ANALISIS DE CITAS

Dr. Octavio Miramontes Vidal
Sistemas Complejos, Instituto de Física, UNAM
13 Octubre 2008 - CITAS TOTALES: 615

1) Luque B, Lacasa L, Miramontes O. PHYSICAL REVIEW E, 76(1) 1010103 (2007)


4) BOYER D, Ramos-Fernández G, Miramontes O et al. PROC ROY SOCIETY B 273 2006

13. Wells, K; Kalko, EKV; Lakim, MB; Pfeiffer, M. Movement and ranging patterns of a tropical rat (Leopoldamys sabanus) in logged and unlogged rain forests. JOURNAL OF MAMMALOGY 89 (3): 712-720 JUN 2008
20. Reynolds, AM; Reynolds, DR; Smith, AD; Svensson, GP; Lofstedt, C. Appetitive flight patterns of male Agrotis segetum moths over landscape scales. JOURNAL OF THEORETICAL BIOLOGY 245 (1): 141-149 MAR 7 2007
27. Chialvo DR. The brain near the edge. Arxiv preprint q-bio. NC/0610041, 2006

5) BOYER D, MIRAMONTES O et al. PHYSICA A 342 (1-2): 329-335 OCT 15 2004

34. Tercariol, CAS; Gonzalez, RS; Oliveira, WTR; Martinez, AS. Deterministic and random partially self-avoiding walks in random media. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS 386 (2): 678-680 DEC 15 2007


41. Campiteli MG, Martinez AS, Bruno OM. An image analysis methodology based on deterministic tourist walks. LECTURE NOTES IN COMPUTER SCIENCE 4140: 159-167 2006

42. Backes AR, Bruno OM, Campiteli MG, et al. Deterministic tourist walks as an image analysis methodology based. LECTURE NOTES IN COMPUTER SCIENCE 4225: 784-793 2006


47. Tercariol CAS, Martinez AS An efficient algorithm to generate random uncorrelated Euclidean diastances: The random link model. BRAZILIAN JOURNAL OF PHYSICS 36 (1B): 232-236 MAR 2006

48. Tercariol CAS, Martinez AS Analytical results for the statistical distribution related to a memoryless deterministic walk: Dimensionality effect and mean-field models PHYSICAL REVIEW E 72 (2): Art. No. 021103 Part 1 AUG 2005


6) DeSouza O, Miramontes O. SOCIOBIOLOGY 44 (3): 527-538 2004


7) ROHANI P, MIRAMONTES O, KEELING MJ. MATH MED AND BIOL.-J OF THE IMA 2004

52. Richardson, AD. Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals. AGRICULTURAL AND FOREST METEOROLOGY 148 (1): 38-50 JAN 7 2008


66. Wells, K; Kalko, EKV; Lakim, MB; Pfeiffer, M. Movement and ranging patterns of a tropical rat (Leopoldamys sabanus) in logged and unlogged rain forests. JOURNAL OF MAMMALOGY 89 (3): 712-720 JUN 2008

74. Reynolds, AM; Smith, AD; Reynolds, DR; Carreck, NL; Osborne, JL. Honeybees perform optimal scale-free searching flights when attempting to locate a food source. JOURNAL OF EXPERIMENTAL BIOLOGY 210 (21): 3763-3770 NOV 1, 2007

76. de Knegt, HJ; Hengeveld, GM; van Langevelde, F; de Boer, WF; Kirkman, KP. Patch density determines movement patterns and foraging efficiency of large herbivores. BEHAVIORAL ECOLOGY 18 (6): 1065-1072 NOV-DEC 2007


80. Reynolds, AM; Smith, AD; Menzel, R; Greggers, U; Reynolds, DR; Riley, JR. Displaced honey bees perform optimal scale-free search flights. ECOLOGY 88 (8): 1955-1961 AUG 2007


83. Janson, C.H., Byrne, R. What wild primates know about resources: Opening up the black box Animal Cognition, 10 (3) pp. 357-367 (2007).


88. Reynolds, AM; Reynolds, DR; Smith, AD; Svensson, GP; Lofstedt, C. Appetitive flight patterns of male Agrotis segetum moths over landscape scales. JOURNAL OF THEORETICAL BIOLOGY 245 (1): 141-149 MAR 7 2007


107. Ramos-Fernandez G, Boyer D, Gomez VP. A complex social structure with fission-fusion properties can emerge from a simple foraging model. BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY 60 (4): 536-549 AUG 2006


119. Santos, MC; Raposo, EP; Viswanathan, GM; da Luz, MGE. Optimal random searches of revisitable targets: Crossover from superdiffusive to ballistic random walks. EUROPHYSICS LETTERS, 67 (5): 734-740 SEP 2004


121. *Boyer, D; Miramontes, O; Ramos-Fernandez et al. Modeling the searching behavior of social monkeys. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 342 (1-2): 329-335 OCT 15 2004


11) Boyer D, Miramontes O. PHYSICAL REVIEW E 67 (3) MAR 2003


130. Castello, X; Toivonen, R; Egiluz, VM; Saramaki, J; Kaski, K; Miguel, MS. Anomalous lifetime distributions and topological traps in ordering dynamics. EPL 79 (6): Art. No. 66006 2007


143. Bikas K & Chakrabarti, AD (ed), Quantum Annealing And Related Optimization Methods. ISBN 3540279873,


155. Richardson, AD. Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals. AGRICULTURAL AND FOREST METEOROLOGY 148 (1): 38-50 JAN 7 2008


164. Telesca L, Lasaponara R. Vegetational patterns in burned and unburned areas investigated by using the detrended fluctuation analysis. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS 368 (2): 531-535 AUG 15 2006

165. Telesca L, Lasaponara R, Lanorte A. Discrimination of vegetational patterns in burned and unburned areas.
<table>
<thead>
<tr>
<th>ID</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>Telesca L, Lasaponara R. Quantifying intra-annual persistent behaviour in SPOT-VEGETATION NDVI data for Mediterranean ecosystems of southern Italy. REMOTE SENSING OF ENVIRONMENT 101 (1): 95-103 MAR 15 2006</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>ID</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>Peruani, F; Sibona, GJ. Dynamics and steady states in excitable mobile agent systems. PHYSICAL REVIEW LETTERS 100 (16): Art. No. 168103 APR 25 2008</td>
</tr>
<tr>
<td>186</td>
<td>James, H.A., Scogings, C.J., Hawick, K.A. Parallel synchronization issues in simulating artificial life.</td>
</tr>
</tbody>
</table>


199. Santos, CA; Oliveira, MGD; de Souza, O; Serrao, JE. Social facilitation and lipid metabolism in termites. SOCIOBIOLOGY 50 (1): 183:187 2007
201. Copren KA, Geard N An individual based model examining the emergence of cooperative recognition in a social insect (Isoptera : Rhinotermitidae). SOCIOBIOLOGY 46 (2): 349-361 2005
203. Wang CL, Powell JE. Cellulose bait improves the effectiveness of Metarhizium anisopliae as a microbial control of termites (Isoptera : Rhinotermitidae) BIOLOGICAL CONTROL 30 (2): 523-529 JUN 2004


237. Le Van Quyen M Disentangling the dynamic core: a research program for a neurodynamics at the large-scale BIOLOGICAL RESEARCH 36 (1): 67-88 2003


239. Halley JM Parameter drift stabilizes long-range extinction forecasts ECOLOGY LETTERS 6 (5): 392-397 MAY 2003


244. Rohde K, Rohde PP. Fuzzy chaos: Reduced chaos in the combined dynamics of several independently chaotic populations. AM NAT 158: (5) 553-556 NOV 2001
245. Kaitala V, Alaja S, Ranta E. Temporal self-similarity created by spatial individual-based population dynamics. OIKOS 94: (2) 273-278 AUG 2001


253. Morales LM. Viability in a pink environment: why "white noise models can be dangerous. ECOL LETT 2:(4) 228-232 JUL 1999


258. Santos, CA; Oliveira, MGD; de Souza, O; Serrao, JE. Social facilitation and lipid metabolism in termites. SOCIOBIOLOGY 50 (1): 183-187 2007


261. Copren KA, Geard N. An individual based model examining the emergence of cooperative recognition in a social insect (Isoptera : Rhinotermitidae). SOCIOBIOLOGY 46 (2): 349-361 2005


266. Santos CA, DeSouza O, Guedes RNC. Social facilitation attenuating insecticide-driven stress in termites (Isoptera : Nasutitermitinae) SOCIOBIOLOGY 44 (3): 527-538 2004


269. Brent CS, Traniello JFA. Influence of sex-specific stimuli on ovarian maturation in primary and secondary reproductives of the dampwood termite Zootermopsis angusticollis. PHYSIOL ENTOMOL 26: (3) 239-247 SEP 2001


274. Brent CS, Traniello JFA Social influence of larvae on ovarian maturation in primary and secondary reproductives of the dampwood termite Zootermopsis angusticollis. PHYSIOL ENTOMOL 26: (1) 78-85 MAR 2001


278. Reynolds C. Individual-Based Models - red3d. com 1999


285. Rohde K, Rohde PP. Fuzzy chaos: Reduced chaos in the combined dynamics of several independently chaotic populations. AM NAT 158: (5) 553-556 NOV 2001


288. *Miramontes O, Ceccon E. First-difference fluctuations and the complexity of simple population models
exhibiting chaos. PHYSICA A 257: (1-4) 439-447 AUG 15 1998


293. Katare S, West DH. Optimal complex networks spontaneously emerge when information transfer is maximized at least expense: A design perspective COMPLEXITY 11 (4): 26-35 MAR-APR 2006


303. Bohan DA, Hominick WM. Long-term dynamics of infectiousness within the infective-stage pool of the entomopathogenic nematode Steinernema feltiae (site 76 strain) Filipjev. PARASITOLOGY 114: 301-308 Part 3 MAR 1997


309. Gao SJ, Chen LS. Dynamic complexities in a single-species discrete population model with stage structure and birth pulses. CHAOS SOLITONS & FRACTALS 23 (2): 519-527 JAN 2005

310. Wang Hongbin, ZHANG Pei-yi, Dian Jammu, Zhang Zhen. Detection of chaos in natural population and it 's


315. Sun P, Yang XB. Dynamic behaviors of the Ricker population model under a set of randomized perturbations. MATH BIOSCI 164: (2) 147-159 APR 2000

316. Sun P, Yang XB. Deterministic property changes in population models under random error perturbations. ECOL MODEL 119: (2-3) 239-247 JUL 15 1999


327. Filotas, E; Grant, M; Parrott, L; Rikvold, PA. Community-driven dispersal in an individual-based predator-prey model. ECOLOGICAL COMPLEXITY 5 (3): 238-251 SEP 2008

328. Fort, J; Pujol, T. Progress in front propagation research. REPORTS ON PROGRESS IN PHYSICS 71 (8): Art. No. 086001 AUG 2008


345. Johnson MP. Scale of density dependence as an alternative to local dispersal in spatial ecology. J ANIM ECOL 69: (3) 536-540 MAY 2000


348. Veit RR. Vagrants as the expanding fringe of a growing population. AUK 117: (1) 242-246 JAN 2000


353. Travis JMJ, Murrell DJ, Dytham C. The evolution of density-dependent dispersal. P ROY SOC LOND B 266: (1431) 1837-1842 SEP 22 1999


356. Bevers M, Flather CH. Numerically exploring habitat fragmentation effects on populations using cell-based coupled map lattices. THEOR POPUL BIOL 55: (1) 61-76 FEB 1999

357. Ranta E, Kaitala V, Lundberg P. Population variability in space and time: the dynamics of synchronous population fluctuations. OIKOS 83: (2) 376-382 NOV 1998

358. Kendall BE, Fox GA. Spatial structure, environmental heterogeneity, and population dynamics: Analysis of the
coupled logistic map. THEOR POPUL BIOL 54: (1) 11-37 AUG 1998


360. Carretero-Gonzalez R. Low dimensional traveling interfaces in coupled map lattices. INT J BIFURCAT CHAOS 7: (12) 2745-2754 DEC 1997


366. METAPOPULATIONS AND CHAOS: ON THE STABILIZING INFLUENCE OF DISPERSAL. PARADIS, E. JOURNAL OF THEORETICAL BIOLOGY. MAY 21 1997 v 186 n 2, pp 261


371. DENSITY-DEPENDENT MIGRATION AND STABILITY IN A SYSTEM OF LINKED POPULATIONS. RUXTON_GD. BULLETIN OF MATHEMATICAL BIOLOGY, 1996, Vol.58, No.4, pp.643-660


373. CHAOTIC DYNAMICS MAY DETERMINE THE EFFECT OF INTER-PATCH MIGRATION ON METAPOPULATION SURVIVAL. RUXTON_GD. JOURNAL OF BIOSCIENCES, 1996, Vol.21, No.1, pp.93-100

374. M Rees, PJ Grubb, D Kelly, Quantifying the Impact of Competition and Spatial Heterogeneity on the Structure and Dynamics of a four species guild of winter annuals The American Naturalist 147, 1996


--------------------------------------------------------------------------------------------------------


--------------------------------------------------------------------------------------------------------


387. Dey S, Dabholkar S, Joshi A. The effect of migration on metapopulation stability is qualitatively unaffected by demographic and spatial heterogeneity. JOURNAL OF THEORETICAL BIOLOGY 238 (1): 78-84 JAN 7 2006


391. Wilson WG, Morris WF, Bronstein JL Coexistence of mutualists and exploiters on spatial landscapes ECOLOGICAL MONOGRAPHS 73 (3): 397-413 AUG 2003


399. French DR, Travis JMJ. Density-dependent dispersal in host-parasitoid assemblages. OIKOS 95: (1) 125-135 OCT 2001

400. Kaitala V, Alaja S, Ranta E. Temporal self-similarity created by spatial individual-based population dynamics. OIKOS 94: (2) 273-278 AUG 2001


403. Kean JM, Barlow ND. Can host-parasitoid metapopulations explain successful biological control? ECOLOGY 81: (8) 2188-2197 AUG 2000
409. Ruxton GD, Rohani P. Fitness-dependent dispersal in metapopulations and its consequences for persistence and synchrony. J ANIM ECOL 68: (3) 530-539 MAY 1999
412. Kaitala V, Ranta E. Travelling wave dynamics and self-organization in a spatio-temporally structured population. ECOL LETT 1: (3) 186-192 NOV 1998
416. Kendall BE, Fox GA. Spatial structure, environmental heterogeneity, and population dynamics: Analysis of the coupled logistic map. THEOR POPUL BIOL 54: (1) 11-37 AUG 1998
418. USING SPATIALLY EXPLICIT MODELS TO CHARACTERIZE FORAGING PERFORMANCE IN HETEROGENEOUS LANDSCAPES. GRUNBAUM_D. AMERICAN NATURALIST, 1998, Vol.151, No.2, pp.97-115
422. TRAVELLING WAVES IN VOLE POPULATION DYNAMICS. RANTA_E, KAITALA_V. NATURE, 1997, Vol.390, No.6659, p.456
424. SPATIAL SELF-ORGANIZATION IN ECOLOGY: PRETTY PATTERNS OR ROBUST REALITY?. ROHANI, PEJMAN, LEWIS, TIMOTHY J. & RUXTON, GRAEME D. TRENDS IN ECOLOGY & EVOLUTION, FEB 01 1997 v 12 n 2, pp 70
426. METAPOPULATIONS AND CHAOS: ON THE STABILIZING INFLUENCE OF DISPERSAL. PARADIS, E.
427. DETECTING CHAOTIC DYNAMICS OF INSECT POPULATIONS FROM LONG-TERM SURVEY DATA. ZHOU, X., PERRY, J.N. & CLARK, S.J. ECOLOGICAL ENTOMOLOGY, MAY 01 1997 v 22 n 2, pp.231


26) SOLE_RV, MIRAMONTES_O PHYSICA D 80 (1995)


439. Skufca, JD, Bollt E. COMMUNICATION AND SYNCHRONIZATION IN DISCONNECTED NETWORKS WITH DYNAMIC TOPOLOGY: MOVING NEIGHBORHOOD NETWORKS. MATHEMATICAL BIOSCIENCES AND ENGINEERING Volume 1, Number 2, July 2004


441. O'Toole DV, Robinson PA, Myerscough MR. Self-organized criticality in ant brood tending. J THEOR BIOL 221 (1): 1-14 MAR 7 2003


446. Ricard V. Solé, Susanna C. Manrubia. Orden y caos en sistemas complejos. ISBN 8483014319 Ediciones UPC
2001


448. Delgado J, Sole RV. Task fulfilment and temporal patterns of activity in artificial ant colonies. LECT NOTES ARTIF INT 1674: 606-615 1999


450. Nepomnyaschikh VA. The variability of response to visual stimulus in goldfish, Carassius auratus L. (Cyprinigae pisces). ZH OBSCH BIOL 61: (3) 315-324 MAY-JUN 2000


452. Delgado J, Sole RV. Self-synchronization and task fulfilment in ant colonies. J THEOR BIOL 205: (3) 433-441 AUG 7 2000


458. NOISE INDUCED TRANSITIONS IN FLUID NEURAL NETWORKS. DELGADO_J, SOLE_RV. PHYSICS LETTERS. A MAY 12 1997 v 229, PP. 183

459. COLLECTIVE-INDUCED COMPUTATION. DELGADO_J, SOLE_RV. PHYSICAL REVIEW E. STATISTICAL PHYSICS, PLASM. MAR 01 1997 v 55 n 3A, pp 2338


461. COMPLEJIDAD EN LA FRONTERA DEL CAOS. SOLE_RV, BASCOMPTE_J, DELGADO_J, LUQUE_B & MANRUBIA_SC. INVESTIGACION Y CIENCIA (VERSION ESPAÑOLA SCIENTIFIC AMERICAN), No.236, 1996.


468. Wan Ho, M. Bioenergetics and the coherence of organisms. Neuronetwork World 5: 733, 1995


-------------------------------------------------------------------------------------------------------------------------------------

27) ROHANI_P & MIRAMONTES_O & HASSELL_MP P ROY SOC LOND B 258 (1994)
475. Xu CL, Li ZZ. Influence of intraspecific density dependence on a three-species food chain with and without external stochastic disturbances. ECOL MODEL 155 (1): 71-83 SEP 15 2002
476. Kaitala V, Ylikarjula J, Heino M. Non-unique population dynamics: basic patterns. ECOL MODEL 135 (2-3) 127-134 DEC 5 2000
479. Sun P, Yang XB. Dynamic behaviors of the Ricker population model under a set of randomized perturbations. MATH BIOSCI 164: (2) 147-159 APR 2000
482. Sun P, Yang XB. Deterministic property changes in population models under random error perturbations. ECOL MODEL 119: (2-3) 239-247 JUL 15 1999
483. Rohani P, Ruxton GD. Dispersal-induced instabilities in host-parasitoid metapopulations. THEOR POPUL BIOL 55: (1) 23-36 FEB 1999
484. Ruxton GD, Rohani P. Population floors and the persistence of chaos in ecological models. THEOR POPUL BIOL 53: (3) 175-183 JUN 1998
485. Ives AR, Jansen VAA. Complex dynamics in stochastic tritrophic models. ECOLOGY 79: (3) 1039-1052 APR 1998


29) SOLE_RV, MIRAMONTES_O & GOODWIN_BC SPRINGER SERIES SYNERGETICS (1993)

505. Delgado J, Sole RV. Self-synchronization and task fulfilment in ant colonies. J THEOR BIOL 205: (3) 433-441 AUG 7 2000


513. Li-Xiang, L; Hai-Peng, P; Yi-Xian, Y. T-S fuzzy system design by chaotic ant swarm algorithm. ACTA PHYSICA SINICA 57 (2): 703-708 FEB 2008


521. Li, LX; Yang, YX; Peng, HP; Wang, XD Parameters identification of chaotic systems via chaotic ant swarm. CHAOS SOLITONS & FRACTALS 28 (5): 1204-1211 JUN 2006


526. Altshuler, E; Ramos, O; Nunez, Y; Fernandez, J; Batista-Leyva, AJ; Noda, Symmetry breaking in escaping ants AMERICAN NATURALIST, 166 (6): 643-649 DEC 2005

527. Elena, SF; Sanjuan, RNA viruses as complex adaptive systems BIOSYSTEMS, 81 (1): 31-41 JUL 2005


530. O'Toole DV, Robinson PA, Myerscough MR Self-organized criticality in ant brood tending JOURNAL OF THEORETICAL BIOLOGY 221 (1): 1-14 MAR 7 2003


541. Nemes L, Chua LO. The spatiotemporal prisoner's dilemma. INT J BIFURCAT CHAOS 10: (7) 1623-1644 JUL 2000


545. Delgado J, Sole RV. Self-synchronization and task fulfilment in ant colonies. J THEOR BIOL 205: (3) 433-441 AUG 7 2000

546. Cox MD, Blanchard GB. Gaseous templates in ant nests. J THEOR BIOL 204: (2) 223-238 MAY 21 2000


548. Delgado J, Sole RV. Task fulfilment and temporal patterns of activity in artificial ant colonies. LECT NOTES ARTIF INT 1674: 606-615 1999


553. KITABAYASHI_N, GUNJI_YP. MAKING DECISION IN ESTIMATING PHEROMONE BY AN ANT ITSELF, EXPRESSED AS A CAUSE-EFFECT LOOP. RIVISTA DI BIOLOGIA-BIOLOGY FORUM, 1997, Vol.90, No.3, pp.393-421


555. DELGADO_J, SOLE_RV. NOISE INDUCED TRANSITIONS IN FLUID NEURAL NETWORKS. PHYSICS LETTERS. A MAY 12 1997 v 229, PP. 183


564. JAFFE_K, FONCK_C. ENERGETICS OF SOCIAL PHENOMENA - PHYSICS APPLIED TO EVOLUTIONARY BIOLOGY. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED. MATTER ATOMIC


31) MIRA MON TES_O, SOLE _RV & GOODWI N _BC PHY SICA D 63 (1993)


Pie MR, Rosengaust RB, Traniello JFA. Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J THEOR BIOL 226 (1): 45-51 JAN 7 2004

Andrew Ilachinski. Artificial War: Multiagent-Based Simulation of Combat. ISBN 9812388346


Mariano Lopez de Haro (ed). Las matematicas y su entorno. ISBN 968232517 X, Siglo XXI, 2004


Sachs T. Collective specification of cellular development. BIOESSAYS 25 (9): 897-903 SEP 2003


O'Toole DV, Robinson PA, Myerscough MR. Self-organized criticality in ant brood tending. J THEOR BIOL 221 (1): 1-14 MAR 7 2003

Adamatzky A ISAAC: Irreducible semi-autonomous adaptive combat. KYBERNETES 31 (3-4): 632-638 2002


Helbing D. Traffic and related self-driven many-particle systems. REV MOD PHYS 73: (4) 1067-1141. OCT 2001


*Miramontes O, Sole RV, Goodwin BC. Neural networks as sources of chaotic motor activity in ants and how complexity develops at the social scale. INT J BIFURCAT CHAOS 11: (6) 1655-1664 JUN 2001


Bonabeau E, Theraulaz G, Deneubourg JL. The synchronization of recruitment-based activities in ants. BIOSYSTEMS 45: (3) 195-211 MAR 1998

KITABAYASHI_N, GUNJI_YP. MAKING DECISION IN ESTIMATING PHEROMONE BY AN ANT ITSELF, EXPRESSED AS A CAUSE-EFFECT LOOP. RIVISTA DI BIOLOGIA-BIOLOGY FORUM, 1997, Vol.90, No.3, pp.393-421

DELGADO_J, SOLE_RV. NOISE INDUCED TRANSITIONS IN FLUID NEURAL NETWORKS. PHYSICS
LETTERS. A MAY 12 1997 v 229, PP. 183


596. RINALDO_A, MARITAN_A, COLAIORI_F, FLAMMINI_A, RIGON_R. THERMODYNAMICS OF FRACTAL NETWORKS. PHYSICAL REVIEW LETTERS, 1996, Vol.76, No.18, pp.3364-3367

597. FONCK_C, JAFFE_K. ON THE ENERGETIC COST OF SOCIALITY. PHYSIOLOGY & BEHAVIOR, 1996, Vol.59, No.4-5, pp.713-719


600. JAFFE_K, FONCK_C. ENERGETICS OF SOCIAL PHENOMENA - PHYSICS APPLIED TO EVOLUTIONARY BIOLOGY. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, Vol.16, No.6, pp.543-553


32) MIRAMONTES_O THIS OPEN U UK (1992)


606. Delgado J, Sole RV. Task fulfilment and temporal patterns of activity in artificial ant colonies LECTURE NOTES IN ARTIFICIAL INTELLIGENCE 1674: 606-615 1999


33) MIRAMONTES_O BULL OF ATOM. SCIENT. (1991)


34) NADAL A & MIRAMONTES_O LAG VER COLMEX (1989)

610 Mauricio Schoijet, A CONTRACORRIENTE, Revista Elementos, Ciencia y Cultura 11(53), BUAP Mayo 2004
611 Torres, B. Las ong ambientalistas en las relaciones México-Estados Unidos”, Foro Internacional, vol. xxxix, núm. 158(4), octubre-diciembre de 1999

35) MIRAMONTES_O EL COLEGIO DE MEXICO REPTEC P RADIOACT (1989)


36) MIRAMONTES_O EL COLEGIO DE MEXICO REPTEC P.ELECTROMAG (1989)


37) MIRAMONTES_O EL COLEGIO DE MEXICO BOL. ED. (1989)

615. STEVIS_D, MUMME_SP. EKISTICS, 1990, Vol.57, pp.31
CUADRO DE ANÁLISIS

Citas totales: 615
Autocitas: 61
Citas en índices electrónicos (SCI, Scopus, Scirus, Scholar): 519
Citas en los archivos electrónicos del ArXiv: 11
Citas en libros con clasificación ISBN: 66
Citas en trabajos de tesis internacionales (sin relación con el autor): 19

Citas de calidad

Defino como citas de calidad aquellas en que la revista en la que aparece la cita tiene un Factor de Impacto del ISI igual o mayor a 4.0. En particular hago notar que he sido citado 6 veces en la revista NATURE, una vez en SCIENCE, una vez en REV MOD PHYS y cuatro veces en TRENDS ECOL EVOL. Todas estas publicaciones tienen un Factor de Impacto mayor o igual a 12.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>NATURE</td>
<td>30.979</td>
</tr>
<tr>
<td>1997</td>
<td>NATURE</td>
<td>30.979</td>
</tr>
<tr>
<td>1996</td>
<td>NATURE</td>
<td>30.979</td>
</tr>
<tr>
<td>2006</td>
<td>NATURE</td>
<td>30.979</td>
</tr>
<tr>
<td>2007</td>
<td>NATURE</td>
<td>30.979</td>
</tr>
<tr>
<td>2008</td>
<td>NATURE</td>
<td>30.979</td>
</tr>
<tr>
<td>1997</td>
<td>SCIENCE</td>
<td>29.162</td>
</tr>
<tr>
<td>2001</td>
<td>REV MOD PHYS</td>
<td>28.172</td>
</tr>
<tr>
<td>1997</td>
<td>TRENDS ECOL EVOL</td>
<td>12.449</td>
</tr>
<tr>
<td>1997</td>
<td>TRENDS ECOL EVOL</td>
<td>12.449</td>
</tr>
<tr>
<td>1995</td>
<td>TRENDS ECOL EVOL</td>
<td>12.449</td>
</tr>
<tr>
<td>1995</td>
<td>TRENDS ECOL EVOL</td>
<td>12.449</td>
</tr>
<tr>
<td>2008</td>
<td>TRENDS ECOL EVOL</td>
<td>12.449</td>
</tr>
<tr>
<td>1996</td>
<td>PHYS REV LET</td>
<td>7.035</td>
</tr>
<tr>
<td>1996</td>
<td>PHYS REV LET</td>
<td>7.035</td>
</tr>
<tr>
<td>1996</td>
<td>PHYS REV LET</td>
<td>7.035</td>
</tr>
<tr>
<td>2006</td>
<td>PHYS REV LET</td>
<td>7.035</td>
</tr>
<tr>
<td>2008</td>
<td>PHYS REV LET</td>
<td>7.035</td>
</tr>
<tr>
<td>2003</td>
<td>ECOL MONOGR</td>
<td>4.793</td>
</tr>
<tr>
<td>2001</td>
<td>ECOL MONOGR</td>
<td>4.793</td>
</tr>
<tr>
<td>2003</td>
<td>ECOL LETT</td>
<td>4.211</td>
</tr>
<tr>
<td>2003</td>
<td>ECOL LETT</td>
<td>4.211</td>
</tr>
<tr>
<td>1999</td>
<td>ECOL LETT</td>
<td>4.211</td>
</tr>
<tr>
<td>1998</td>
<td>ECOL LETT</td>
<td>4.211</td>
</tr>
<tr>
<td>2001</td>
<td>AM NAT</td>
<td>4.059</td>
</tr>
<tr>
<td>2001</td>
<td>AM NAT</td>
<td>4.059</td>
</tr>
<tr>
<td>2000</td>
<td>AM NAT</td>
<td>4.059</td>
</tr>
<tr>
<td>1999</td>
<td>AM NAT</td>
<td>4.059</td>
</tr>
<tr>
<td>1998</td>
<td>AM NAT</td>
<td>4.059</td>
</tr>
<tr>
<td>1996</td>
<td>AM NAT</td>
<td>4.059</td>
</tr>
<tr>
<td>1996</td>
<td>AM NAT</td>
<td>4.059</td>
</tr>
<tr>
<td>2008</td>
<td>PNAS</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>PNAS</td>
<td></td>
</tr>
</tbody>
</table>