Physica D 63 (1993) 145-160
North-Hoiland

PHYSICA |

Collective behaviour of random-activated mobile cellular

automata

Octavio Miramontes®, Ricard V. Solé” and Brian C. Goodwin®

*Department of Biology, Open University, Milton Keynes, MK7 6AA, UK
"Complex Systems Research Group, Departament de Fisica i Enginyeria Nuclear, Universitat Politécnica de Catalunya,

Pau Gargallo 5, 08028 Barcelona, Spain

Received 13 January 1992

Revised manuscript received 20 May 92
Accepted 14 July 1992

Communicated by AV. Holden

Dynamical properties of 2D cellular automata with mobile elements are examined qualitatively. Results show that a
system containing elements with local interactions but with no fixed connections, due to movement and connection
breaking, are able to display periodic oscillations by collective synchronization of non-periodical randomly activated
elements. The system studied is found to be robust. Spatial dynamics is shown to generate interesting spatial structures
suggesting the presence of self-organization. Moreover, maximum Lyapunov exponents and fractal dimension of attractors
have been calculated in order to show that the dynamics of interaction among elements is chaotic.

1. Introduction

The list of phenomena that involves oscillatory
processes arising from the coupling of interacting
elements in biology, is almost endless [1-3].
Recently, this list has been further enriched with
the discovery of short-period oscillations in the
activity behaviour of confined Leptothorax ant
colonies [4-7]. It has been established, through
careful experimental procedures, that individual
ants are not periodic oscillators and that they can
activate or deactivate through direct physical
contact and, when isolated, they become active
spontaneously without external stimulus. More-
over, it has been found that this process of
spontaneous activation involves the presence of
low-dimensional chaos [8].

Those findings seem to support the claim that
social behaviour, or at least an important part of
it, can be regarded as a global complex self-
organized process originating in the non-trivial

interactions among the social units and where
chaos is very likely to occur as an essential
constituent of the system dynamics.

In order to gain more insight and predictive
capacity from these exciting ideas of social be-
haviour it seems necessary to develop mathe-
matical tools that can capture the nature of such
complex systems and be able to display the
maximum range of behaviour with the simplest
assumptions. It is our belief that recent develop-
ments in the field of parallel distributed models
and discrete dynamical systems offer valuable
tools for accomplishing this task. In particular it
appears that cellular automata and neural net-
works are appropriate choices and, in fact, mod-
els of ant behaviour based on them have been
presented elsewhere [9, 10].

While it is true that the original motivation
that led us to the present study is the experimen-
tal work with confined ants cited above, we want
to explore here, in greater generality, the prop-
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erties of a model that is essentially a cellular
automaton but where the elements are endowed
“with the capability of movement and can activate
spontaneously if isolated or through mutual ex-
citatory local interactions. The interacting units
may be cells, insects, robots or any kind of
mobile excitatory objects.

We will show the emergence of collective per-
iodic oscillations in the temporal evolution of the
model and demonstrate that mobility and change
of connections makes the system more robust
than the non-mobile counterpart. On the other
hand, the space domain will be analyzed and
self-organized structures that suggest the spatial
organizations present in the nests of some social
insects will be shown to exist. Finally the pres-
ence of chaos in the dynamics of interactions will
be evinced.

2. Mobile cellular automata

Cellular automata in two dimensions are dis-
crete dynamical systems that consist of a regular
lattice of sites. Each site takes on a set of
possible values, and is updated in discrete time
steps according to fixed rules [11]. We will name
here mobile cellular automaton (MCA) a system
that is essentially a 2D cellular automaton but
with the property that only a subset A of lattice
cells will be updated in the time evolution. The
elements that belong to A will be able to move
over the lattice randomly.

A mobile cellular automaton is defined over a
two-dimensional rectilinear lattice A(L):

ALY={(x, )|1=x=L,,1<y=<L,},
L, L,eN. (1)

A nine-cells-square is considered as the neigh-
borhood where interactions among elements will
occur (this is the frequently used Moore neigh-
borhood). The set of cells that belong to this

neighbor will be labeled M. A collection of n

objects, labeled a,, will be considered as the

elements of the set A:

A={a,,...,a,}, neER. 2)
Each object a4, in this 2D lattice is further

characterized by four quantities:

a;={x;, y,m;,S;}, (3)

x; and y, are the two integer space coordinates.
New values for x; and y, are calculated at ran-
dom. The movement pattern is thus essentially a
random walk subject to the following two con-
straints: (i) no two objects will be placed at the
same position at the same time, and (ii) new
position will be selected randomly among the
lattice cells that belong to M. If the cell selected
as new position is engaged, then the object will
look for another one, this procedure being re-
peated until a free cell is found or after six
attempts are made. If no free cell is found the
object stops until the next time step.

The local variable m, is a Heaviside function of
a threshold variable S;:

1, ifs >0,

m’:{o, )

otherwise .

If m;=1 then the object a, is regarded as
active and may move, otherwise it will be consid-
ered as inactive and will remain motionless (both
x; and y, are updated only if m, =1).

If the number of objects equals the number of
lattice cells, then the system is said to be fully
saturated (density =1) and the objects will not
move due to the lack of free lattice cells. If this
limit condition holds, then a 2D MCA is equiva-
lent to a “‘classical” 2D cell automaton, where all
sites in the lattice are to be updated without
motion and where the number and type of con-
nections (the wiring diagram of the network) will
be invariant through the entire evolution of the
system.
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Variable S, represents the object activity value
and will range continuously from —1 to 1 (S, €
R). It is calculated by assigning the local field
around a, that is generated by the presence of
other objects a,EM and by g, itself, if self-
interaction is considered. The expression for this
variable at time ¢ is given by

k
= tanh{g[(Z J,.js‘;‘) + JiiSﬁ_l]} , (5)
j=1

where J;; are coupling coefficients taken from an
interaction matrix C and k is the number of
neighbors of a,. Note that term J,.S ‘~! represents

the contribution of the self-interaction. C is the
square interaction matrix defined as follows:

o-fz 3
C3 (4

whose real-valued entries are selected according
to table I.

The parameter g has been introduced in order
to allow the control of the slope of the hy-
perbolic tangent function. In neural network
theory, the parameter g is commonly used for
fine control of the firing rate or firing threshold
of a neural element (e.g. ref. [12]). An equal
role will be played here: the value of g will
determine the rate of activation and deactivation
of the mobile objects. We will further refer to g
as the gain parameter.

Tablel

Assignment of coupling coefficients in eq. (5). ¢, represents a
active—active interactions, ¢, and ¢, represent active—inactive
and inactive—active interactions, while ¢, represents inactive—
inactive interactions. The sign of the i and j elements are
considered together. For instance, if a,>0 and a,>0 then
the interaction is of the active—active type and J, = c,.

a,>0 a,=0
¢ c, a;,>0
G, <, a,=0

3. Collective oscillations and system robustness

Let us consider first the general case of a

system where self-interaction is allowed and sup-
pose that there is only one single object on a
lattice. For this isolated object, all terms § ’,._1 in
(5) are zero and the state variable S, is reduced
to:
S;=tanh(gJ,S;"") . (6)
In the infinite limit, S; will be zero, due to the
fact that the tanh function goes exponentially to
zero if self-iterated. When modeled in a digital
computer the activity state of an isolated object
will be zero after a finite number of time steps if
S =€, where € is an arbitrary real number repre-
senting a zero value threshold. In this work € was
taken as the internal computer IEEE double
precision real type or 1x 107",

Without any external input (no interactions)
an isolated inactive object will remain immobile
unless it is randomly activated by assigning a
non-zero value to S;, this value will be labeled s,
and we will refer to it as the spontaneous activity
level. This process of random activation takes
place only if » > p,, where r €[0, 1] is a random
variable and p, = 0 represents a probability value
threshold, the probably of spontaneous acti-
vation.

Consider fig. 1, where the graph of the sum
S7 + S5 (total activity) of two interacting objects
in a small lattice is shown. Because of the exist-

Fig. 1. Time evolution of the sum of individual activity of a
pair of self-interacting objects. Increments in activity signals
the time of an interaction and the interchange of activity. If
no interactions occurs, the activity decays monotonously.
Lattice size 10 X 10, g = 1, coupling coefficients all one.
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ence of interactions total activity is not globally
monotonously decreasing to zero, rather, we can
see the existence of peaks where interactions
occur that signals an increase in the total activity
and the interchange of activity among the pair of
objects. In the intervals where no interactions
occur the curve is monotonously decreasing as
expected.

When mobile elements do not interact they
tend to freeze because the impossibility of activi-
ty interchange among them. When random acti-
vation is not permitted, it is possible to provoke
the freezing of any arbitrary number of mobile
objects, if the lattice size is large enough so as to
make the average time for an interaction to
occur larger than the time needed for the in-
dividual activity to decrease to zero. If these
conditions hold the objects are, in the average,
isolated. Other way to provoke the freezing of
the system is to make the time needed for de-
creasing to zero shorter than the average inter-
action time, specially if the lattice size is not very
large. This is accomplished by setting the value
of the gain parameter to an adequate value
(usually a value <1). Quite the opposite, if one
desires to prevent the system to attain the zero
state value, the gain could be adjusted for this
purpose (usually a value =1).

Now consider the case when no self-inter-
action is allowed and suppose the existence of
only one single object in the system. In this case,
the internal state will be zero at time ¢ in-
dependently of the state value at time ¢—1 as
follows from eq. (5). Under these circumstances,
an isolated object will freeze immediately. It is
possible then to contrast these two examples and
to conclude here that self-interaction is acting as
a sort of internal memory serving the purpose of
delaying object deactivation. From the point of
view of the number of connections, self-inter-
action may be regarded as an additional con-
nection added to the external set of external
connections so when isolation occurs, at least
one connection is preserved. This of course does
not mean that self-interaction is indispensable in

order to prevent a collective of objects attaining
a zero state value. A system of non-self-interact-
ing objects could be guaranteed not to collective-
ly converge to zero state value as long as the
density of the system is high enough as to make
the number of connections per object not zero.

In this article, we are concerned not only with
the study of the dynamics of the activity states of
individual objects but with the macroscopic be-
haviour of the system as described by the activity
of the whole lattice. In order to accomplish this,
it is possible to study the number of active
objects rather than the individual activity sum-
med, that is, to study the dynamics of the m,
variable and this will now be done. Later we will
return to the analysis of the activity variable in
order to characterize the dynamics of the interac-
tions.

Consider the series of graphs that appear in
fig. 2 showing the time evolution of a number of
active self-interacting objects in a given system
(lattice size 10x10, g=0.05, s,=0.01, p, =
0.01, coupling coefficients all 1, initial values of
S, were assigned randomly in the interval [—1, 1]
and initial positions were chosen randomly as
well). In fig. 2a, the temporal evolution of the
system containing just one object is represented.
As expected, the occurrence of the peaks show-
ing when the object is active are distributed
randomly. In fig. 2b the same situation is repre-
sented but with ten objects. Subsequent graphs
are for 20 objects (2c), 40 objects (2d), 60
objects (2e), 80 objects (2f) and 100 objects
(2g).

Analysis of these graphs permits us to identify
a very interesting phenomenon in relation to the
system density. In particular, it is possible to
observe the emergence of well defined oscilla-
tions in the range of medium densities (20-40
objects). In the range of higher densities (80—
100 objects) the periodic nature of the oscilla-
tions is evident. In contrast, in the range of
lower densities (1-10 objects), no periodic be-
haviour in the temporal evolution is present at
all. In order to compare the behaviour of the
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Fig. 2. Temporal evolution of a MCA with random activa-
tion of self-interacting objects showing the emergence of
periodic oscillations in the number of active objects as the
system density is increased. Density is (a) 0.01, (b) 0.1, (c)
0.2, (d) 0.4, (e) 0.6, (f) 0.8 and (g) 1.0. See text for system
parameters.

system previously described with a motionless
cellular automaton, we present the results shown
in the graphs in the fig. 3. In this case, the
objects were forced to stand still. When the
motionless system has a population totaling 100
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Fig. 3. Same system parameters as in fig. 2 but the objects
are forced to remain motionless.
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objects, the behaviour is identical with that of
the mobile system because both are saturated
and their parameters equal.

Qualitative comparison of both systems gives
the following results:

(i) Collective periodic oscillations are pres-
ent in both systems.

"(ii) There is a clear density-dependent phe-
nomenon regarding the emergence of collective
periodic oscillations.

(iii) Both systems are robust: periodic oscilla-
tions are preserved even if a relatively large
number of objects are suppressed from the
lattice.

(iv) Collective periodic oscillations appear at
lower densities in the mobile system, making
mobility an important condition for greater rob-
ustness.

In order to clarify further these ideas the
relationships among robustness, period of oscil-
lations and system density were examined in
more detail. A set of time series of both systems
was prepared for different density values and a
Fourier transform was applied to them in order
to obtain the period value through the fun-
damental harmonic in the power spectrum. Re-
sults obtained from this procedure are repre-
sented on the graph in fig. 4a. When density is 1,
both systems behave identical giving the same
period value of 36.5. As density is lowered the
period value difference among the two systems
begins to increment. When density is around
0.35, divergence between both systems is obvi-
ous. The motionless system departs from the
linear trend at density value of about 0.35 while
the system with mobile objects does it at density
value between 0.20 and 0.25. The point at which
the period value departs from the linear trend
marks the value of the density at which collective
periodic oscillations begins to disappear.

What can be learned from this experiment is
that the relationship between density and period
is linear and tends to decrease as density de-
creased. When density is lower, the rapid in-
crease in the period value is only apparent: in

60 motionless
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Fig. 4. (a) Relationship between system density and period.
The period has been calculated with a Fourier transform on
1024 time steps long data series. For each density value an
average of five samples period was made. Same system
parameters as in fig. 2. (b) Signal to noise ratio as function of
system density. Signal to noise ratio was defined as SNR =
(p/p + o) where p is the average period and o is the
standard deviation of the five data samples. Signal to noise
ratio as defined gives a good measure of system robustness.
In this case it is easy to conclude that a system with mobile
objects is more robust than the motionless counterpart.

this situation the power spectrum gives a wide
range of period variance and the error in de-
termining the period is large because the value of
the period is the one associated with the highest
peak in the power spectrum but other peaks as
high as this are present. This fact is more evident
in the graph shown in fig. 4b, where the relation-
ship among density and the “signal to noise
ratio” of the spectrum is presented graphically.
Signal to noise ratio was defined here as
SNR = (p/p + o) where p is the average period
and o is the standard deviation of the sample
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(each point is the average of five different re-
plica). When the signal is pure (o =0) the
SNR = 1. When the error in the signal is equal to
the value of the signal the SNR =0.5. Signal to
noise ratio as defined above gives a good mea-
surement of the degree of system robustness and
serves the purpose of comparing a mobile cel-
lular automaton with its motionless counterpart.
In fact, from fig. 4b it is clear that the mobile
system is more robust.

Up to here, the discussion has been centered
on considering self-interacting objects, but what
happens if self-interaction is omitted in a mobile
system? In order to explore this crucial question
the term J,,$!™" in eq. (5) was omitted. Periodic
oscillations were still present but they appeared
at higher density values than in the case of the
system with self-interaction (typically around
density value of 0.4). Another remarkable differ-
ence among these two systems was that, at lower
densities, non-self-interacting objects tended to
remain more inactive than their self-interacting
counterpart. Analysis of this behaviour permit us
to conclude that robustness in this model is
closely correlated with the average number of
connections available per object in the lattice.

For self-interacting objects at least one con-
nection is guaranteed to exist and, as proposed
before, it serves as a deactivation delay. This in
turn implies that self-interacting objects will on
average, be more active than non-self-interacting
objects. On the other hand, no self-interacting
objects need a higher system density in order to
preserve at least one connection.

Mobility increments robustness because it
guarantees that interactions will occur more fre-
quently. In fact, an encounter between any pair
of mobile objects in a closed space is non zero
probability event while two non mobile objects,
not in their immediate neighborhood, will never
interact. This fact is also reflected in an increase
of the average number of connections in mobile
systems. In a motionless system, isolation of
individual objects or small domains of objects
may occur while mobility assures that isolation

will, on average, not occur. Isolation in domains
implies that collective oscillatory behaviour may
be desynchronized due the absence of links for
activity interchange. Isolated domains may well
be pulsating out of phase of the rest of the lattice
objects.

In a motionless system, activity spreads over
the lattice at speed equal to one lattice per time
unit (speed of light = 1) while in mobile systems
the speed of light is twice this. value. A faster
activity release over the lattice tends to decrease
coupling delays making collective synchroniza-
tion more easily attained. In this sense, mobile
objects resemble mobile vectors for disease
transmission: collective disease infection occurs
faster in a space with mobile infected agents.

3.1. System parameters

As stated before, the gain controls the rate of
deactivation of an isolated object and also the
activation rate of an interacting object as is clear
from (5). If g is made to have a large value
(usually g >1), S; will flip-flop between values 1
and —1 or 1 and 0O if only positive values are
involved. Under these circumstances the system
approaches the discrete binary limit. Gain g also
has a very important role in determining the
period of the collective oscillations. As a general
trend, the period is incremented with increments
in g. Nevertheless this trend will be broken
because, as stated, a large value for g will make
the system to approach the discrete limit and if
this happens periodic behaviour is lost.

Probability p, has the overall effect of increas-
ing the number of active objects but does not
have an important role in determining the period
of the oscillations, once oscillations are ob-
served.

Coupling coefficients in matrix C play an im-
portant role. It is possible to regard eq. (5) as a
weighted process since these coefficients
“weight” the relative importance of the objects
in the interaction. Coupling coefficients may be
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interpreted as weights for the three types of
interactions (active—active, inactive—active and
inactive—inactive).

Since the entries of the matrix are real-valued
constants, complete examination of all combina-
tions of matrix entry values is not possible,
nevertheless an exhaustive research of their val-
ues ‘and the qualitative system behaviour was
carried out and the main result points toward
considering the coefficient ¢, (active—active inter-
action) as the most important one (fig. 5). It was
found that the period T decreases when the
value of c, is decreased following an exponential
relationship of the type 7= a e +  where «
and B are constants whose values depend on g, n
and the values of the other coupling coefficients
as well. If was found that when ¢, approaches
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Fig. 5. Value of coupling coefficient ¢, and temporal evolu-
tion of a MCA lattice (see text). (a) ¢, =1.5, (b) ¢, =1, (¢)
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(lattice size =10 x 10, s, = 0.01, p, =0.01, g =0.05).

zero (¢, =107*), there is a sharp transition in the
dynamics of the system. A small value for ¢,
implies that the coupling links between active
self-interacting objects is weakened. In the limit-
ing case when ¢, =0, active objects are pre-
vented from interacting and cannot access their
internal memory. This gives rise to a new dy-
namic situation where collective periodic be-
haviour is lost and quasi-periodicity arises.

4. Space structure and self-organization

In the case of a fully saturated lattice, the
behaviour of the MCA is roughly equivalent to a
model of an excitable medium. Excitable media
are very well known for their property of sup-
porting the propagation of pulses of excitation
due to the ability to activate collectively follow-
ing a perturbation of its resting state. This per-
turbation could be a single stimulus that goes
beyond a given activation threshold value [13,
and references therein]. This property of ex-
citability and wave propagation is present in the
MCA model.

Let us start the discussion of the spatial evolu-
tion in terms of a saturated lattice. Consider the
series of snapshots shown in figs. 6a—6e. At time
t=0 an initial perturbation was introduced by
assigning a value of 1 to the activity variable of
the object located at the lattice center, the rest
of objects being set to 0. Successive time steps
show activity propagation as a wave of excita-
tion. This wave has an initially square front
(t=5 and ¢=10) but transforms quickly into a
circular waveform because objects at the corners
of an initial-squared wave deactivate first (they
have more inactive neighbors than those objects
in the edges or in the inner zone of the active
domain). At ¢ = 20 the wave touches the borders,
at ¢ = 30 it begins to enter the refractory state, in
which the wave collapses towards the center to
disappear completely at ¢=42. The pictures
show activity values in a black and white scale,
white indicating no activity while black indicates
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maximal activity, gray tones are intermediate
values (the scale is not absolute between frames
so only qualitative comparison can be made).

Fig. 6f—6i show the same lattice but with a
density of 0.8 (20% of the space is available for
movement). Objects were located randomly over
the grid with zero activity value except for a
single one located at the center with a value of
activity = 1. White dots indicate both empty
spaces and inactive objects. At ¢ = 10 the activity
has propagated between the objects and because
of their movement they break the square wave-
form more quickly. The adoption of a circular
wavefront is a very desirable property of a cel-
lular automata model of excitable medium since
it implies space isotropy, that is, activity will
spread at the same velocity no matter in what
direction [14]. In the case shown, the region of
excitation is roughly circular and hence isotropy
exists only on average. The roughly circular
wave front in a mobile system comes from the
combination of two phenomena. The sponta-
neous formation of the circular front as observed
in a saturated grid and because territory cover-
age in a system of random walkers has a charac-
teristic roughly circular geometry as long as the
density is high [15]. On the other hand it is
necessary to point out that the velocity of propa-
gation has increased because of mobility as can
be clearly seen from fig. 6h where activity has
reached all regions of the lattice. At ¢=232 the
activity wave has completely collapsed and dis-
appeared.

Finally, figs. 6j—1 show a MCA with density of
0.2. Because of the low density, the roughly
circular wave is not present, rather, the disper-
sion of activity is non-isotropic and depends
strongly on the space distribution of the inactive
objects. Clearly, if density is lower than a certain
value the activity wave is not propagated. This is
quite compatible with the dynamics in the time
domain where periodic cycles are not present if
density is above a certain value (and, possibly,
can be a clue for the existence of percolation-like
phenomena). When ¢ =20 another aspect of the

behaviour of a MCA is evident: the region of
greater activity has moved from the center to-
wards the left side. If the life time of the activity
wave is long enough it is possible to observe this
region moving randomly over the lattice. Never-
theless the objects that form the region are not
the same all the time except, perhaps, for a very
few including the initial seed. Finally, total col-
lapse of activity occurs at ¢ = 22.

It appears adequate to regard the MCA model
as a special kind of excitable medium in which
space and time are discrete and excitable objects
can move and interact. Now, one is tempted to
question what kind of long-term space be-
haviours can exist in a system where excitable
units move randomly and can activate randomly.
At first, it appears reasonable to assume that,
due to such great randomness, no-long term
spatial organization can exist and, in fact, we
never have come across with such structures as
spirals waves or other spectacular patterns.
While we cannot rule out a priori the possible
existence in this model of such manifestations of
spatial organization, specially in the case of satu-
rated or high density lattices, we turned our
attention to another kind of long-term spatial
behaviour as will be explained below.

It is possible to perform an interesting experi-
ment in which the number of times a given
lattice cell has been active are counted. Results
with eight different matrices are shown in fig. 7.
The lattice is saturated and initial positions and
activity values were chosen randomly. As can be
seen, a number of them have developed con-
centric patterns in which activity has accumu-
lated in the center of the lattice, minor activity
being registered towards the periphery. The find-
ing of concentric rings with greater activity at the
center is consistent with another experiment in
which the sites where random activations
occurred were mapped using the same matrices
that produce concentric rings. In this case ran-
dom activations were found to be mostly con-
fined to the periphery indicating regions of lower
activity (random activations occur only if the
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objects are inactive). Since no initial information
was given on where greater activity should occur,
it appears appropriate to consider the existence
of such patterns to be the result of a self-organ-
ized phenomenon.

It is necessary to mention that only those
matrices that produce oscillations in the time
domain were found to produce concentric pat-
terns in space. It is not clear whether this is a
general rule in the model or not.

Existence of self-organized patterns may be
relevant due to the fact that little or no encoding
about space usage has to be previously stored in
the individual interacting mobile objects. Again,
as in the case of the global clock, a global map
containing information about space distribution

(a)

[ "hBOVE 48900
48600 - 48900
48300 - 48600
48000 - 48300
47700 - 48000
47400 -47700
47100 -47400
46800 -47100
BB 46500- 46800
B 46200-46500
B +5900-46200
IcLOW 45900

(c)

[ BOVE 29400
4 [5] 28800 -29400
FEET 28200 -28800
[ 27600 -28200
27000 -27600
-27000
-26400
-25800
-25200
-24600
-24000
23400

of activity can emerge from the process of local
interactions only.

At this point one is tempted to question if this
result is relevant. Fortunately, collectives of
mobile interacting objects do exist apart from
computer models: social insects provide us again
with good examples of space organization in
which concentric regions of greater activity (cor-
related with metabolic rates) are well defined,
and we would like to mention here two ex-
amples.

The honey bee develops a 3D pattern of con-
centric patterns of spatial organization on their
beehives [16, 17]. If the space activity pattern of
a wax comb (a 2D section of the 3D nest) is
observed, it is possible to identify concentric well

39000
-39000
-38620
-38240
-37860
-37480
-37100
-36720
-36340
-35960
-35580

35200

8400
- 8400
- 8080
-7700
- 7350
- 7000
- 6650
- 6300
- 5950
- 5600
- 5250

4900

Fig. 8. Space patterns developed after 50 000 time steps are shown for four different density values. As in fig. 7, each lattice site
value represents the number of times the cell was active (lattice size = 10 X 10, 5, = 0.1, p, = 0.01, g = 0.05, matrix coefficients all
1 except ¢, = 0. Initial activity values were set randomly in the interval [—1, 1]. Objects with self-interaction were considered).

Density values are (a) 1, (b) 0.8, (c) 6.0 and (d) 0.2.



O. Miramontes et al. | Mobile cellular automata

differentiated ring-like regions, a central one
where the major activity goes on (it includes the
region of egg and brood care) and two peripheral
rings where pollen and honey are stored. The
other example is another Leptothorax species, in
which concentric patterns of activity in their
nests have been identified recently [18]. In this
case, the brood is arranged in a cluster with a
characteristic 2D pattern of concentric rings.
Smaller items are placed at the centre while the
largest are located towards the periphery.

Since the above examples of spatial organiza-
tion involve mobile individuals it is necessary to
check if the spatial organization in a saturated
lattice is preserved when mobility is introduced.
In order to answer this important question, the
experiment shown in fig. 8 was performed. The
pictures represent a lattice with different den-
sities. As can be seen, concentric rings are lost as
the density is lowered, but it is important to
point out that clustering in a region of greater
activity occurs despite low density and random
mobility. No patterns of random distribution of

157

activity (like the ones shown in figs. 7g and 7h)
were detected.

Whether the social insects in the two examples
just mentioned, show any kind of oscillatory
behaviour in the temporal pattern of activity of
their individuals is an open question, as is the
problem of finding evidence of any pattern of
spatial activity in the case of the ants with known
oscillatory behaviour. Clearly further experimen-
tal work on this is very desirable.

Another case of interesting spatial organiza-
tion in this model is present when ¢, =0 and the
system is fully saturated. Under these conditions
coupling among active objects is lost as well as
self-interaction. Interaction is limited to active—
inactive and inactive—inactive pairs and the sys-
tem becomes “diluted” since the number of con-
nections per object is reduced. Because of no
self-interaction (no deactivation delays) the ob-
jects tend to oscillate individually at higher rates
between active and inactive phases but oscilla-
tions at lower rates are present at large temporal
scales. A temporal evolution of such a system

T=4

TEI g

T=13

T=100

T=200

Fig. 9. Spatio-temporal evolution of a diluted and saturated MCA lattice showing emergence of long-term spatial organization.
Black dots represent active objects while white dots represent inactive ones. Lattice size = 45 X 45, n = 2025, g =0.05, s, =0.01,
p,=0.01, ¢, =0 and the rest of coupling coefficients are one. Time steps are shown.
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proves to be quasi-periodic with largest
Lyapunov exponent of —0.056, and it give rise to
very interesting long term spatial structures such
as those shown in fig. 9.

5. Dynamics of interactions: chaos is present

The origins of collective behaviour in any con-
nected system have their ultimate explanation in
the non-linear interactions among their ele-
ments. From this point of view, it is very im-
portant to describe the dynamics that are present
not only on the global or macroscopic system
scale as represented by counting the number of
active objects in a given time step, but by study-
ing the dynamics of interactions through the time
evolution of the activity variable S;.

Consider a system of n mobile self-interacting
objects with no random activation. As stated
before, the gain g may be adjusted to an
adequate value so as to guarantee that no single
object will lock in the stable attractor (zero
value). Let us define total activity as £]_, S} and
explore its evolution through the example shown
in fig. 10. The graph in fig. 10a corresponds to
the time evolution of a lattice with six mobile
self-interacting objects (g =0.95, lattice size =
16 x 16, p, =0, s, = 0, coupling coefficients all 1,
all initial state variables are 1, first 500 time steps
were discarded). The dynamics of this system
was found to be chaotic and a Poincaré map is
drawn in 10b showing clearly a well defined
structured attractor. Further characterization of
this attractor by means of an optimized box-
assisted algorithm [19] showed a fractal dimen-
sion of 1.5. Moreover, the largest Lyapunov
exponent calculated according to the well known
Wolf et al. algorithm [20] showed a value of
0.474 indicating strong trajectory divergence
typical of chaotic attractors.

It is worth mentioning that other lattices with
different number of objects and system parame-
ters also showed this chaotic behaviour remark-
ing the non-linear nature of the model. Never-

i ()
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saaty

Total activity
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M e
Time

-
-1
~3
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&1
©
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=1
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Total activity (t+1)

2 4

Total activity. (t)
Fig. 10. (a) Time evolution of the total activity on a lattice
with six mobile objects. This system was found to be chaotic.
(b) The Poincaré map showing the attractor of the time

series. Fractal dimension is 1.5 and maximum Lyapunov
exponent is 0.474. See text for system parameters.

theless no evident pattern was found to exist
between the values of g, system density and the
values of fractal dimension and largest Lyapunov
exponent of the corresponding attractors.

6. Summary and discussion

The main aim of this article was to demon-
strate the existence of periodic oscillations in a
system in which elements are not periodic oscil-
lators. Oscillations are an emergent property of
the system and arise from the interactions among
the excitable lattice elements. Since the objects
over the lattice can move, we named such a
system mobile cellular automaton so as to dis-
tinguish it from classical cellular automata in
which lattice elements are not mobile.

Inactive objects activate at random and once
active they spread their activity through the lat-
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tice space by means of local interactions and
because active objects can move, they spread
activity through the space at a higher rate in
comparison with non-mobile systems.

It was shown that a system with mobile self-
interacting objects is more robust than the non-
mabile counterpart and more robust than a sys-
tem of non self-interacting objects. Robustness
then seems to be associated with the average
number of connections per object, a condition
closely related to system density rather than to
absolute number of objets.

System robustness is very important in relation
to the internal complexity of individual objects.
If periodic oscillations serve a purpose, complex-
ity in system design is reduced because no inter-
nal clock has to be defined for each object. A
very precise clock will be an emergent property
of this connected collection of objects. In fact, if
mobility and self-interaction are present, it will
be a more efficient clocked system since mobile
self-interacting objects could preserve the collec-
tive periodic behaviour with the smallest number
of objets.

The presence of interesting self-organizing
spatial structures was shown to exist, demon-
strating the power of this model to account
simultaneously for temporal and spatial collec-
tive behaviour. As in the case of the global
clock, a global map develops from random dis-
ordered initial states, without any initial clue
about the final spatial distribution of activity. It
is also quite remarkable that spatio-temporal
symmetry breaking in this model exhibits quali-
tative behaviour like those present in social in-
sects.

A study was carried out to characterize the
maximum Lyapunov exponents and fractal di-
mension of attractors in the time series repre-
senting the dynamics of the interactions and the
existence of chaos was demonstrated to exist.

It is our opinion that a model like the one
studied here offers a good approach to the phen-
omenon of the emergence of collective be-
haviour in systems with mobile elements where

coupling by means of local interactions occurs.
We hope it will be useful and stimulating for the
current discussion of whether social behaviour is
a complex form of self-organization.
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