

∂y

)
≡ ktÛ

± (A.12)

in the derivatives of (A.9)–(A.11), justifying the introduction
of the Û± operators used in section 2.

The Laplace operator takes the forms

∇2 = k2
t

(
Û+Û− + Û−Û+

)
+ ∂2

∂z2

= 2k2
t Û+Û− + ∂2

∂z2
= 2k2

t Û−Û+ + ∂2

∂z2
, (A.13)

taking into account the commutativity of the Û+ and Û−
operators.

Appendix B. Cylindrical coordinate systems

Circular (ρ, ϕ, z), elliptical (u, v, z) and parabolic (ξ, η, z)
cylindrical coordinates are defined via their connections with
the Cartesian coordinates [29], respectively:

x = ρ cosϕ; y = ρ sinϕ; z = z, (B.1)

x = f cosh u cos v; y = f sinh u sin v; z = z,
(B.2)

x = ξ 2 − η2

2
; y = ξη; z = z, (B.3)

where ρ ∈ [0,∞), ϕ ∈ [0, 2π), u ∈ [0,∞), v ∈ [0, 2π), ξ ∈
[−∞,∞) and η ∈ [0,∞).

Any differential displacement in the three-dimensional
space can be evaluated in the successive coordinates, taking
the respective forms

d�r = êx dx + êy dy + êz dz

= hρ dρêu + hϕ dϕêv + êz dz

= hu duêu + hv dvêv + êz dz

= hξ dξ êξ + hη dηêη + êz dz, (B.4)

where the corresponding scale factors and unit vectors are
identified to be

hρ = 1, hϕ = ρ, (B.5)

hu = hv = f
√

cosh2 u − cos2 v, (B.6)

hξ = hη =
√
ξ 2 + η2, (B.7)

and

êρ = êx cosϕ + êy sinϕ, êϕ = −êx sinϕ + êy cosϕ,
(B.8)

êu = f

hu

(
êx sinh u cos v + êy cosh u sin v

)
,

êv = f

hu

(−êx cosh u sin v + êy sinh u cos v
)
,

(B.9)

êξ = 1

hξ

(
êxξ + êyη

)
, êη = 1

hξ

(−êxη + êyξ
)
.

(B.10)
Notice the orthogonality of the pair of vectors in the re-

spective equations (B.8)–(B.10). The inverse transformations
for the Cartesian unit vectors are

êx = êρ cosϕ − êϕ sinϕ, êy = êρ sinϕ + êϕ cosϕ,
(B.11)

êx = f

hu

(
êu sinh u cos v − êv cosh u sin v

)
,

êy = f

hu

(−êu cosh u sin v + êv sinh u cos v
)
,

(B.12)

êx = 1

hξ

(
êξ ξ + êηη

)
, êy = 1

hξ

(−êξη + êηξ
)
.

(B.13)
When the latter are substituted successively in (A.1), the

circularly polarized basis vectors become, respectively,

ê± =
(
êρ ± iêϕ

)
√

2
exp {±iϕ} , (B.14)
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Figure B.1. Space distribution of the phases (a) ϕ, (b) α and (c) and (d) β, respectively, associated with the circular polarization vector basis
for the three different coordinate systems, in units of π . The focal semi-axis for the case of elliptic coordinates (b) corresponds to 5 length
units.

ê± =
(
êu ± iêv

)
√

2
exp {±iα (u, v)} , (B.15)

ê± =
(
êξ ± iêη

)
√

2
exp {±iβ (ξ, η)} , (B.16)

where

α(u, v) = arcsin

(
f cosh u sin v

hu

)
,

β(ξ, η) = arcsin

(
η

hξ

)
= ϕ

2
.

Figure B.1 shows the space distribution of respective
phases ϕ, α and β associated with the circular polarization
basis for the three different coordinate systems. Notice that
the respective branch cuts in the different segments of the x-
axis: (a) (0 < ρ < ∞, ϕ = 0) for circular, (b) the interfocal
segment (u = 0, 0 � v < 2π) for elliptic and (c) (ξ 2 > η2,
η = 0) and (d) (ξ 2 < η2, η = 0) for parabolic coordinates.

The Cartesian transverse derivatives can also be translated
in the respective curvilinear coordinates, taking the forms

∂

∂x
= cosϕ

∂

∂ρ
− sinϕ

ρ

∂

∂ϕ
,

∂

∂x
= f

h2
u

(
sinh u cos v

∂

∂u
− cosh u sin v

∂

∂v

)
,

∂

∂x
= 1

h2
ξ

(
ξ
∂

∂ξ
− η

∂

∂η

)
; ∂

∂y
= sinϕ

∂

∂ρ
+ cosϕ

ρ

∂

∂ϕ
,

∂

∂y
= f

h2
u

(
cosh u sin v

∂

∂u
+ sinh u cos v

∂

∂v

)
,

∂

∂y
= 1

h2
ξ

(
η
∂

∂ξ
+ ξ

∂

∂η

)
,

from which the operators Û± of (A.12) are found to be

Û± ≡ 1√
2kt

exp {±iϕ}
(
∂

∂ρ
± i

1

ρ

∂

∂ϕ

)
, (B.17)

Û± = 1√
2kt hu

exp {±iα (u, v)}
(
∂

∂u
± i

∂

∂v

)
, (B.18)

Û± ≡ 1

kt hξ
exp {±iβ (ξ, η)}

(
∂

∂ξ
± i

∂

∂η

)
. (B.19)

Consequently, the combinations of unit vectors and
transverse derivatives appearing in (A.9)–(A.11), applied to the
corresponding representations of (B.14)–(B.19), lead to

ê±Û∓ = 1√
2kt

(ê1 ± iê2)

(
1

h1

∂

∂q1
∓ i

1

h2

∂

∂q2

)
, (B.20)

where the products of the complex conjugate phase factors in
equations (B.14)–(B.16) and (B.17)–(B.19) reduce to one.

Finally, an interpretation of the operators Û± can be
provided in terms of ladder operators associated to circular
cylindrical symmetry, since applying them to the scalar Bessel
solution ψl(ρ, ϕ) = Jl(ktρ) exp(ilϕ) gives rise to

Û±ψl(ρ, ϕ) = √
2iψl±1(ρ, ϕ).
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General construction and connections of vector propagation

It is important to remark, however, that this is an exclusive
feature of the circular symmetry and the associated orbital
angular momentum. In other coordinate systems, the same
operator is well defined, but its physical or geometrical effects
have to be investigated.
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Parabolic nondiffracting optical wave fields Opt. Lett.
29 44–6

[6] Gori F, Guattari G and Padovani C 1987 Bessel–Gauss beams
Opt. Commun. 64 491–5

[7] Li Y, Lee H and Wolf E 2004 New generalized Bessel–Gauss
beams J. Opt. Soc. Am. A 21 640–6

[8] Gutiérrez-Vega J C and Bandres M A 2005 Helmholtz–Gauss
waves J. Opt. Soc. Am. A 22 289–98

[9] Bouchal Z and Olivik M 1995 Non-diffractive vector Bessel
beams J. Mod. Opt. 42 1555–66

[10] Bouchal Z and Olivik M 1997 Non-diffractive stationary
electromagnetic field Opt. Commun. 133 315–27
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Chávez-Cerda S 2002 Attenuation characteristics in confocal
annular elliptic waveguides and resonators IEEE Trans.
Microw. Theory Tech. 50 1095–100

[21] Turunen J and Friberg A T 1993 Self-imaging and
propagation-invariance in electromagnetic fields Pure Appl.
Opt. 2 51–60
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