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(Dated: February 2021)

The chiral Hamiltonian for twisted graphene bilayers is written as a 2 × 2 matrix operator by
a renormalization of the Hamiltonian that takes into account the particle-hole symmetry. This
results in an effective Hamiltonian written in terms of Pauli matrices. The action of the proposed
renormalization maps zero-modes flat-bands into ground states. On each graphene layer, modes near
zero energy have an antibonding nature in a triangular lattice. This leads to a phase-frustration
effect associated with massive degeneration, and makes flat-bands modes similar to confined modes
observed in other bipartite lattices. At magic angles, it is shown that intralayer frustration is
zero while for other angles is proportional to the squared Fermi velocity. Suprisingly, the proposed
Hamiltonian renormalization suggests that flat-bands at magic angles are akin to floppy-mode bands
in flexible crystals or glasses, making an unexpected connection between rigidity topological theory
and twisted two-dimensional systems.

Introduction. Superconducting states are difficult to
reach as they require very strict laboratory parame-
ters [1]. High Tc superconductors use cuprates which
are well-ordered structures of atoms combined in three-
dimensional arrangements [2–7]. For these materials,
the mechanism that counteracts the Colombian repul-
sion force between electrons is not exactly known, and
for this reason, these unconventional states are referred
to as strongly correlated [8, 9]. Recently, it has been dis-
covered that twisted bilayer graphene exhibits supercon-
ducting states at certain rotation angles [10, 11] where
the electron interactions are maximized [12]. This ro-
tated graphene bilayer model generates a Moiré pattern
as a function of the rotation angle, defining a Moiré Bril-
louin zone (mBZ) in reciprocal space. These special an-
gles are called ”magic” and were predicted as a possible
consequence of flat-bands observed in previous theoret-
ical work [13]. In the work of Cao et.al. [10], a Mott
insulating state appears in the middle of these supercon-
ducting phases. The study of the electronic properties of
rotated graphene over graphene started before the dis-
covery of superconductivity at magic angles. In the work
of J. Santos [14] and A. Macdonald [13], a continuous
Hamiltonian model was presented; however, due to the
presence of an interlayer amplitude AA coupling, this
model did not present chiral symmetry. In a recent work
by G. Tarnopolsky et. al. [15], a chiral continuum model
was studied, and only the AB and BA inter-layer cou-
plings are different from zero. Perhaps, so far, it is the
simplest model that best captures the nature of magic an-
gles; at these angles the dispersion energy becomes flat
and has a recurrence behavior. At these magic angles the
Fermi velocity also goes to zero. Due to its chiral symme-
try, the Hamiltonian of this model also produces an intra-
valley inversion symmetry [16], so the energy dispersion is
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inversion symmetric at all twist angles. Also, we can dis-
tinguish between different magic angles when zero modes
occurs, and thus the inter-valley inversion classifies the
topology of the twist angle. The zero-mode flat-band so-
lutions have some resemblance to the ground state of a
quantum Hall effect wave function on a torus [15, 17],
and, therefore, the solution is of the harmonic oscillator
type, where Landau levels arise [17–19]. The mechanism
that causes the appearance of these magic angles is still
not known, however, many investigations suggest that
it is a topological aspect of the band structure [20–26].
The aim of this work its to clarify the physical behav-
ior of this model and to develop an effective equation for
the Hamiltonian matrix in order to study all other non
flat band states. In particular, here we renormalize the
Hamiltonian to take into account the particle-hole sym-
metry which results in a folding of the spectrum around
zero-energy. Then we discuss the physical picture that
arises from the renormalization
Twisted Bilayer Graphene Effective Model. Tarnopol-

sky et. al. derived a chiral Hamiltonian for electrons-
holes in twisted bilayer graphene. It captures the ”true
magic” of the magic angle physics [15],

H =

(
0 D∗(−r)

D(r) 0

)
(1)

where the zero-mode operator is,

D(r) =

(
−i∂̄ αU(r)

αU(−r) −i∂̄

)
(2)

and,

D∗(−r) =
(

−i∂ αU∗(−r)
αU∗(r) −i∂

)
(3)

with ∂̄ = ∂x + i∂y, ∂ = ∂x − i∂y. The potential is,

U(r) = e−iq1·r + eiϕe−iq2·r + e−iϕe−iq3·r (4)
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FIG. 1. a) Real space Moiré unit cell, a1,2 are two Moiré lat-
tice vectors. Point r0 = (a1 −a2)/3 is the BA stacking point
where all components of the wave function vanish at magic α.
b) mBZ in reciprocal space, b1,2 are the base vectors.

For this Hamiltonian, the parameters are ϕ = 2π
3 and

q1 = kθ(0,−1), q2 = kθ(
√
3
2 ,

1
2 ) and q3 = kθ(−

√
3
2 ,

1
2 ),

the Moiré modulation vector is kθ = 2kD sin θ
2 with

kD = 4π
3a0

is the magnitude of the Dirac wave vector
and a0 is the lattice constant of monolayer graphene.
The physics of this model is captured by the pa-
rameter α, defined as α = w1

v0kθ
. Here w1 is the

interlayer coupling of stacking AB and BA, take
the value w1 = 110meV and v0 is the Fermi veloc-
ity, with value v0 = 19.81eV

2kD
.At magic angles α =

0.586, 2.221, 3.751, 5.276, 6.795, 8.313, 9.829, 11.345, ...,
flat-bands appear. Magic α’s follow a remarkable 3/2
quantization rule [15] for α > 0.586 .
This Hamiltonian is difficult to tackle and in fact most

of the studies have been restricted to the zero-mode op-
erator solutions at energy zero [16, 17]. Here, instead
of solving the Schrödinger equation with H we first pro-
pose to reduce the dimensionality of the problem. Start-
ing with the Schrödinger equation HΦ = EΦ, where

Φ(r) =
(
ψ1(r), ψ2(r), χ1(r), χ2(r)

)T
are the four compo-

nents of the twisted graphene bilayer, and the index 1, 2
represent each graphene layer, we consider the squared
Hamiltonian H2,

H2 =

(
D∗(−r)D(r) 0

0 D(r)D∗(−r)

)
(5)

This transforms the off-diagonal blocks into zeros. We
can understand such transformation as a removal of
the particle-hole symmetry that is an anti-unitary anti-
commuting symmetry. Therefore, we obtain a decoupled
equation H2Φ(r) = E2Φ(r), where the eigenvalues are
the squares of the original energies. Therefore, the states
at E = 0 are ground states of H2Φ(r). For arbitray α
there are always two zero-mode solutions in theK andK ′

points [15], the signature of a magic angle in H2 is that
the Fermi velocity at k = K,K ′ points of the Moiré Bril-
louin (mBrillouin) zone approaches zero and a massive
degenerate ground state. We now define a 2× 2 effective
Hamiltonian H2 = D∗(−r)D(r). As detailed in the sup-

plementary material, the resulting effective Hamiltonian
is,

H2 =

(
−∇2 + α2|U(−r)|2 αA†(r)

αA(r) −∇2 + α2|U(r)|2
)

(6)

The norm of the potential is,

|U(r)|2 = 3+2 cos(b1·r−ϕ)+2 cos(b2·r+ϕ)+2 cos(b3·r+2ϕ)
(7)

where b1,2 = q2,3 − q1 are the mBrillouin zone Moiré
vectors and b3 = q3 − q2. The off-diagonal terms are,

A(r) = −i
3∑

µ=1

eiqµ·r(2q̂⊥
µ ·∇− kθ) (8)

and,

A†(r) = −i
3∑

µ=1

e−iqµ·r(2q̂⊥
µ ·∇+ kθ) (9)

where ∇† = −∇ with ∇ = (∂x, ∂y) and µ = 1, 2, 3. This
is an essential point as eigenvalues must be reals (notice
that −A†(−r) = A(r)). Also, q̂⊥

µ is a set of unitary
vectors perpendicular to the set qµ (see supplementary).
The term q̂⊥

µ · ∇ is the directional gradient along the
triangle defined by the Moiré vectors and has an inter-
pretation in terms of frustration (see supplementary).
Any eigenfunction of the original Hamiltonian is an

eigenfunction of H2, therefore, the spinor Ψ(r) =
(ψ1(r), ψ2(r)) is a solution of H2. In a similar way,
we can proceed to use D(r)D∗(−r) with solutions
(χ1(r), χ2(r)). These solutions are easily obtained from
(ψ1(r), ψ2(r)) using symmetry operations, and thus here
we only study H2. H2 eigenfunctions are made from a
superposition of pseudo-spin polarized states of H.
Physical interpretation of the effective model and flat-

bands The renormalization into a 2 × 2 matrix not only
simplifies the mathematics but has a profound physi-
cal meaning. What we achieved is the decoupling of
the A and B bipartite lattices for each graphene layer.
In graphene, such squared Hamiltonian is equivalent
to renormalize the honeycomb lattice into a triangular
lattice with renormalized interactions and a self-energy
[27, 28], here Eq. (6) shows that this is also the case. As
sketched in Fig. 2 for monolayer graphene, the transfor-
mation of E to E2 produces a fold in the spectrum such
that bonding states with the lowest energy are mapped
into higher energies. In other words, the transformation
deletes the alternating sign of one of the bipartite sub-
lattices as explained in Fig. 2.

As the zero-modes are ground states of H2, we end
up having a clear picture of nearby states around zero-
energy modes, they correspond to the antibonding limit
in two coupled triangular lattices. Anti-bonding states
in non-bipartite lattices are frustrated as they cannot
achieve a phase difference of π between sites as odd-rings
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FIG. 2. For each non-interacting monolayer graphene case,
we present the density of states ρ(E) and of ρ(E2) correspond-
ing to the squared Hamiltonian, equivalent to a folding of the
spectrum. The signs are a sketch of the relative signs and
amplitudes on bipartite sublattices A and B (shown in red
and blue). Arrows indicate how the states are mapped un-
der such transformation. Zero modes and close-by states are
in the antibonding limit on a triangular lattice (indicated by
the triangle inside the hexagon). The frustration is seen here
in the bond that joins the + and + sites in the triangle (in
reality, the minimal phase difference is ϕ). For the twisted bi-
layer with interlayer interaction, H2 produces a similar DOS
folding and relative signs for the superlattice.

are present [29, 30]. For disordered systems, states are
localized in regions of lower frustration and a kind of Lif-
shitz tail appears [30]. Moreover, frustration is always
associated with massive degeneration [29, 30]; it leads to
Van Hove singularites or if possible, in a condensation of
confined states. These confined states appear in chiral
models of the Penrose lattice [31–33], where they form
beautiful fractal patterns [32], in random binary alloys
[34, 35] and in graphene with defects [27, 36]. Strictly
confined states are degenerate. However, there is a basis
in which the amplitude in one of the bipartite sublat-
tices is zero while in the other, the sum of all neighbors
amplitudes is always zero for any site [32, 34].

To understand how zero modes are related with con-
fined states and frustration as in Fig. 2, let us made
the following remarks. From the Hamiltonian Eq. (1)
we confirm that for E = 0 there are always solutions
of the form ΦA

k (r) = (ψA
k,1(r), ψ

A
k,2(r), 0, 0) and ΦB

k (r) =

(0, 0, χB
k,1(r), χ

B
k,2(r)), where the labels A and B are used

to denote zero amplitude in the opposite bipartite sub-
lattice. We remark that linear combinations,

Φk(r) =
1√
2

(
ΦA

k (r) + eiγΦB
k (r)

)
(10)

with γ a phase, result in a different basis which do not
show zeros in one sublattice, as for example with the
symmetrized/antisymmetrized cases γ = 0, π. As the
potential does not brake the C3 symmetry, the states
k = K,K ′ are always a E = 0 solution for any α. As
a conclusion, for α not a magical angle there are four
linearly independent wavefunctions, as confirmed from a
Wronskian analisis [17] and therefore, at any angle there

are ”confined states” in the sense of Fig. 2. At magic
angles, the Wronskian of the solutions is zero and there
are E = 0 solutions at any k, resulting in the flat band.
Still, ΦA

k (r) and ΦB
k (r) are solutions meaning that now

all states are ”confined”. Any linear combination using
different sets of k is a solution. As explained in the sup-
plementary, this is similar to the Van-Hove singularity
in monolayer graphene, where dimers are desconnected
from the lattice and thus is a kind of highly-degenerated,
confined state.
The anti-bonding or bonding nature and therefore frus-

tration is obtained from all bonds energy contribution,
the latter one obtained from the product of the wave-
function in a site with the conjugated wavefunction of
a neighboring site [35]. For the present analysis, this
requires to take into account three factors: 1) the sys-
tem has two layers, 2) we are dealing with a low-energy
continuous version of the TBH and 3) the system has
a superlattice. Concerning point 1), we look at the in-
tralayer frustration to see how the interlayer interaction
tunes such contribution. Points 2) and 3) are more deli-
cate as we need to understand that k is a moment that
departs from K and K ′. In a two-layer bipartite contin-
uous lattice, for a given state k such procedure is equiv-
alent to consider bonds joining A and B sublattices sites
. Although this can be made using any basis, it is easier
to use in a symmetrized one γ = 0. The frustration can
be measured from the function (see supplementary),

gk(r) = ψk,1(r)χ
∗
k,1(r) + ψk,2(r)χ

∗
k,2(r) (11)

and ∇gk(r). As we are interested in states near E = 0,
we set k = K in Eq. (11). Using the symmetry of the
problem, we can show that χ∗

K(r) = ψK(−r) and,

gK(r) = ψK,1(r)ψK,1(−r) + ψK,2(r)ψK,2(−r) ∼ vF (α)
(12)

where this last step is obtained from the fact that gK
turns out to be an invariant (see supplementary) which
can be identified with the Fermi velocity at a given angle
[15], here denoted by vF (α). For any angle ∇gK(r) = 0
indicating that K = 0 is minimally frustrated. However,
at magic angles vF (α) = 0 and therefore also gK = 0,
i.e., frustration is zero, making a flat band by pushing all
states towards E = 0. This leads to a special condition
for the wave function Fourier components. The explicit
form of the wavefunction is,

ψk(r) =
∑
m,n

(
amn

bmne
iq1·r

)
ei(Kmn+k)·r (13)

where Kmn = mb1 + nb2. am,n and bm,n are the
Fourier coefficients. At the BA stacking point r0 =
(a1 − a2)/3, and for any α and due to symmetry rea-
sons ψK,2(r0)ψK,2(−r0) = 0 , while for magic α we have
that [15] ψK,1(r0) = 0. As shown in the supplementary,
when translated into Eq. (13) results in,∑

m,s

(
am,3s + am+1,3se

iϕ + am,3s+1e
−iϕ

)
= 0 (14)
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and the same equation holds for bmn, a fact to be ex-
pected as the Wronskian is zero [17]. The previous equa-
tion shows a precise tuning of components and hints how
states develop a sharp peak at the AA stacking point as
α→ ∞ (see supplementary).

Quite surprisingly, our renormalization is akin to a
phonon problem (see supplementary). Thus, flat-band
states seem to have a resemblance to floppy modes in
an equivalent rigidity-phonon problem, i.e., the flat-band
can be interpreted as a massive zero frequency vibra-
tional band, since E2 is analogous to a frequency [37].
These floppy modes are well known in the Phillips rigid-
ity theory of glasses [38–40] and are reminiscent of the
protected electronic boundary modes that occur in the
quantum Hall effect and in topological insulators[37].

Effective fields and Hamiltonian in triangular coor-
dinates It is useful to write the renormalized twisted
graphene bilayer Hamiltonian in terms of the Pauli ma-
trix vector σ̂ as follows.

H2 = h0(r)σ0 + h(r) · σ̂ (15)

where the vector h(r) is,

h(r) = (αhx(r), αhy(r), α
2hz(r)) (16)

with,

hx(r) = −
∑
µ

[kθ sin (qµ · r) + 2i cos (qµ · r)q̂⊥
µ ·∇]

hy(r) =
∑
µ

[kθ cos (qµ · r)− 2i sin (qµ · r)q̂⊥
µ ·∇]

hz(r) =
|U(−r)|2 − |U(r)|2

2
(17)

The operator in front of the identity σ0 is,

h0(r) = −∇2 + α2V̄ (r) (18)

V̄ (r) =
|U(r)|2 + |U(−r)|2

2
(19)

We observe that h0(r) corresponds to a Hamiltonian
with an average potential. The Hamiltonian structure
is akin to the one found in Ref. [41]. Observe that
the term h(r) contains all the topological properties
of the operator. Let us further simplify this Hamilto-
nian. Define ψ±(r) = ψ1(r) ± ψ2(r). The Schrödinger
equation is transformed into Heff(ψ+(r), ψ−(r))

T =
E2(ψ+(r), ψ−(r))

T . The stated effective Hamiltonian is,

Heff =

(
−∇2 + Veff(r) A†

eff(r)
Aeff(r) −∇2 + Veff(r)

)
(20)

Here we defined the effective potentials as,

Veff(r) = α2V̄ (r) + αhx(r) (21)
and,

Aeff(r) = α2hz(r) + iαhy(r) (22)

In the supplementary section, we show how this system
can be simplified using triangular coordinates to map the
problem into a friendly rectangular domain.

Conclusions We showed that the chiral Hamiltonian
for twisted graphene bilayers can be written into a 2× 2
matrix operator. The action of the proposed renormal-
ization maps the zero-mode region into the ground state.
Modes next to zero energy have an antibonding nature
in a triangular lattice and at zero energy are similar to
confined modes observed in many other bipartite systems
[33–35]. A surprising result is that our renormalization
suggests that flat-bands are somehow analogous to floppy
modes in rigidity phonon models [35, 37, 42].

We thank UNAM-DGAPA project IN102620 and
CONACyT project 1564464.
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