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The relationship between short and long time re-
laxation dynamics is obtained for a simple solv-
able two-level energy landscape model of a glass.
This is done through means of the Kramers tran-
sition theory, which arises in very natural man-
ner to calculate transition rates between wells.
Then the corresponding stochastic master equa-
tion is analytically solved to find the population of
metastable states. A relation between the cool-
ing rate, the characteristic relaxation time and
the population of metastable states is found from
the solution of such equation. From this, a re-
lationship between the relaxation times and the
frequency of oscillation at the metastable states,
i.e., the short time dynamics is obtained. Since
the model is able to capture either a glass transi-
tion or a crystallization depending on the cooling
rate, this gives a conceptual framework in which
to discuss some aspects of rigidity theory.

I. INTRODUCTION

Despite the great use of glass in our societies; e.g. win-
dow glasses, smart-phone glasses, memory devices, optic
fiber, containers, to name a few; glass transition has been
proven to be a very complex problem. Although a lot of
progress has been made in the last half century, still there
are many unsolved questions1? ? ? ? ? –39. What is even
more interesting is that some of these questions are also
present in other phenomena, for instance, protein fold-
ing, turbulence and cell motion inside dense tissues40–43.
Hence, the growing appeal around glassy systems.

It is quite fair to say, from a technological and fun-
damental standpoint, that the most important variable
for glass formation is the cooling speed12,13. In his
iconic paper19, Phillips presents a dependence between
the chemical composition and the minimal cooling speed
necessary for glass formation for several chalcogenide al-
loys through means of his rigidity theory, which was later
generalized by Thorpe44. One of the main features in
this theory may be summarized in the following manner:
When the number of bond constraints equals the num-
ber of degrees of freedom, the glass forming ability is
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optimized, i.e., producing glass requires the slowest cool-
ing rate. In this situation, the mean coordination num-
ber equals the critical percolation coordination number,
i.e., domains of floppy modes (zero frequency modes) and
rigid modes coexist. As the mean coordination number
decreases, which may be tuned by varying the chemical
composition, floppy mode domains grow while rigid mode
domains disappear. As floppy modes increase in number,
the glass formation is more difficult. In this sense, it has
been well established theoretically and experimentally
that isostatic rigid glasses are easier to form18–20,45,46.
Despite this, the glass formation dependence on the cool-
ing rate is still poorly understood. Among the vast set
of tools used to study supercooled liquids and glass tran-
sition is the energy landscape picture25, however, it is
not trivial to understand how the energy landscape de-
pends upon the interatomic or intermolecular potential,
and thus how the cooling rate is related with the topo-
logical sampling.

Another intriguing problem in super-cooled liquids is
the relation between short and long time dynamics1,2,31.
It is a known fact that a super-cooled liquid increases
its viscosity or, equivalently, its relaxation time by more
than ten orders of magnitude when the temperature is
varied by a factor of three and, depending on this be-
havior, the supercooled liquid is called strong or fragile.
Moreover, there are cases, for instance confined super-
cooled water32, where there is a transition from fragile-
to-strong. But a connection between this feature and mi-
croscopic time dynamics is missing precisely because it is
very difficult to establish a connection between processes
on the picosecond time scale and on the second or larger
time scale, least to say a causality. This is in part the
reason why the question to what extent are the long time
dynamics determined by the short time dynamics? is still
an unanswered one. However, a flow event or molecular
rearrangement in real space occurs on a very short time
scale. These events correspond to a barrier transition
in the energy landscape picture. This idea has been the
starting point in the path to solve the aforementioned
question, yet more work is needed1.

From a different perspective, Kramers’ transition state
theory47–50 gives a solid framework which can be used to
study barrier transitions, at least as first means. This
approach has been widely used in many different fields
to understand how a system leaves an energy landscape
basin49,50. These ideas put on a solid ground the empir-
ical Arrhenius law, namely,
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τ(T ) = τ0 exp(∆E/kT ) , (1)

which relates the relaxation time for leaving a basin
(τ(T )) with the temperature (T ).Here τ0 is the smallest
oscillation period. As seen in figure 1, ∆E is the energy
barrier hill that closes the basin . The escape over the
barrier represents the breaking of a chemical bond50.

FIG. 1: Sketch of a potential V (x) as a function of the reaction
coordinate x, where V (x) has a stable stationary point (A) and a

barrier of height ∆E.

Kramers’ formula indicates that the relaxation times,
i.e., the escape time for leaving the basin is given by49,50,

τ(T ) = Λ
2π

ωA
exp(∆E/kT ) , (2)

where ωA is the frequency of oscillation at the bottom
of basin A (see figure 1) and Λ is a factor that comes
from a microscopic model of dissipation. The main im-
provement of Kramer’s formula over the Arrhenhius one
is the coupling with the thermal bath and the inclusion
of the energy basin oscillation period (which is related
with the energy basin curvature)49. Yet, on doing so one
must consider the damping factor which appears in the
prefactor of Kramers’ transition rate given by Eq. (2),
which does not appears in the pure exponential Arrhenius
formula Eq. (1). This prefactor depends upon several
considerations, like the dissipation regime (overdamped
or underdamped). Nonetheless, up to our knowledge,
the effects of this prefactor and its relationship with the
basin curvature on glass relaxation has not been con-
sidered . Some clear indications of such relationship has
been found in molecular dynamics simulations51 and the-
oretical analysis1,52,53. Clearly, more work is needed due

to its relevance54,55.

The exploration of this subject is further complicated
by the fact that there are many available models of glass
transition5. Among these, two-level models are popu-
lar since they explain several essential thermodynamical
properties of real glasses? ? ? . From a more theoreti-
cal point of view, their appeal has never decreased since
they serve as a starting point to develop simple stochas-
tic models of glass formation6,37–39,56. Although, in gen-
eral, these models lack for the complexity of the land-
scape, the problem can be solved by using a minimal
model that incorporates a simple landscape topology57.
Furthermore, keeping in mind that cooling rate effects
on glass formation is a poorly understood subject, one
would expect that in any sensible glass transition model
the phase transition to the crystal should be included
for low cooling rates. In this sense, the aim in previous
work was to present a landscape model with a minimal
set of ingredients that would take this fact into account
(see57,58) . The simple two-level system features a first
order phase transition in the thermodynamical limit and,
for some fast enough cooling rate, is able to arrest the
system in metastable states mimicking the glass transi-
tion phenomena57. The model relates the minimal cool-
ing rate for a glass forming tendency with the thermal
history, the energy landscape barrier and the character-
istic relaxation time58. This last having an Arrhenius
behavior. Moreover, this kind of two-level model can be
put in correspondence with effective-mean field theories
of glasses59. In our previous work we were not able to
tackle the problem of how short and long time dynam-
ics are related. In particular, we were interested on how
the mean quadratic displacement, which is related with
the curvature of the energy basin51,52, determines glass
relaxation.

Here we explore how Kramers’ transition state theory
appears naturally in the model. This allows us to relate
the short and long time dynamics, while also allowing us
to discuss some rigidity theory ideas. It is important to
remark that our findings are present in all energy min-
ima of the landscape, yet, a precise modelling for a real
glass needs to consider other factors as we will see in the
discussion section. The paper is organized as follows: In
the following section we briefly present our model and its
features in equilibrium. In section III we study our model
under a quench and discuss the glass formation tendency
dependency with the short time dynamics. In section IV
we derive the characteristic relaxation time and discuss
its dependence with the short time dynamics. In section
V we determine the minimal cooling rate for a strong
glass forming tendency and discuss its dependence with
short time dynamics. In section VI we present all findings
in our model in the context of rigidity theory, and from
this we discuss the relation between transition barriers
height and normal modes. Finally, section VII presents
the conclusions.
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II. REVISITING THE GLASS TRANSITION
TWO-LEVEL MODEL

Let us, in a brief manner, define the original model to
be used for the glass transition (for a detailed descrip-
tion see57). As seen in Fig. 2, the energy landscape is
composed by g1 wells with energy E1 = Nε > 0 which
we denote as the metastable states for N atoms, and
g0(� g1) wells with energy E0 = 0 which we denote as
ground states. All wells are interconnected, and any two
wells have an in-between wall of height V .

FIG. 2: The two level system energy landscape, showing the
barrier height V and the asymmetry E1 between the two levels.
There are g1 wells with energy E1, associated with metastable

states, and g0 ground states with energy E0 = 0. The population
of the upper well is p(t)57.

Now, given this simple topology, we assume that tran-
sition probabilities between the the metastable states are
all the same, in like manner transition probabilities be-
tween the ground states are all the same. The transition
probability from each well in the metastable states to any
of the ground states are all the same as well as the transi-
tion probability from each ground state well to any of the
metastable states in the metastable state. The probabil-
ity p(t) of finding the system with high energy satisfies
the following master equation57:

ṗ(t) = −Γ10g0p (t) + Γ01g1 (1− p (t)) , (3)

where Γ10 corresponds to the transition probability per
time for going from a state with energy E1 to a ground
state, i.e., state with energy 0, and Γ01 for the reverse
transition. In the original model, both Γ01 and Γ10 were
assumed to be proportional to a common generic Γ, which
was the inverse frequency of oscillation on the wells, re-
lated with the curvature of the energy basin. It pro-
vided the time scale of the model. However, this was
an oversimplification since not all wells have the same
oscillation frequency, which is a well known difference
between glasses and crystals51. Thus, here we propose
to use Kramers theory to take into account in a proper
way such contribution. To do this, we consider that the
square well model must be replaced by a smooth poten-
tial. Since the square well model can be reduced to a
model of two levels with degeneracy, then the model with
the smooth potential can be translated into a landscape
with the shape shown in Fig. 3 with the same degenera-
tion as in the original square model.

According to Kramers’ first passage time formulation

FIG. 3: Sketch of a double well potential with a barrier of height
V , showing the frequencies associated with each well and

transition barriers. The transition rates between wells are also
shown with arrows.

in the overdamped scenario48–50, one finds that{
Γ10(T ) = ω1ωc

2πγ e
−V/T ,

Γ01(T ) = ω0ωc

2πγ e
−(V+E1)/T ,

(4)

where ω2
1 ≡ V ′′(x1)/M is the squared angular frequency

inside the metastable minimum at position x = x1 and
M is the mass of the system. V ′′(x) denotes the second
derivative of the potential at x. ω2

0 ≡ V ′′(x0)/M is the
squared angular frequency inside the global minimum at
position x = x0 and ω2

c ≡ |V ′′(xc)|/M is the squared
angular frequency at the transitional state at position
x = xc (see Fig. 3). Also, the energy potential barrier
height that appears in Eq. (4) is given by V , which is
defined as V = V (xc)− E1.

For real glasses, ω1 and ω0 depend upon the normal
modes frequencies at the energy minima51–53. Here is im-
portant to remark that in general, the potential barrier
height V can be correlated with the surrounding energy
minima. In this sense, the normal modes frequencies and
the energy minima of the energy landscape is known for
a variety of interaction potentials21,60. Also, the energy
barriers distribution35 and the Hessian index36 as func-
tion of temperature has been obtained for Lennard-Jones
supercooled liquids. Moreover, in a quite interesting re-
port, Wales61 proposes the use of catastrophe theory for
the characterization of the energy landscape. Nonethe-
less, the relation between the transition barrier heights
and the frequencies is still an open issue, but certainly
they can be correlated62. Throughout this paper, V is
treated as an independent parameter that can be or not
correlated with the frequency ω at the bottom of the
adjacent wells. Here we only need a maximal V (x), iden-
tified with V , and a finite V ′′(x) at such point. In that
sense, our model describes a general situation of an en-
ergy barrier and two adjacent minima. Later on, in the
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discussion section, we will consider how to model real
glasses, since one needs to include many energy minima
and barriers between them. This needs to include corre-
lations between energy minima, barrier height and cur-
vature, as well as the fact that in real glasses, there is a
distribution of energy barriers, energy minima and curva-
tures that are needed to be overimposed on our minimal
picture of the landscape.

It is worthwhile mentioning that the transition rates
shown in Eq. (4) satisfy the detailed balance condition,

Γ01

Γ10
=
ω0

ω1
e−E1/T , (5)

Also, it is important to observe that the stationary solu-
tion to our master Eq. (3) is:

p0(T ) =

g1ω0

g0ω1
e−E1/T

1 + g1ω0

g0ω1
e−E1/T

. (6)

In general, the degeneracies g0 and g1 depend upon
the landscape complexity, which increases as22,30,41 ∼
N ! exp(N) . Here we assume g0 = exp (N log(Ω0)) and
g1 = exp (N log(Ω1)). Therefore, in the thermodynamic
limit, when T < Tc then p0(T ) = 0, while when T > Tc
then p0(T ) = 1, where Tc is the first order transition
temperature and is defined by the equality63

Tc =
ε

log (Ω1/Ω0)
. (7)

In equilibrium, the system at T < Tc is in the crys-
talline state while when T > Tc it represents the liquid.
When the system experiences a quench, the system may
be arrested in metastable states. This will be presented
in the following section.

III. COOLING SPEED AND RESIDUAL POPULATION

Let us study our model under cooling. In that case,
a cooling protocol, i.e. the temperature as a function of
the time T (t) needs to be specified. Experimentally, a
linear cooling is usually used. For obtaining analytical
results, an hyperbolic quench is more appropiate. Both
coolings produce similar results, except for the size of
the glass transition region, associated with the boundary
layer of the differential equation56,57. For the hyperbolic
quench, T (t) = T0/(1 + Rt) where T0 is the initial tem-
perature at which the system is in thermal equilibrium
and R is the cooling rate. In particular, we are interested
in the system’s dependence with ω1 when a rapid quench
is applied.

Notice that care must be taken with our notation. Here
T = T (t), and as a result, the population described by
Eq. (3) will be denoted at times by p(T ), which should
not be confused with the equilibrium probability p0(T ).

Having said this, let us write Eq. (3) as follows:

ṗ(t) = − ωc
2πγ

(
ω1g0e

− V
T (t) + ω0g1e

− (V +E1)

T (t)

)
p(t)

+
ω0ωc
2πγ

g1e
−V +E1

T (t) . (8)

The solution to this first order non-homogeneous ordi-
nary differential equation is obtained in a straightforward
manner yielding the following:

p(t) = exp

(
ωcT0e

− V
T (t)

2πγR

(
ω1g0

V
+
ω0g1e

− E1
T (t)

V + E1

))
(
p(∞)−

∫ ∞
t

dt′
ω0ωc
2πγ

g1e
−(V+E1)/T (t′) × (9)

exp

(
−ωcT0e

− V
T (t)

2πγR

(
ω1g0

V
+
ω0g1e

− E1
T (t)

V + E1

)))
.

Now, in order to find the residual population p(∞) cor-
responding to t → ∞ which gives the probability of ar-
resting the system in the metastable states as T → 0, we
first assume that the system is initially in thermal equi-
librium at a temperature T0 such that T0 > Tc. Hence
we write:

p(∞) = p0(T0) exp

(
−ωcT0e

− V
T (0)

2πγR

(
ω1g0

V
+
ω0g1e

− E1
T (0)

V + E1

))

+

∫ ∞
0

dt′
ω0ωc
2πγ

g1e
−(V+E1)/T (t′) × (10)

exp

(
−ωcT0e

− V
T (t)

2πγR

(
ω1g0

V
+
ω0g1e

− E1
T (t)

V + E1

))
.

In Fig. 4 we have plotted p given by Eqs. (6) and
(9) as function of T , while in Fig. 5 we have plotted
p(∞) given by Eq. (10). Notice, from the lower panels in
both figures, how the residual population increases as ω1

decreases, i.e., as the metastable wells become broader.
This agrees with the first passage time of a non-drifting
Brownian particle (see64 for instance). Notice that as ω1

tends to zero, the well becomes flat. Hence, the system
can be thought of as a one-dimensional free Brownian
particle. In this scenario, at long times, the first passage
time distribution goes as ∼ t−1/2. Thus, the mean first
passage time does not converge, which means the particle
takes an infinite time in going from the metastable state
to the ground state. This is what the lower panels in
Figs. 4 and 5 are suggesting.

As previously mentioned, prior to the glass transition,
the characteristic relaxation time increases. When this
time is of the order of the observation time, then the
supercooled liquid is not able to maintain in equilibrium
and the glass is formed. This characteristic relaxation
time is obtained in the following section.
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(a)

(b)

FIG. 4: Temperature dependent distribution in equilibrium
(dashed lines) and under fast cooling (continuous lines). Given

the cooling protocol, the system may be arrested in a metastable
state. In (a), the size of the system is changed for a given cooling

ratio. The parameters were fixed at (a) V = 1, γ = 1, R =
1, ωc = 1, ω0 = 1, ω1 = 1, ε = 1,Ω0 = 1, Ω1 = 2 . In panel (b),
the size and cooling rate is fixed, while the oscillation frequency of
the metastable energy basin is modified. Observe that the glass
forming ability increases as the oscillation frequency ω1 of the
metastable states goes to zero. The reason is that the system

probes the energy barrier less frequently. The parameters are V =
1, γ = 1, R = 1, ωc = 1, ω0 = 1, N = 8, ε = 1,Ω0 = 1, Ω1 = 2.

IV. CHARACTERISTIC RELAXATION TIME

As is well known, glasses appear because the system
is not able to relax into the energy minimum. In this
simple model we can test this idea in a simple way. To
determine the characteristic relaxation time, let us as-
sume that at any fixed given temperature T , the initial
condition is p(t = 0) = ρ, where 0 ≤ ρ ≤ 1. Now, because
of detailed balance, we know that for a fixed temperature

(a)

(b)

FIG. 5: Final state quenched distribution as a function of the
cooling rate as obtained from Eq. (10). In panel (a), the size of

the system is changed. The parameters were fixed at (a)
V = 1, γ = 1, T0 = Tc, ωc = 1, ω0 = 1, ω1 = 1.1, ε = 1,Ω0 =

1, Ω1 = 2. In panel (b), the oscillation frequency of the
metastable energy basin is modified. Observe how as the

frequency ω1 → 0, the glass forming ability increases for a given
cooling rate R. Again, the reason is the decreasing probing of the
energy barrier. The parameters are V = 1, γ = 1, T0 = Tc, ωc =

1, ω0 = 1, N = 4, ε = 1, Ω0 = 1, Ω1 = 2.

p(t→∞) = p0(T ). Hence, we formally write:
ṗ(t) = −Γ10(T )g0p(t) + Γ01g1 (1− p(t))
p(t = 0) = ρ

p(t→∞) = p0(T )

.

(11)
By simple inspection, one is able to write the solution,

p(t) = p0(T ) + (ρ− p0(T )) e−t/τ . (12)

where the characteristic relaxation time τ is:

τ =
1

Γ10g0 + Γ01g1
=

2πγ

ωcω1
e(V/T+F/T ) , (13)
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where F is the free energy, i.e.,

F = −T log (g0 + g1ω0 exp (−E1/T ) /ω1) . (14)

Notice that in Eq. (13), τ is proportional to the oscil-
lation period multiplied by the inverse conditional prob-
ability P(V + E1|E1). Before continuing, let us stress
the following. When γ � 1 means the system is strongly
coupled with the heat bath, thus it dissipates energy at
a very high rate. On the contrary, when γ → 0 the
system is weakly coupled with the heat bath, which are
responsible for the fluctuations in the system which in
turn are responsible for the barrier crossing. However,
Eq. (13) does not apply for the latter case. Instead, one
may use Kramers’ low damping regime escape time (see
for instance48,50,65)

In the thermodynamical limit, the characteristic re-
laxation time below the critical temperature goes as
2πγ/

(
ωcω1ΩN0

)
exp (V/T ). Despite stating the obvious,

notice that as ω1 decreases, the characteristic relaxation
time increases. This is consistent with our previous re-
sults. As stated earlier, when ω1 tends to zero, the en-
ergy landscape changes in such a way that the available
phase space increases. Hence, it takes longer for the par-
ticle to visit the ”summit” or probe the energy barrier .
Therefore, the characteristic relaxation time increases as
ω1 tends to zero. In this limit, such degree of freedom
becomes a floppy mode. As we discuss in the following
section, this affects the critical cooling rate for glass for-
mation.

V. THERMODYNAMICS LIMITS AND CRITICAL
COOLING RATE

Let us first consider the thermodynamical limit N →
∞ for expressions p(∞) and p(t). In this scenario, from
Eq. (10) we obtain for p(∞) the following expression:

p(∞) = exp

(
−Γ10(Tc)T0

RV

)
. (15)

Arguing the same way, one obtains from Eq. (9) for
p(t) the following result:

p (T (t)) =

{
1, T (t) ≥ Tc
exp

(
Γ(T (t))T0

RV

(
1− eV

Tc−T (t)
TcT (t)

))
, T (t) ≤ Tc,

We define the critical cooling rate as the cooling rate for
which the residual population has an inflection point, to
obtain the following relation:

Rcrit =
ω1ωcT0

4πγV
e−V/Tc . (16)

This equation relates the cooling rate with the short-time
dynamics in the model which is one the main result of
this work. In the following section, we will discuss its
properties and validity.

VI. DISCUSSION

In the previous sections, we found that Eqs. (13) and
(16) provide a link between long and short-time dynamics
for a simple landscape. Let us know discuss some impor-
tant points concerning its application in real systems.

The first is to observe that in Eq. (16), Rcrit is lin-
ear on ω1. As ω1 → 0, the relaxation time grows. The
reason is simple to understand. As the energy wells flat-
tens, the time spent by the system close to the dividing
energy barrier goes to zero and the probability of escape
decreases. In other words, the frequency of oscillation is
roughly the inverse of the time between collisions with
the energy barrier. Up to our knowledge this observa-
tion has not been taken into account for the dynamical
analysis of glasses.

We believe this issue has been overlooked due to other
effects that also modify the relaxation. All of them play
a role. Here we isolated one of the ingredients, the basin
oscillation frequency. Other ingredients are the corre-
lation between the barrier heights and basin oscillation
frequency, as well as the existence of a distribution of
basins21,35,36,60 .

Such effects have been also found from empirical ar-
guments in rigidity theory of glasses7. A simple and in-
tuitive way to understand this is as follows. According
to Dyre1, the energy barriers are related with the mean-
square displacement 〈u2〉 by,

∆E = λ1kBT
a2

〈u2〉
, (17)

with a being the lattice parameter and λ1 a factor of
order unity. But the mean-square displacement in a basin
can be written as7,52,

〈u2〉 =
3T

〈M〉

∫ ∞
0

ρ(ω)

ω2
dω , (18)

where ρ(ω) is the density of vibrational states. Observe
that the previous equation holds for the supercooled liq-
uid close to the glass transition as long as one performs
its computation in a distribution of basins and by using
a cut-off for small frequencies51. Combining the previous
equations we obtain an estimate of the energy barriers,

∆E = λ1
a2〈M〉

3
∫∞

0
ρ(ω)
ω2 dω

. (19)

Assuming the model presented in Ref.7 for the DOS of
floppy systems, i.e.,

g(ω) = (1− f)gR(ω) + fδ(ω − ωf ) , (20)
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we obtain the following:

∆E =
λ1a

2〈M〉
3

[
(1− f)

V ωD
2π2c33N

+
f

ω2
f

]−1

≈
λ1a

2〈M〉ω2
f

3f

(
1−

V ωDω
2
f

2π2c33N

(1− f)

f

)
. (21)

Thus, energy barriers decrease when the oscillation fre-
quency goes to zero. Interestingly, this suggest a feed-
back mechanism on energy barriers and floppy modes, as
has been made in the temperature-dependent constraint
theory66.

From the previous considerations, in our model we may
assume a more general form of Eq. (16), by explicitly
taking into account the correlation between V and ω1,

Rcrit =
ω1ωcT0

4πγV (ω1)
e−V (ω1)/Tc . (22)

Here V (ω1) denotes such possible correlation. Obvi-
ously, its actual form depends upon the particular po-
tential form. However, in its more crude approximation
one can extend the harmonic approximation around the
closer metastable minima to estimate the height of the
barrier. For this harmonic approximation, the transition
barrier, which goes as ∼ ω2

1 , is an overestimation pro-
portional to the separation between the barrier and the
minimum, as discussed by Dyre1. In the case of a quartic
double well, the transition barrier also goes as ∼ ω2

1 . For
the sake of the argument, let us assume in general that
the energy landscape can be written in such a way that
V (ω1) ∼ ω1+q

1 where q > 0. Then the critical cooling
rate is now,

Rcrit ∼
1

ωq1
exp(−ω1+q

1 /Tc) . (23)

Notice that this last expression diverges as ω1 tends to
zero. Also, in Fig. 6, we have plotted the characteristic
relaxation time taking into account this dependence be-
tween V and ω1 for different values of q. Notice how there
always exists a temperature in which the characteristic
relaxation time for broader wells is always smaller than
that for narrower wells, although this can happen at a
temperature much lower than Tc. In any case, from Eq.
(23) is clear that the long-time relaxation depends on the
short-time relaxation factor ω1. However, its actual func-
tional form depends upon the correlation between energy
barrier and short-time oscillation frequency.

Finally, it is worthwhile to mention that the model re-
produces the experimentally observed logarithm change
with the cooling rate of the glass transition temperature
Tg. First we observe that Tg is the temperature for which
the specific heat has a peak as a function of T . From this,
one can adapt the approach used by Trachenko et al.3, to
put the relaxation time Eq. (13) at Tg into the cooling

(a)

(b)

FIG. 6: Characteristic relaxation times as a function of the
temperature using different oscillation frequencies of the
metastable state, as obtained from Eq. (13) considering

V (ω1) ∼ ω1+q
1 . In panel (a), the energy barrier has q = 0.2 while

in panel (b) q = 1. The parameters were fixed at:
N = 1000, γ = 1, ω0 = 1, ωc = 1, ε = 1,Ω0 = 1, Ω1 = 2.

protocol T = T (t), to obtain that,

Tg =
V

log
(

∆T
T0

)
− log

(
2πγR
ωcω1

) . (24)

Here ∆T = T 2
0 (T1 − T2) /T1T2 is defined as a reduced

temperature range between the two temperatures T1 and
T2(< T1) related by the glass transition relaxation time
when the hyperbolic quench is applied. Notice, from
Eq. (24), that 2πγ/ωcω1 is the Debye vibrational period,
which is of the order of flow time events3.

VII. CONCLUSIONS

In this article we used the Kramers formula to under-
stand the role of a metastable state harmonic oscillation
frequency in a simple model of glass relaxation. The



8

Kramers formula is an improvement of the Arrhenius
relaxation formula for the escape time in a well. The
effect of such frequency (related with the curvature of
the energy landscape basin) is to decrease the frequency
of collisions with the energy barriers. In fact, here we
showed that the short time dynamics always enters as
a linear factor in the relaxation time, which multiplies
the already well known energy barrier exponential fac-
tor. This implies that short-time dynamics is important
for long-time relaxation. Furthermore, since the relax-
ation time contains an exponential factor of the energy
barrier, it can depend upon the correlation between en-
ergy barriers and short-time dynamics for many realistic
potentials, the actual functional form of the relaxation
time depends on the short-time dynamics. Thus, our
work highlights an important feature that has not been
taken into account for glass relaxation models, although
the Gupta-Mauro temperature-constraint model implic-
itly incorporates such feature66.
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