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The electronic behavior in graphene under arbitrary uniaxial deformations, such as foldings or flexural fields is studied
by including in the Dirac equation pseudoelectromagnetic fields. General foldings are thus studied by showing that
uniaxial deformations can be considered pseudomagnetic fields in the Coulomb gauge norm. This allows to give an
expression for the Fermi (zero) energy modes wavefunctions. For random deformations, contact is made with previous
works on the quantum Hall effect under random magnetic fields, showing that the density of states has a power law
behavior and that the zero energy modes wavefunctions are multifractal. This hints at an unusual electron velocity
distribution. Also, it is shown that a strong Aharonov-Bohm pseudo-effect is produced. For more general non-uniaxial
general flexural strain, it is not possible to use the Coulomb gauge. The results presented here helps to tailor-made
graphene uniaxial deformations to achieve specific wave-functions.

I. INTRODUCTION

Recently, Dirac materials have attracted intense research in-
terest following the celebrated discovery of a two-dimensional
(2D) hexagonal allotropic atomic carbon, graphene1, because
of its peculiar band structure and its fascinating properties2,3

largely due to the massless Dirac fermion behavior of the
charge carriers.

Due to such excellent mechanical, magnetic and ther-
mal properties of graphite monolayers, they can be
used for the development of superconducting devices for
micro-electromechanical and nano-electromechanical sys-
tems, leading to the development of the next generation of
nanoelectronics4,5. As the use of graphene sheets increases,
the understanding of the mechanical behaviour is neces-
sary and important for the design and analysis of graphene
nanostructures and nanosystems. This opened a new field
of research known as straintronics, which aims to refine
the electronic and optical properties by applying mechani-
cal deformations6. Following this direction, many theoret-
ical works have been made studying the effect of mechani-
cal strains on the electronic properties7,8 using a tight-binding
approach9,10 and effective Hamiltonians for low energies in
the vicinity of Dirac points11–14. These electronic degrees
of freedom are coupled to the structural lattice deformations,
and this allows to modify its electronic properties in interest-
ing ways11,15–18. It has been shown that a model to describe
the coupling of the electrons to the out-of-plane deformation
should be the Dirac equation in curved space15,19–21. Such
coupling is due to the appearance of pseudo-magnetic fields
caused by the deformations6,11–13,22,23, and leads to a weak
localisation/antilocalisation crossover24. Mesoscopic conduc-
tance fluctuations in graphene have also been studied by using
diagrammatic perturbation theory25. Yet, recent experiments
with graphene show unexplained exotic multifractal conduc-
tance fluctuations around the Dirac point26 (zero modes).

Moreover, in recent years experimental evidence has been

found that for certain regimes, fluctuations in graphene mem-
branes follow a Cauchy distribution that results in large move-
ments and sudden changes in curvature by means of the mirror

buckling effect27–29. This mirror buckling effect was first re-
lated to the heating due to the scanning microscope. Later on,
it was found that this mirror buckling is always presents and
that the height of the flexural vibrations follow a Lévy distri-
bution with parameters α = 1.5,γ = 028. It was also found
an unusual distribution of electron velocities28 and a theory
has been proposed to explain it30. However, this last the-
ory is based on considering carbon atoms in the framework
of the classical kinetic theory of gases and the Fokker-Planck-
Kolmogorov master equation, but this scheme does not explic-
itly consider the contribution of out-of-plane acoustic modes
and that the membrane executes Brownian motion with rare
large height excursion indicative of Lévy walks. Thus, a more
exhaustive study is needed concerning this point. Likewise,
Mao et. al.31 demonstrate that graphene monolayers placed on
an atomically flat substrate can be forced to undergo a buck-
ling transition, resulting in a periodically modulated pseudo-
magnetic field, which in turn creates a ‘post-graphene’ mate-
rial with flat electronic bands. This buckling of 2D crystals
offers a strategy for exploring interaction phenomena charac-
teristic of flat bands.

In addition, there is an growing interest in folded deforma-
tions due to transport properties of strained folds in graphene
exhibit a rich behavior ranging from Coulomb blockade to
Fabry-Pérot oscillations for different fold orientations. Those
exhibiting strong confinement, behave as electronic waveg-
uides in the direction parallel to the fold axis, providing a
new way to realize 1D conducting channels in 2D graphene
by strain engineering32. In general, the mechanical displace-
ments on graphene causes strong changes in the vacuum-
induced shifts of the transition frequency of some emitter and,
because its low mass and high Q factor, make it a particular
attractive candidate for a wide class of sensors33.

Most previous work concerning this topic has been focused
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in studying the electron mobility thorough using transport
equations34,35. In the present work, we study the effects on
charge carriers due to the presence of pseudo-electromagnetic
fields which models the case of vertical fluctuations due to
folded deformations or flexural modes. These modes have
a large phonon population originating from the quadratic
phonon dispersion and are known to dominate the electron
scattering34 and thermal transport36,37. In particular, we show
that for certain kind of flexural fields, one can make close con-
tact with previous works on Dirac fermions in random elec-
tromagnetic potentials, besides its close relationship with the
phase transition between the plateaus in Hall’s quantum states
and the quasi-excitations in d-wave superconductors38. Then
we show that for more general fields, the Coulomb gauge con-
dition used in this work can not be fulfilled.

It is important to remark that the methods presented here
can be extended to study other optoelectronic properties in
2D materials, such as phosphorene39 or borophene6, and these
effects can also be studied using the present methodology, as
plane deformations or flexural waves can be considered as ran-
dom pseudo-electromagnetic waves; in addition, the present
results can be extended for new Dirac materials40,41.

The work is organized as follows. In Sec. II, we intro-
duce the effective Hamiltonian for low energies and obtain
the time-independent Schrödinger equation to be solved. In
Sec. III, we analize specifically the electronic properties of
graphene with folded deformations. And finally, we present
the conclusions in Section IV.

II. HAMILTONIAN MODEL

Out-of-plane acoustic modes are characteristic vibrations
in graphene. These low frequency modes, seen in Fig. 1, are
easy to excite and carry most of the vibrational energy23,42.
They consist in a dynamic elongation, bending and torsion
of the local bonds. The stretching or tension of the bonds is
by far the most important for the electrons, since it causes a
greater impact on the tunneling parameter4. Some lattice de-
formations can be expressed by a gauge field using a Hamil-
tonian at low energies11,23.

The low-energy Hamiltonian for non-interacting elec-
trons in deformed graphene for flexural deformations has
been investigated qualitatively and quantitatively in the
literature14,23,43–45. It consists in a Dirac equation added with
pseudoelectromagnetic effective fields plus additional con-
tributions caused by several mechanisms, as for example, a
π − σ band hybridization (proportional to the curvature of
graphene flake). Other effects of electron-flexural phonons
coupling in graphene have been disscused in the literature46.
Also, we need to take into account interactions with the sub-
strate. Let us write first the contribution from the pseudoelec-
tromagnetic fields, this is given by14,43,44,

Ĥη (r) = vFση · (p̂−ηA(r, t))+V(r, t)σ0, (1)

where r=(x,y) is the position vector, the subscript η =±1
labels the Dirac points K,K ′ respectively; vF is the Fermi

FIG. 1. Random ripples of a graphene sheet. Two possible electron
paths which enclose the area A are indicated.

velocity (vF/c ≈ 1/300 with c is the vacuum speed of light);
p̂ = (p̂x, p̂y) is the moment operator for the charge carriers,
σ= (ησx,σy) is the Pauli matrix vector and σ0 the 2×2 iden-
tity matrix, and A and V are the pseudo vector and scalar po-
tentials respectively, given by6,13,14,23

V (r, t) = g(εxx + εyy) (2)

A(r, t) = (Ax,Ay) =
h̄β

2acc

(εxx − εyy,−2εxy) (3)

The parameter acc = 1.42 Å is the interatomic distance for
undeformed graphene lattice and the dimensionless coeffi-
cient β ≈ 3.0 measures the effect of the deformation on the
hopping parameter. The coupling g was thought first to be
around11 20 eV , however, this turned out to be a bare estima-
tion as charge screening leads to a much lower renormalized
value47 g ≈ 4 eV. The coefficient g refers to flexural changes
in the membrane while the term h̄β/2acc refers to changes
in bond length, as we know it requires more energy to make
bond length changes to a rearrangement in the positions of the
atoms on the membrane48.Therefore, depending on the defor-
mation, the value of g is within a range of energies while the
factor vF h̄β/2acc ≈ 6.932 eV remains approximately constant
(within the validity range of our model).

In general, we can consider a displacement outside the
plane h = h(r, t), and a displacement inside the plane u =
u(r, t). The stress tensor εµν is given by

εµν =
1
2

(

∂µh∂νh
)

+
1
2

(

∂µuν + ∂νuµ

)

, µ ,ν = x,y. (4)

We shall consider the simplest case, in which the deformation
is only perpendicular to the plane, i.e., u= 0, so from Eq. (4)

εxx =
1
2
(∂xh)2

εyy =
1
2
(∂yh)2

εxy =
1
2
(∂xh)(∂yh)

(5)
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We now discuss whether to include or not corrections to
Eq. (1) depending on the experimental scenario. Out of plane
hybridize π orbitals with higher orbitals of carbon, leading to
a first-order contribution in the spin-orbit interaction strength,
contrary to in-plane distortions, whose contribution is at least
quadratic46. The corrections to the Hamiltonian are given
by46,

Ĥ = ĤA1 + ĤB2 + ĤG′ (6)

where the labels A1,B2,G
′ are the irreducible representations

of the group C”
6, resulting from considering a graphene’s unit

cell with six atoms, used in such a way to avoid dealing with
degenerate states at two inequivalent Dirac points46. Such cor-
rections leads to a Kane-Mele mass and a Rashba-like cou-
pling present only in the case of a mirror symmetry breaking.
Both coupling effects are weak43,46, as the estimates are in the
range of 1−15 µeV. , for the present work such effects can be
safely neglected as a first approximation.

Also, the σ −π orbitals hybridization leads to a correction
to V (r) as we need to add in the diagonal of the Dirac equation
the following potential,44,49,

Vπσ (r) =−g1(∇
2h)2 (7)

where g1 = 3α/4acc and α ≈ 9.23 eV. The resulting Vπσ (r)
from local curvature will off-set the charge neutrality point
from the average chemical potential49.

In the same line of reasoning, a substrate flexural deforma-
tions would be accompanied by the variation of on-site en-
ergies of carbon orbitals. This can be treated by decompos-
ing the interaction into a smooth spatial effective potential44

Vsub(r)σ0 and, if the substrate is such that produces a bipar-
tite symmetry breaking, an extra term43 ∆(r)σz = VA(r)−
VB(r)σz, which measures the difference of the electrostatic
potential in the two sublattices A and B, for example, due to
charges located at random position in the substrate supporting
graphene. The inclusion of this term depends upon the kind
of substrate, for example, in SiO2 such component can be ne-
glected as graphene follows the substrate potential in a coarse-
grained and smooth manner43 or in graphene over oxidized
Cu (111) surface50. For simplicity, here we will consider sub-
strates in which the local potential ∆(r)σz can be neglected.
Therefore, the hybridization and substrate effects can be taken
into account by making the following replacement in Eq. (1),

V (r, t)→V (r, t)+Vsub(r, t)+Vπσ(r, t) (8)

For certain substrates as oxidized Cu (111) surface, a high-
k dielectric material, the alteration of graphene due to elec-
trostatic effects is minimal and in fact Vsub(r, t) can be
neglected50.

To simplify the resulting equations, we introduce new vari-
ables defined as,

l1(r, t)≡ (∂xh)2 − (∂yh)2

l2(r, t)≡ 2(∂xh)(∂yh)
(9)

which will give us information about how “strong" the vertical
displacements are. On the other hand, by making use of the

Eqs. (2), (3),(5) and (9), we can rewrite the scalar and pseudo-
vector potentials,

V (r, t) =
g

2

√

l2
1(r, t)+ l2

2(r, t)

A(r, t) =
h̄β

4acc

[l1(r, t)x̂− l2(r, t)ŷ] .
(10)

From Eq. (1) and (10), the Hamiltonian is

Ĥ η (r) = Ĥ 0(r)+W (r, t)+Ve f f (r, t)σ0 (11)

with,

Ve f f (r, t) =
(g

2
|l(r, t)|− g1(∇

2h)2
)

(12)

The hat is used to denote the differential operators,

Ĥ 0(r) = vF

(

0 (η p̂x − ip̂y)
η p̂x + ip̂y 0

)

W (r, t) =

(

0 −ηβ̃ l(r, t)

−ηβ̃ l∗(r, t) 0

) (13)

where l(r, t)≡ η l1(r, t)+ il2(r, t) and we defined the param-
eter β̄ as,

β̄ =
vF h̄β

4acc

≈ 3.476 eV (14)

The dynamic equation for the spinor Ψη (r, t) follows a
time-dependent Schrödinger type equation

ih̄
∂

∂ t
Ψη(r, t) = Ĥ η(r)Ψη (r, t) (15)

where

Ψη(r, t) =

(

ψη
A (r, t)

ψη
B (r, t)

)

(16)

It is straightforward to prove that the Schrödinger type equa-
tion (15) can be rewritten as

ih̄
∂ψη

A

∂ t
=Ve f f (r, t)ψ

η
A +

[

vF(η p̂x − ip̂y)−ηβ̄ l
]

ψη
B ,

ih̄
∂ψη

B

∂ t
=Ve f f (r, t)ψ

η
B +

[

vF(η p̂x + ip̂y)−ηβ̄ l∗
]

ψη
A .

(17)

Notice how the magnitude of the disorder enters in the
Dirac equation through the parameters β̄ and g. While g plays
the role of a random local chemical potential, β̃ is a random
local magnetic field.

Eq. (17) is a complex stochastic equation. Instead of solv-
ing the time-dependent problem, we consider that the defor-
mation process is adiabatic in the time scale of the electron
dynamics. In such a case, we can suppose that the disorder is
quenched and thus l1 and l2 are time-independent. In such a
case, Eq. (13) becomes a time-independent Hamiltonian with
a spatial random potential l(r, t) = l(r). This is the case of
topographic corrugations, such as wrinkles and foldings51,52.

Returning to Eq. (15) becomes the time-independent
Schrödinger equation Ĥ η (r)Ψη(r) = EΨη (r) and we are
interested in finding the distribution of the Hamiltonian eigen-
values of Ĥ η(r) and the wavefunctions.



4

III. FOLDED DEFORMATIONS

To understand the changes induced by random flexural
deformations, we study folded deformations. Such kind
of fields have been observed experimentally in deformed
graphene53–55 and there are some studies for particular
deformations32,56,57. In a general folded deformation, the field
does not vary in one direction. Therefore, it can be written as,

h(y) =
kc

∑
k=−kc

ak exp(iky) (18)

with a−k = a∗k as h(y) is a real, and the coefficients ak can
be deterministic or random variables. kc is a cutoff parameter
and in what follows all sums are understood to use it. kc can
be estimated from the Bose-Einstein distribution and depends
upon the experimental conditions (see Appendix A).

From Eqs. (3) and (4) , the vectorial potential has only one
component different from zero,

Ax(y) =
h̄β

4acc

[

∑
k

akk exp(iky)

]2

(19)

The advantage of this particular deformation is that A(r) is
in the Coulomb gauge, as it satisfies ∇ ·A(r) = 0, therefore
can be obtained as the derivative of a scalar field,

Ai = εi j∂ jΦ(r) (20)

where εi j is the 2D Levi-Civita tensor with i = x,y and j =
x,y. For this particular case, we express Φ(y) in terms of the
following Fourier decomposition,

Φ(y) = Φ0(y)+ ∑
k 6=0

eikyΦ̃(k) (21)

with,

Φ0(y) =
h̄β

4acc

(

∑
k

k2|ak|
2

)

y (22)

and,

Φ̃(k) =−i
h̄β

4acck

[

∑
k′

aka∗k′−kk′
(

k′− k
)

]

(23)

The associated pseudomagnetic field is B = ∇
2Φ(r). It

is worthwhile noticing that although Φ0(y) does not produce
a pseudomagnetic field, it produces an Aharonov-Bohm like
effect as it leads to a constant A(r). Finally, the contribution
from the σ0 term is,

Ve f f (y) =
g

2
|l1(y)|−

g1

4|l1(y)|

(

∂ |l1(y)|

∂y

)2

(24)

with l1(y) = vF Ax(y)/β̄ .

An interesting consequence of having a field derived from
the potential is that for any flexural field, being determin-
istic or random, the zero-mode can always be constructed.
Zero modes in the Dirac equation are topologically protected
thus their existance is independent of Ve f f (y). As a conse-
quence, the usual approach is to neglect such contribution
keeping only the pseudomagnetic field47. Also, the contri-
bution from g and g1 tends to cancel each. Therefore, from
the Schrödinger and Eq. (20), we obtain that for E = 0 the
wave function is,

ψ±(r) = (const.)(1±σz)

(

eΦ(y)

e−Φ(y)

)

(25)

where σz is the Pauli z matrix. Similar functions were stud-
ied years ago in the context of the integer quantum Hall
transition58. It can be proved that for a random magnetic field
in which the vector potential satisfies a Gaussian white-noise
distribution with mean zero and variance ∆A such that the av-
erage coefficients in Eq. (21) are,

〈Φ̃(k)Φ̃(k′)〉= (2π)2δ (k− k′)
∆A

k2 (26)

while the resulting wave-function is multifractal58. In a sam-
ple of size L×L, the moments of the participation ratio Pq(L)

that measures a multifractal localization59,

Pq(L) = 〈|ψ(r)|2q〉 (27)

are given by58,

Pq(L)≈
1

L2+τ(q)
(28)

with,

τ(q) = 2(q− 1)+
∆A

π
q(1− q) (29)

where q need not be integer. In Fig. 3 we present a surface
plot of Pq(L) for a ∆A below the quantum phase transition that
occurs at ∆A = π . For big samples, the multifractal spectrum
is dominated by its maximal value, from where the typical
participation is58,

Ptypical(L) = e〈ln |Ψ|2〉 ≈
1

L2+∆A/π
(30)

Around these states and near the Fermi energy, the density of
states (DOS) is58,

ρ(E) = E
2−z

z (31)

with z = 2+∆A/π . Fig. 2 presents the resulting DOS show-
ing that the main effect is an incresead density at the Dirac
point. The wavefunction multifractality and the power law
DOS means that an unusual electron velocity distribution will
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FIG. 2. Multifractality of zero modes wave functions. Contour plot
of Pq(L) as a function of the sample length L and the exponent q, for
∆A = 1, chosen to be below the quantum phase transition to the Hall
effect at ∆A = π .

.

appear even in the simplest case of a Gaussian random flexu-
ral field, without restoring to Levy distributions of membrane
jumps in graphene. In any case, the Levy jumps will induce
an even more unusual distribution.

We end up by considering the particular contribution of the
Aharonov-Bohm term which for some geometries produces
interesting effects in graphene60, nevertheless has not been
studied for random fields. First we write the Fourier coef-
ficients ak as the sum of an average plus a fluctuation part,
ak = 〈ak〉+ δak. If ak is Gaussian distributed with zero mean
we have,

Φ0(y) =
h̄β

4acc
∑
k

(δak)
2k2y ≈

π

6
h̄β

acc

∆Ak3
cy (32)

and thus the phase difference between particles, with the same
start and end points, but travelling along two different paths is,

∆φ =

(

dΦ0(y)

dy
A

)

e

h̄
=

π

6
β

acc

(∆Ak3
cA )e (33)

where A is the area bounded by the two paths as seen in Fig.
1. For thermally activated fields, kc is determined from the
temperature (T ) population given by the Bose-Einstein distri-
bution. As ∆A ∼ kBT , Eq. (33) implies a very strong temper-
ature dependent phase shift. This result is in agreement with
recent first-principles calculations based on density functional
theory and the Boltzmann equation61.

IV. CONCLUSIONS.

We studied the effects in the electronic properties of
graphene of folded flexural deformations, which are equiv-
alent to electromagnetic fields in the Columb gauge. First
we studied general folded deformations giving an expression
for the zero-modes which are the ones at the Fermi level for

-0.0010 -0.0005 0.0000 0.0005 0.0010
2.5

3.0

3.5

4.0

E [eV]

ρ
(E

)

FIG. 3. Density of states (DOS) as a function of the energy and
around the Dirac point with added random pseudomagnetic fields,
with ∆A = 1, chosen to be below the quantum phase transition to the
Hall effect at ∆A = π .

.

half-filled systems. For random Gaussian distributed folded
deformations, we made contact with works on the quantum
Hall effect under random magnetic fields, showing that the
wave functions are multifractal and the density of states has
a power law behavior. This indicates that the system can
present interesting behaviors. In particular, there is a remark-
able Aharonov-Bohm pseudo-effect. The wavefunction mul-
tifractality can be observed as an unusual dependence of the
conductance with the length or by an unusual electron velocity
distribution, as has been observed in some experiments28. In
fact, there are clear signatures of such zero modes exotic mul-
tifractal conductance fluctuations in recent experiments with
high-mobility single-layer graphene field-effect transistors26.
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Appendix A: Cut-off criteria for the deformation field

Consider the displacement outside the plane, in general it
can be written as,

h(r) =
kc

∑
k=−kc

ak exp(ikr) (A1)
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It is important to remark that for graphene, the room tem-
perature is far below the Debye temperature36,37, which is
about 1000 and 2300 K , and therefore h̄ω(kc)≤ kBT . As the
purely harmonic flexural dispersion goes as34 ω(k) = α|k|2

with α = 4.62m2/s, it follows that,

|kc| ≈

√

kBT

α h̄
(A2)

Notice that kc is a strain dependent quantity34,62. In fact, for
free-standing graphene at thermal equilibrium,

〈

a2
k

〉

=
h̄(1+ 2nB(ω(k)))

2MCω(k)
≈

kBT

MCω(k)
(A3)

where nB(ω(k)) is the thermal population of mode k, MC is
the carbon mass and the second equality holds when h̄ω(k)≪
kBT . For purely harmonic flexural modes the fluctuation 〈a2

k
〉

diverges as |k|−4 for small k. In real samples, however, it is
known that the singularity gets renormalized due to lattice im-
perfections (i.e., by anharmonic effects). The resulting disper-
sion can be parametrized as ω(k) =α

√

k4 + k4−τkτ
c for τ > 0,

from where it follows that the quadratic mean displacement of
each field mode, in the long wavelenght, is given by63,

〈|ak|
2〉 ∝

kBT

k4−τ kτ
c

(A4)

where τ depend on the physical mechanism of renormaliza-
tion. The physical scenarios are63 : a) substrate pinning that
opens a gap in the phonon spectrum, corresponding to τ = 4;
b) strain which makes the dispersion linear at long wave-
lengths, τ = 2, c) anharmonic effects which yield τ = 0.82.

Appendix B: Coulomb norm for general
pseudo-electromagnetic fields

Although some works assume the Coulomb norm for gen-
eral pseudo-electromagnetic fields64, let us show that in gen-
eral such deformation can not be written as the derivative of
a scalar field. This can be proved as follows, if we consider
Ai(r) = εi j∂ jΦ(r) with Φ(r) = ∑k bk exp(ik ·r) it holds that

bk =−
ivF β̃

ky
∑
k′

aka∗
k′(kxk′x − kyk′y)e

−ik′·r

and bk =−
ivF β̃

kx
∑
k′

aka∗
k′(kxk′y + kyk′x)e

−ik′·r.

(B1)

In general, the system of equations in Eq. (B1) has no so-
lutions for bk except for few particular cases, as the folded
potential studied here.
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