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The chiral Hamiltonian for twisted graphene bilayers is analyzed in terms of its squared Hamil-
tonian which removes the particle-hole symmetry and thus one bipartite lattice, allowing to write
the Hamiltonian in terms of a 2 × 2 matrix. This brings to the front the three main physical ac-
tors of twisted systems: kinetic energy, confinement potential and an interlayer interaction operator
which is divided in two parts: a non-Abelian interlayer operator and an operator which contains an
interaction energy between layers. Here, each of these components is analyzed as a function of the
angle of rotation, as well as in terms of the wave-function localization properties. In particular, it is
proved that the non-Abelian operator represents interlayer currents between each layer triangular
sublattices, i.e., a second-neighbor interlayer current between bipartite sublattices. A crossover is
seen between such contributions and thus the first magic angle is different from other higher order
magic angles. Such angles are determined by a balance between the negative energy contribution
from interlayer currents and the positive contributions from the kinetic and confinement energies.
A perturbative analysis performed around the first magic angle allows to explore analytically the
details of such energy balance.

I. INTRODUCTION

Twisted bilayer graphene (TBG) exhibits uncon-
ventional superconducting phases and Mott insulating
states [1]. Such discovery was made by working upon
previous theoretical efforts which suggested a path to
increase many body interactions [2–4]. In particular,
MacDonald et. al. [2] found that at certain twisting an-
gles, TBG presents flat-bands where the Fermi-velocity
goes to zero. Several works confirmed the existence of
such flat bands at certain “magic angles” where the
electron-electron interactions are maximized [1, 5].

Yet there are still many open questions concerning
this problem [6–11], even in the one-particle operator
limit. For example, the wave function of TBG has been
found to be reminiscent of a quantum Hall wave function
in a torus and this opens new analogies to the physics of
Landau levels [12–15], the Hofstadter butterfly [16–19]
or the fractional quantum Hall effect [20]. There is also
an interesting connection to topological phases, Moiré
edge states and Weyl semimetals [21–26].

Also, as the Moiré pattern generates a high electron
density localization, interest in making quantum dots
with TBG has been steadily increasing [27, 28]. Other
interesting applications have been found [13, 29–37],
as well as optical/electrical signatures [38, 39]. The
mobility/stability of electrons is influenced by the tri-
angular geometry of the TBG [40–43]. Previous papers
have studied nematicity [44–46], phonons/plasmons
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[6, 47], disorder effects [48–50] and other important
related properties [4, 51–57]. However, a direct analytic
connection with the presence of superconducting phases
at magic angles has not yet been achieved completely.
As expected, the interacting behavior of electrons in the
Hubbard model is important to characterize the elec-
tronic correlations and its fermionic behavior [40, 58–61].

An important mechanism in the properties of Moiré
systems is the superlattice relaxation [62–64]. This is
specially important near AA stacking points, where
interlayer hopping tends to be reduced. Theoretically,
when the hopping that couples layers in AA regions is
tuned off the system becomes exactly chiral symmetric
[65]. This model shows a recurrence at magic angles and
reduces the problem to a more analytically manipulable
Hamiltonian operator. For this reason among others, the
chiral Hamiltonian reduces the complexity of the contin-
uum model and captures all the important symmetries
and physics of TBG [65]. The mathematical properties
and structure of the wavefunction have been rigorously
studied in several works [14, 66–69]. As one can imagine
the graphene layer as two triangular sublattices each
one with an equal magnetic flux but with opposite sign,
therefore, TBG graphene consists of coupled magnetic
fluxes with opposite sign between layers [70–72]. This
produces a strong skyrmion behavior in which elec-
trons form vortexes, reflected in the presence of strong
electron-electron correlation on specific locations across
the Moiré superlattice [73].

To further understand the physics behind the problem,
in a previous work we considered the squared Hamil-
tonian (SH) of the chiral model [74]. This represents
a renormalization of the TBG that removes one of the
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bipartites triangular sublattices for each graphene layer
[74–77]. In general, the physics of the SH is the same
as that of the original Hamiltonian but the renormal-
izated operator allows to see properties that in the orig-
inal model were hidden or difficult to identify. For ex-
ample, it reveals three physical driving mechanisms: ki-
netic energy, an effective confinement potential and a
non-Abelian gauge field leading to magnetic fields. It
also allows to write the Hamiltonian as a simple 2×2 op-
erator and then use Pauli matrices in which topological
properties are more evident. But more importantly, it
gives a direct physical interpretation of magic angles in
terms of the wave-function geometrical frustration, i.e.,
we showed that such renormalization folds the spectrum
around zero energy and thus zero-mode states correspond
to antibonding ground states in a triangular lattice [74].
As is well known, antibonding states in triangular lat-
tices are frustrated as the wave-function can not achieve
a phase difference of π between sites. This cost energy
and usually push states into highly degenerate spectral
regions and thus to a nearby depletion of states seen as
gaps or pseudogaps [76–79]. In Ref. ([74]) we showed
that magic angles occur whenever the interlayer frustra-
tion is exactly zero. Then at magic angles a highly de-
generated state is formed and separated by a gap from
the rest of the spectrum. Such effect is achieved by a
very precise fine tuning of the wave function Fourier co-
efficients akin to the Hall effect. Notice that although
previous works showed some peculiarities about frustra-
tion properties [9, 80, 81], it was not clear why such states
were at the middle of the band. The same happens with
the analytical form of zero-modes, which were identified
as reminiscent of a Hall effect ground state without a
clear explanation of why the lowest Landau level was
found at the middle of the spectrum and not at its bot-
tom end [65, 72].

Yet, several spectral analysis hinted that the first
magic angle is differently from others [65, 72, 82]. For ex-
ample, numerically it was found that the spectrum of the
TBG chiral model shows a remarkable 3/2 recurrence rule
for the magic angles [65], however, the first angle does not
follows it and the reason is not known. As we will see
here, their wave functions charge density and phases are
remarkably different from others. Thus, it would be very
useful to understand the reason of why such behaviors
differ from other magic angles. For this reason, here we
present such an study. Also, this work allows to discern
how the physical mechanisms scale between each other
as the twist angle is changed.

The layout of this work is the following. In section II
we present the model to be studied and the identification
of the main physical contributions to the problem. Then
in section III we study the zero modes wave functions
and its localization. In section IV, we study the expec-
tation values of each energy contribution and discuss the
interlayer current contribution, in section V we show why
the first magic angle is different from others. Finally, the
conclusions are given in the last section.

II. SQUARED TWISTED BILAYER
GRAPHENE CHIRAL HAMILTONIAN

The chiral Hamiltonian of twisted bilayer graphene is
a variant of the original Bistritzer-MacDonald Hamil-
tonian in which the AA tunneling is set to zero
[72]. We use as basis the wave vectors Φ(r) =(
ψ1(r), ψ2(r), χ1(r), χ2(r)

)T
where the index 1, 2 rep-

resents each graphene layer and ψj(r) and χj(r) are
the Wannier orbitals on each inequivalent site of the
graphene’s unit cell. The chiral Hamiltonian is given
[65, 83, 84],

H =

(
0 D∗(−r)

D(r) 0

)
(1)

where the zero-mode operator is defined as,

D(r) =

(
−i∂̄ αU(r)

αU(−r) −i∂̄

)
(2)

and,

D∗(−r) =

(
−i∂ αU∗(−r)

αU∗(r) −i∂

)
(3)

with ∂̄ = ∂x + i∂y, ∂ = ∂x − i∂y. The potential is,

U(r) = e−iq1·r + eiφe−iq2·r + e−iφe−iq3·r (4)

where the phase factor φ = 2π/3 and the Moiré lat-

tice vectors are given by q1 = kθ(0,−1), q2 = kθ(
√

3
2 ,

1
2 ),

q3 = kθ(−
√

3
2 ,

1
2 ), the Moiré modulation vector is kθ =

2kD sin θ
2 with kD = 4π

3a0
is the magnitude of the Dirac

wave vector and a0 is the lattice constant of monolayer
graphene, see Fig. 1. The physics of this model is cap-
tured by the parameter α, defined as α = w1

v0kθ
where

w1 is the interlayer coupling of stacking AB/BA with
value w1 = 110 meV and v0 is the Fermi velocity with
value v0 = 19.81eV

2kD
. Notice that the Hamiltonian Eq.

(1) was originally written in Ref. [65] using units where
v0 = 1, kθ = 1, thus the operators ∂ and ∂̄ are dimen-
sionless. This allows to treat the system with a fixed ge-
ometry for any twist angle as in this units q1 = (0,−1),

q2 = (
√

3
2 ,

1
2 ), q3 = (−

√
3

2 ,
1
2 ). The twist angle thus only

enters in the dimensionless parameter α.
By a renormalization procedure which consists in tak-

ing the square of H, we found that [74],

H2 =

(
−∇2 + α2|U(−r)|2 αA†(r)

αA(r) −∇2 + α2|U(r)|2
)

(5)

The squared norm of the potential is an effective confine-
ment potential,

|U(r)|2 = 3 + 2 cos(b1 · r − φ) + 2 cos(b2 · r + φ)

+ 2 cos(b3 · r + 2φ)
(6)

where b1,2 = q2,3−q1 are the Moiré Brillouin zone (mBZ)

vectors and b3 = q3 − q2. In Fig. 2, we plot |U(r)|2 in
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FIG. 1. a) Moiré Brillouin zones (mBZ) in reciprocal space,
b1,2 are the base vectors. b) Real space Moiré unit cell, a1,2

are two Moiré lattice vectors. Point r0 = (a1 − a2)/3 is the
BA stacking point where all components of the wave function
vanishes at magic α.

real space, with the Wigner-Seitz indicated. This effec-
tive potential has an hexagonal structure where the r0

point in the BA stacking lays in the maximum point of
this potential and the minimums lay in the AA and AB
stacking points. The off-diagonal terms in H2 are,

A(r) = −i
3∑

µ=1

eiqµ·r(2q̂⊥µ ·∇− 1) (7)

and,

A†(r) = −i
3∑

µ=1

e−iqµ·r(2q̂⊥µ ·∇+ 1) (8)

where ∇† = −∇ with ∇ = (∂x, ∂y) and µ = 1, 2, 3. This
is an essential point as eigenvalues must be reals (notice
that −A†(−r) = A(r)). We also define the following op-
erator which contains all the non-diagonal contributions,

Â(r) =

(
0 αA†(r)

αA(r) 0

)
(9)

Also, q̂⊥µ is a set of unitary vectors perpendicular to
the set qµ,

q̂⊥1 = (1, 0), q̂⊥2 =
(
− 1

2
,

√
3

2

)
, q̂⊥3 =

(
− 1

2
,−
√

3

2

)
. (10)

The importance of such renormalization is that now
we can see the three main ingredients of the problem: i)
the kinetic contribution via the ∇2 term (which leads to
frustration), ii) a confinement potential |U(r)|2 and, iii)
the interlayer interaction A(r).

An important feature that we will further analyze is
that A(r) is made from two terms, and therefore is con-
venient to define separately the quantities,

Ag(r) = −2i

3∑
µ=1

eiqµ·rq̂⊥µ ·∇ = 2

3∑
µ=1

eiqµ·rp̂µ (11)

FIG. 2. Contour plot of the confinement potential |U(r)|2
showing minima at AA (green) and AB (red) stacking points
and maxima at BA stacking points (yellow). As a reference,
the Wigner-Seitz cell of the Moiré lattice is indicated. For the
first magic angle, the K wave function tracks such potential.

and

Af (r) = −i
3∑

µ=1

eiqµ·r (12)

where the dimensionless projected momentum operators
are p̂µ = (q̂⊥µ · p̂), as the dimensionless momentum oper-
ator is p̂ = −i∇. See how Eq. (11) is akin to a Lorentz
force term.

Let us also comment some useful symmetries of H as
they play important roles in the presence of flat-bands
[66, 85]. For our purposes, the most important symme-
try is the exact intravalley inversion symmetry [82], that
produce flat-bands and the chirality. The exact intraval-
ley inversion symmetry operator is [82],

I = σzτy (13)

where the σ and τ operators are acting on the sublat-
tice and layer degrees of freedom respectively and given
by two different sets of Pauli matrices [82]. Using such
definition we have,

IH(r)I† = H(−r) (14)

Our renormalized Hamiltonian also preserves this sym-
metry as,

IH2(r)I† = H2(−r). (15)

For the chiral TBG, intravalley inversion follows from the
C2T group symmetry, where T represents time reversal
and C2 is the cyclic group of order 2. The action of C2T
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is that complex conjugates and exchanges the two sub-
lattices. In the following section we will further analyze
the interplay between the different terms in H2 and the
role played by the symmetries.

III. WAVE FUNCTIONS: LOCALIZATION
PROPERTIES

In this section we discuss the localization properties of
the zero-modes wave functions for different angles to see
if there are differences between the first and higher-order
magic angles. We start with the Schrödinger equation
HΦ(r) = EΦ(r). Considering only the first spinor com-
ponent of Φ(r), the explicit form of the zero-modes wave
function is [65],(

ψk,1(r)
ψk,2(r)

)
=
∑
m,n

(
amn

bmne
iq1·r

)
ei(Kmn+k)·r

(16)

where amn and bmn represents the Fourier coefficients
of each spinor component representing layers 1 and 2,
respectively, and Kmn = mb1+nb2 where b1,2 = q2,3−q1

are the Moiré Brillouin zone vectors and b3 = q3 − q2.
For the flat-bands, it has been proved that [65],(

ψk,1(r)
ψk,2(r)

)
= fk(z)

(
ψK,1
ψK,2

)
(17)

where z = x + iy. fk(z) is given in terms of Jacobi
theta functions [65], or alternatively as a Weierstrass
sigma function [82]. Therefore, the electronic density
for layer j = 1, 2 is ρk,j(r) = |fk(z)|2ρK,j(r) with

ρK,j(r) = ψ†K,j(r)ψK,j(r).

As the analytic form of fk(z) is known, our interest
here is focused on the study of ΨK(r) which corresponds
to the ground state of H2 at all angles.

In Fig. 3 we present the resulting ρK(r) plots in real
space at the first magic angles and for each layer com-
ponent, obtained by plugging Eq. (16) into H to ob-
tain recurrence relations for the amn’s and bmn’s. As ex-
pected, ρK(r) present the rotational C3 symmetry. Sev-
eral features are worth noticing, i) the first magic angle
is different from the others as the amplitude is centered
at the AA stacking points, ii) it tracks the form of the

|U(r)|2 confining potential, iii) at other angles the den-
sity is confined at somewhat similar locations but never
at AA points as in the first one.

At the first magic angle α1 = 0.586 one can use per-
turbation theory [65] to obtain the density (see the Ap-
pendix),

ρK,1(r) = 1 +
4α2

√
3

3∑
µ=1

sin (φ+ (−1)µ−1bµ · r)

+
2α4

3
[3 + 2C(r)−

3∑
µ=1

cos (2φ+ 2(−1)µ−1bµ · r)

+2 cos (2φ+ (−1)µbµ · r) ]

(18)

FIG. 3. Density in real space for the Dirac point K wave
function on each layer for the firsts four magic angles α =
0.586, 2.221, 3.751, 5.276 in the unit cell of the real space rep-
resentation. The AA (green), AB (red) and BA(yellow) points
are indicated. As a reference, the Wigner–Seitz cell of the
Moiré lattice is indicated. Notice how the first angle is dif-
ferent from the others as the AA stacking points concentrate
the density.

where C(r) = cos ((b1 + b2) · r) + cos ((b1 − b3) · r) +
cos ((b2 + b3) · r) and the other component,

ρK,2(r) = α2(3 + 2

3∑
µ=1

cos (bµ · r)), (19)

This solution allows to understand the coincidence be-
tween Fig. 2 and the first angle in Fig. 3 as basically, the
ρK,2(r) is just proportional the confinement potential.

In Fig.4 the real and imaginary parts of the wave func-
tion for each layer are shown and the Wigner-Seitz cell
is indicated as well. The wave functions present vor-
tices but the most important feature to be seen in Fig.4
is the lack of vortices for the component 1 at the first
magic angle, as well as for the component 2 in the AA
stacking point. Such features are in agreement with the
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perturbative solution for such angle. Although at this
moment there are not published figures of the phases to
compare with, intralayer currents present vortices [82].
However, the vortices of such currents do not coincide
with the wavefunction vortices, a feature to be expected
since they are made from a sum of different k points
wavefunctions. Theoretically it has been suggested that
the pairing of the wavefunction vortices are a special sig-
nature of the TBG from where superconductivity arises
[70]. Here, what is most important for us is the very dif-
ferent behavior of the phases and density associated with
the first magic angle when compared with others.

FIG. 4. Phases in real space where the vertical compo-
nent of the vectors corresponds to Im(ψ1,2) and the hori-
zontal component to Re(ψ1,2), in the Dirac point K wave
function on each layer, for the firsts four magic angles α =
0.586, 2.221, 3.751, 5.276 in the unit cell of the real space rep-
resentation. The color code is the corresponding wave func-
tion amplitude. The AA (green), AB (red) and BA(yellow)
points are indicated. As a reference, the Wigner–Seitz cell of
the Moiré lattice is indicated. Notice how the first angle is
different from the others as the localization occurs at the AA
stacking points.

To further highlight such differences, in Fig. 5 we plot
the amplitude of the Fourier coefficients amn and bmn
for each layer. Again we see that the first magic angle is
remarkably different from the others, as its main Fourier

components contributions are around the origin. How-
ever, for the second, third and fourth magic angle there
is a hole at k ≈ 0. This hole appears at α ≈ 1. Also,
when α→∞, both layers have nearly the same spectral
behavior of the Fourier components.

FIG. 5. Fourier coefficients of the two spinor components
for the K valley wavefunction. Right and left columns corre-
sponds to the layer 1 coefficients (amn) and layer 2 coefficients
(bmn) respectively. The color represents the amplitude of the
coefficient |am,s|2 or |bm,s|2 in the hexagonal reciprocal lat-
tice centered at location (kx, ky). Here we plot their spectral
square magnitude for the first four magic angles α1 = 0.586,
α2 = 2.221, α3 = 3.751, α4 = 5.276 and α5 = 6.795.

The Fourier components of Ψ(r) in general form com-
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plex patterns. However, as seen in Fig. 5, at the K,K ′

points most of the coefficients amn, bmn are negligi-
ble and the Fourier spectrum consists of six localized
peaks forming hexagonal patterns for high values of α.
Moreover, we find that at the l-th magic angle αl, the
main contributions of the coefficients amn are given by
(m,n) = (±l, 0), (0,±l), (±l,∓l). Notably, l has been
associated with a Landau-level index [82].

As the wave functions in reciprocal space change but
keep a well localized peak, this means that the localiza-
tion behavior is far from trivial. To test numerically such
observation, here we measure the localization by using a
inverse participation ratio [86–88] (IPR) ,

IPRl(α) =

∫
m

|ψl(r)|4d2r (20)

where l = 1, 2 is the index of the top and bottom com-
ponent of the spinor.

FIG. 6. IPR as function of α for the top (blue) and bottom
(brown) components of the TBG wavefunction at k = K.
The red vertical lines indicate the firsts fourth magic angles.
Notice how the first-magic angle is different from others as in
fact, the IPR of both layers is nearly the same.

In Fig 6 we present the IPR for each layer. Analyzing
the behavior of the IPR for the top and bottom com-
ponent. In the limit α → 0, the IPR reproduces the
expected solution (1, 0). In the interval α ∈ [0, α1] the
wavefunction ψ1 becomes less delocalized while ψ2 be-
comes more localized. When α increases, there is an
oscillation in the IPR1 and IPR2. Magic angles occur
at inflexion points or at minimas and there is a tendency
to increase the overall localization in both layers when
α→∞.

Suprisingly, the IPR for magic angles is the same for
all states in the flat band as, except at the poles,

|fk(z)|2 = 1. (21)

even though fk(z) is a complex meromorphic function.
The reason of such relation comes from the normalization
of any state corresponding to the flat-band as we must

have, ∫
m

ρk(r)d2r =

∫
m

|fk(z)|2ρK(r)d2r = 1 (22)

where m denotes integration over the mBZ. Then we ob-
serve that the wavefunction for k = K is also normalized
as well, from where it follows that in order to be consis-
tent we must have |fk(z)|2 = 1 (notice that the poles of
fk(z) are cancelled out by the zeros of ψK(r)). We have
verified numerically that such condition is true.

To summarize the results of this section, again there
are clear signatures in the wave functions that the first
magic angle is different from others.

IV. EXPECTATION VALUES AND
INTERLAYER CURRENTS

To understand the contribution of each physical driv-
ing term in the squared Hamiltonian and why the first
magic angle is different, we next calculate the expected
value of each corresponding operator in H2. From the
eigenvalue equation H2Ψk(r) = E(k)2Ψk(r), where Ψ =
(ψk,1(r), ψk,2(r)), and using Eq. (5),

2∑
j=1

(
〈Tj〉+ 〈Vj〉

)
+ 〈Â〉 = E2(k) (23)

where the expected values for a given layer j = 1, 2
are,

〈Tj〉 ≡ −
∫
m

ψ†k,j(r)∇2ψk,j(r)d2r (24)

〈Vj〉 ≡ α2

∫
m

|U(∓r)|2ρk,j(r)d2r (25)

and 〈Â〉 = 〈A†〉+ 〈A〉, with,

〈A†〉 ≡ α
∫
m

ψ†k,1(r)A†(r)ψk,2(r)d2r (26)

and

〈A〉 ≡ α
∫
m

ψ†k,2(r)A(r)ψk,1(r)d2r (27)

Notice that 〈A†〉 and 〈A〉 are not exactly properly de-
fined expected values as involve the bracket of two differ-
ent wave function components and thus they can be or
not complex values. However, the total contribution ex-
pected value of the whole off-diagonal terms is real. The
total kinetic energy is 〈T 〉 = 〈T1〉 + 〈T2〉 while the total
confinement energy is,

〈V 〉 = 〈V1〉+ 〈V2〉 ≤
8π2

√
3
α2. (28)
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where the last bound is obtained using the wave function
normalization.

To understand how 〈Â〉 depends on the two contribu-
tions coming from the off-diagonal terms in H2, we will
define the space-dependent expected value of the gradient
terms in Eq. (5) as,

Ag(r) =
(
ψ∗1 ψ∗2

)( 0 αA†g(r)
αAg(r) 0

)(
ψ1

ψ2

)
(29)

which come from the non-diagonal, gradient part, of H2,

Âg =

(
0 αA†g(r)

αAg(r) 0

)
(30)

Therefore,

Ag(r) = −2iα
∑
µ

q̂⊥µ · (eiqµ·rψ1∇ψ∗2 + e−iqµ·rψ∗2∇ψ1)

(31)

By adding its complex conjugate we obtain that,

Ag(r) +A∗g(r) = 2α
m

e~
∑
µ

q̂⊥µ · (e−iqµ·rj12

+ eiqµ·rj21)

(32)

where we defined the interlayer currents as,

j12 =
ie~
2m

(ψ1∇ψ∗2 − ψ∗2∇ψ1) (33)

and

j21 =
ie~
2m

(ψ2∇ψ∗1 − ψ∗1∇ψ2) (34)

Such definitions are unusual as involve two different
wavefunctions from each layer and only one sublattice.
Thus, this requires some comments and thoughts. In
recent papers, J. Wang et. al [82, 89, 90] proposed a
somewhat analogous definition for a second-neighbor in-
tralayer current, i.e., these authors defined,

jss =
ie~
2m

(ψs∇ψ∗s − ψ∗s∇ψs) (35)

where s = 1, 2. Such definition is required as the usual
current is obtained from ∂xH which turns out to be zero
in the ground state. Therefore, they defined a current in
one of the bipartite lattice as can be seen by performing
a tight-binding calculation of the intralayer orbital
current. Here we do not need to appeal to such recourse
as already the square Hamiltonian initially renormalized
the hexagonal lattice in a triangular lattice and therefore
the second neighborhood interaction is implicit in the
renormalization procedure. In Ref. [82] it was argued
that if jss is discretized in a tight-binding Hamiltonian,

we have that jss = i(a†s,ias,j − a†s,jas,i) where a†j and
aj creates and anhiliates respectively electrons in site j.
In a similar way, if in Eq. (31) we discretize the spinor

components gradient we have that i(ψ1∇ψ∗2−ψ∗2∇ψ1)→
i(a†2,ja1,i − a†2,ia1,j) and the other current component as

i(ψ2∇ψ∗1 − ψ∗1∇ψ2) → i(a†1,ja2,i − a†1,ia2,j). Therefore,
this leads to the interpretation of an interlayer current.

Let us now integrate over the primitive cell in order
to get the expected value of the current. By noting that
〈Âg〉 = 〈Âg〉∗ it follows that,

〈Âg〉 = 2α
∑
µ

q̂⊥µ · 〈j̃12(qµ) + j̃21(−qµ)〉 (36)

where j̃12(qµ) =
∫
e−iqµ·rj12(r)d2r and j̃21(−qµ) =∫

eiqµ·rj21(r)d2r. Therefore, 〈Âg〉 is just the sum of the
Fourier components of the current at the points q1,q2

and q3. In a similar way, the space-dependent expected
value of the second ingredient of 〈A(r)〉 is,

Af (r) = iα
∑
µ

(ψ∗2ψ1e
iqµ·r − ψ∗1ψ2e

−iqµ·r) (37)

where Af (r) = A∗f (r), and we define the operator,

Âf =

(
0 αA†f (r)

αAf (r) 0

)
(38)

V. EXPECTATION VALUES AND CURRENTS
AT DIFFERENT k POINTS

In this section we study all contributions defined in the
previous section as a function of the twist at representa-
tive points in k space. One is the Γ point which reveals
how magic angles arise and the other is the K point,
which is the ground state for all α. Fig. 7 shows such
behavior as obtained from the numerical simulation, i.e,
the top of the band E2(Γ) goes to zero at the magic an-
gles while E2(K) is the ground state. The k = ζ point,
chosen at random in the mBZ, lies inside such interval.

A. Revealing the magic angles: Γ point expected
values

From Fig. 7 we see that E2(Γ) can be used to reveal
the magic angles as always gives the highest energy of
the first H2 band. For a flat band to exist, the energy
E2(Γ) must be zero.

For the Γ point it is very illustrative to use perturba-
tion theory in the limit α → 0. As shown in the Ap-
pendix, up to linear order in α we have that,

〈T 〉 = 1, 〈V 〉 = 0 (39)

〈Âg〉 = −3α, 〈Âf 〉 = −α (40)
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FIG. 7. E2(k) obtained from the squared Hamiltonian Eq.
(5) at the Dirac K (black), Γ (red) and a generic ζ (purple)
point where the red vertical lines indicate the first four magic
angles.

It follows that,

〈T + V 〉+ 〈Âf 〉+ 〈Âg〉 = 1− 4α ≈ E2(Γ) (41)

In Fig. 8 we present a comparison between these ex-
pected values and the numerical results showing a good
agreement for 〈T 〉, 〈Âf 〉, 〈Âg〉 as α → 0. For 〈V 〉, the
agreement is not so good as this requires higher order
perturbation terms. The previous approximation allows
to make a crude estimate of the first magic angle as,

E(Γ) ≈ ±
√
|1− 4α| (42)

Therefore, α1 ≈ 1/4, a value below α1 = 0.586. Higher
order terms in the expansion are needed to increase the
accuracy, but yet the main principle behind a magic an-
gle is already present in this simple approach. Further
confirmation is provided in Fig. 9 where we show numer-
ically how magic angles arise whenever the curve 〈T +V 〉
intersects |〈Â〉|.

Then we conclude that in going from α = 0 to α1, the
confinement potential starts to contribute and reaches
the kinetic energy at the magic angle. The off-diagonal
operators always diminish the energy. As expected, the
first magic angle is thus produced when the sum of the
kinetic plus confinement energies are equal in magnitude
to the expected values of the off-diagonal operators. The
particularity here is that for α1 we have 〈Ag〉/〈Af 〉 ≈ 3.

The numerical results in Fig. 9 show how the same
principle applies for other magic angles as 〈T + V 〉 −
|〈Â〉| goes to zero. However, as seen in Fig. 10, for

α >> α1 the current term 〈Âg〉 dominates over 〈Âf 〉, and

in fact, 〈Âf 〉 can be neglected as we will discuss in the
following subsection. Notice also the jumps associated to
each αn, possibly related with Landau levels. The other
particularity is that 〈T 〉 ≈ 〈V 〉 as α→∞, thus in Fig. 9
one can not distinguish one from the other in such scale.

FIG. 8. Expected values in the Γ point vs α. The numerical
results are indicated with dashed lines and points. The ki-
netic Energy 〈T 〉 is in blue, confinement energy 〈V 〉 (green),

〈Â†g〉 (Black) and 〈Â†f 〉 (Orange). The solid lines are the per-

turbative solutions (see Appendix).

FIG. 9. Numerical calculation of 〈T + V 〉 − |〈Â〉| vs α at the
Γ point for the first four magic angles. For all magic angles
|〈Â〉| = 〈T + V 〉.

B. Ground state: K point

The point k = K is a ground state for any α. Let
us do some general considerations about it. As 〈Tj〉 ≥ 0
and 〈Vj〉 > 0, it follows that for E2 = 0, we have that
〈A†〉 ≤ 0 and 〈A〉 ≤ 0. Fig. 11 numerically confirms
these results. Other interesting features are seen. The
first is already clear from Eq. (23); for the ground state
E2 = 0 and due to symmetry we obtain,

〈T1〉+ 〈V1〉 = −〈A†〉 (43)

and,

〈T2〉+ 〈V2〉 = −〈A〉 (44)

The derivation that follows is made by considering a sym-
metrized basis [74]. In this case, there is no way to distin-
guish the up and low layers except for a relative phase, it
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FIG. 10. Expected Values in the Γ point vs α. Kinetic Energy
〈T 〉 (Blue), confinement energy 〈V 〉 (Green), 〈Â†g〉 (Black) and

〈Â†f 〉 (Orange). Notice that the kinetic and confinement ener-
gies are of the same order, thus is not possible to distinguish
the blue curve in this scale. The vertical red lines are the
second, third and fourth magic angles.

follows that we must have 〈T1〉 = 〈T2〉 and 〈V1〉 = 〈V2〉.
As the general flat-band solutions are given by [82],

Ψ(r) =

(
ψ1(r)
ψ2(r)

)
=

(
g(r)
ig(−r)

)
× Φk(r) (45)

where g(r) is a Bloch wave function and Φk(r) is the
quantum Hall wavefunction of the lowest Landau level,
we replace such wave function into the expressions for
〈A〉 and 〈A†〉 to show that,

〈A†〉 = 〈A〉. (46)

This is a reminiscent condition of the intravalley symme-
try of Eq. (1). Therefore, for the total kinetic energy
and total confinement energy we have that,

〈Â〉 = 2〈A†〉 = 2〈A〉 = −〈T 〉 − 〈V 〉 (47)

Using the bound for the confinement energy, we find
that 〈Â〉 is bounded by,

|〈Â〉| ≤ 〈T 〉+
8π2

√
3
α2 (48)

Fig. 11 further confirms Eq. (47) and Eq. (48). Also,
in Fig. 12 we compare the numerical results with the
perturbative approach up to second order in α as detailed
in the Appendix. The agreement is excellent and allows
to: i) further confirm analytically Eq. (47) in the limit
α→ 0 and, ii) test the validity of the numerical approach.

From the previous results is clear that 〈A〉 will always
diminish with α to compensate the increased value of the
confinment and kinetic terms. However, such interlayer
interaction depends on two terms as in the Γ point. This
requires a further analysis.

FIG. 11. Expected value contributions of the energy as func-
tion of α at the Dirac point k = K, 〈T 〉 (blue), 〈V 〉 (green)

and 〈Â〉 (red). As for any angle 〈T 〉 = 〈V 〉, the blue symbols
are hidden by the green ones. The conservation of energy im-
plied by Eq. (47) is satisfied as the kinetic, confinement and
interlayer contributions always sum zero.

FIG. 12. Zoom of the operators expected values versus α for
the region α << 1. The filled circles were obtained from
the numerical simulation at the Dirac point K = 0, cor-
responding to: kinetic energy 〈T 〉 (Blue), confinement 〈V 〉
(Green), interlayer current 〈Âg〉 (Black) and averaged inter-

layer interaction〈Âf 〉 (Orange). Notice that the numerical
data for 〈T 〉 is the same as 〈V 〉 and thus blue circles are not
seen. The solid curves were obtained from the analytic per-
turbative expresions for the operators expected values up to
second order in α (see Appendix). The same color code as in
the numerical data was used for the curves. The red vertical
line indicates the first magic angle α1 = 0.586.

In Fig. 13 we present the interlayer current for k =
K in real space. The vectors directions represent polar
angle defined by the real and imaginary parts of Af (r)
or Ag(r). For the first magic angle α = 0.586, Af (r) has
more density in the AA stacking point while Ag(r) has
more current around the BA/AB stacking points. On the
other hand, for the second magic angle α = 2.221, Af (r)
and Ag(r) have three points of high intensity inside the
Wigner-Seitz cell. Also,it is interesting to note that in
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FIG. 13. Interlayer contributions in the real space at the
Dirac point k = K for, (a)-(b) corresponds to Ag(r) and
(c)-(d) corresponds to Af (r) for the two first magic angles
α = 0.586, 2.221. The arrows indicate the direction of the
field and the color code the intensity. The stacking points
AA (red), AB (green) and BA (yellow) are indicated in the
Moiré Wigner-Seitz unit cell.

the AA/AB stacking points there is a vortex behavior as
those seen in Fig. 4.

Using the spinor symmetry (45) and integrating over
the primitive cell, it follows that,

〈Âf 〉 = −2α Im

{∑
µ

∫
ψ∗2ψ1e

iqµ·rd2r

}
= −α

∑
µ

Im
[
ψ̃∗2(qµ) ~ ψ̃1(qµ)

] (49)

where ~ means a convolution, ψ̃s is the Fourier transform
of ψs.

In Fig. 14, we show the evolution of Eq. (36) and

(49). Clearly, for the first magic angle, 〈Âg〉 and 〈Âf 〉
have similar magnitudes but become radically separated
after the first magic angle, i.e., 〈Âg〉 >> 〈Âf 〉. Therefore,

the terms 〈Âf 〉 is only relevant for α < 1 making the first
magic angle different from others as in the Γ point. The
reason for such change is easy to see as 〈Âf 〉 is bounded
by the norm of the wavefunctions and thus,

|〈Âf 〉| ≤ 6α (50)

a fact further corroborated by using Eq. (45) to find its
explicit form,

〈Âf 〉 = −α
∑
µ

∫
g∗(r)g(−r)|Φk(r)|2 cos (qµ · r)d2r

(51)

Meanwhile, 〈Âg〉 is proportional to the gradient ∇ψj
which is not bounded by ρ(r).

FIG. 14. Components of the interlayer operator 〈Â(α)〉 as
a function of α at the K point. The two first magic angles
α = 0.586, 2.221 are indicated with the red vertical lines. At
α ≈ 1 〈Âg〉 = 〈Âf 〉, while the blue dashed line indicates the

theoretical lower bound for 〈Âf 〉 ≥ −6α.

FIG. 15. Components of the interlayer current mean values
as function of momentum. Panel (a) corresponds to 〈Âg〉
and panel (b) corresponds to 〈Âf 〉 at the first magic angle
α = 0.586. The mBZ is indicated where q1, q2, q3 are the
Moiré lattice vector and the high symmetry points the Γ point
(red), K′ (yellow) and K (green) also are indicated.

Further confirmation is obtained by looking at the per-
turbative solution (see Appendix). In particular 〈T 〉 =

〈V 〉 ≈ 3α2(1 − α2) while 〈Âg〉 = −6α4(1 + 2α2) and

〈Âf 〉 = −6α2(1 + 2α2). Then 〈Âg〉/〈Âf 〉 ≈ α2. This
ratio goes from zero at α = 0 to 1 at α = 1.

C. Comparison between different k points

The previous analysis was made for k = K. In Fig.
15 and Fig. 16 we extend the analysis for other flat-band
states at magic angles. Fig. 15 presents 〈Âg〉 and 〈Âf 〉 in
reciprocal space. For the first magic angle α = 0.586, the
term 〈Âg〉 is maximal where 〈Âf 〉 is minimal, both have
similar magnitude range. On the other hand, for higher
magic angles, the reciprocal space structure of 〈Âg〉 and

〈Âf 〉 preserve the same behavior, however, 〈Âg〉 has a

substantially increased magnitude than 〈Âf 〉. If α→∞,

〈Âg〉 � 〈Âf 〉. As a consequence, the analysis made for
k = K can be safely extended for all flat-band states.
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Therefore, 〈Âf 〉 is only relevant for α < 1 making the
first magic angle different from others. As said before,
〈Âf 〉 is limited by ρ(r) while 〈Âg〉 is proportional to the
wave function gradient. Moreover, as the IPR baseline
increases as seen in Fig. 6, gradients grow. However, in
principle the overlap between the gradient in one layer
and the other layer wave function can diminish. As 〈Âg〉
is proportional to α, to test the gradient effects, in Fig.
16 we plot 〈Âg〉/α. This indicates that currents jss due
to gradients are the responsible of the effect. This behav-
ior is also reflected in Fig. 5, as in the crossover α ≈ 1 the
Fourier coefficients develop a ”hole” around k = 0. No-
tice in Fig. 16 that the magic angles fall inside ”basins”.
Such effect is specially prominent for non high symmetry
points as the ζ point, a fact that will be discussed in a
forth coming publication.

FIG. 16. Scaled interlayer current mean values 〈Âg〉/α versus
α for different representative points in k space: Γ, K and ζ.
This last point is chosen at the rim of the black spots of Fig.
15. Notice that 〈Âg〉 is made from two elements: an overall
decreasing behavior and at the same time, basins separated by
local maxima. Each magic angles is associated with a basin.

Summarizing, the term 〈Âg〉 is an energy associated
with interlayer current leakage between bipartite sub-
lattices, i.e., at second neighbors. Meanwhile, 〈Âf 〉 is
a weighted average energy associated with overlaps be-
tween layers. The interlayer current magnitude grows as
the rotation angle goes to zero, a fact due to the ever in-
creasing spatial gradients of the electron wave function.

VI. CONCLUSIONS

In this work we presented a theoretical and numerical
analysis of the chiral TBG Hamiltonian using a renormal-
ized Hamiltonian that removes the particle-hole symme-
try allowing to identify the main physical elements of the
problem and leading to a simple 2 × 2 matrix operator.
Then we studied the electron localization in the TBG. We
found numerically that the first magic angle is different
from others as the ground state wave function basically

tracks the shape of the confinement potential. We calcu-
lated the localization using the inverse participation ratio
where magic angles are revealed. Interestingly, we proved
that all states in the flat band for magic angles have the
same participation ratio. We also evaluated the contri-
butions from the kinetic energy, confinement energy and
inter-layer interaction for the Γ and K points. These
contributions were found using perturbation theory and
numerically. A good agreement between both was found.
Our analysis shows that the Γ point reveals how magic
angle arises.

In particular we found that the first magic angle in the
Γ point occurs when : 1) the confinement and kinetic
energies are the same, 2) the off-diagonal operator is the
sum of kinetic and confinement energy, 3) the intralayer
current is bigger that the off-diagonal interaction energy
term although not negligible. At other magic angles, the
balance is dictated only by the kinetic, confinement and
interlayer current. Therefore, interlayer currents are the
main responsible for bands to shrink.

In other works, the magic angle effects have been as-
sociated with the effects of a space dependent magnetic
field [82, 84]. Our results are in agreement with this
idea as the interlayer current can also be interpreted as a
Lorentz force too. However, H2 allowed us to identify the
source of this field: the current between the graphene’s
underlying triangular sublattices.

It is temping to try to identify our results with some
geometrical feature of the twist angle. However, α con-
tains both the geometry and the scale of the energy in-
teraction. Here we found that both are needed in order
to make the confinement reach the kinetic energy and
produce a strong interlayer current. For very big angles,
confinement is just too weak. This is confirmed by the
IPR which at the first magic angle has the same value
on each layer. We can also argue that the remarkable
3/2 rule in the recurrence of α happens in the limit when

〈Âg〉 � 〈Âf 〉, as for higher magic angles the nodal struc-
ture of the lowest Landau level does not depend signifi-
cantly on the Moiré unit cell flux.
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A. H2 at the Γ point

Consider the limit α → 0 for the Γ point. The corre-
sponding wave function was found in Ref. [65],

ψΓ,1(r) = U(−r) +
α

3
U(2r) +

α2

18

(
(2− eiφ)U(−

√
7Rγr)

+(2− e−iφ)U(−
√

7R−γr)− 4U(2r)
)

+ ...

(52)

and ψΓ,2(r) = iµαψΓ,1(−r), where Rγr is a counter-

clockwise rotation on angle γ with tan(γ) =
√

3/5 and
µα = ±1, the minus sign is used for odd magic angles.
The normalization factor is,

N =

2∑
j=1

∫
m

ψ∗Γ,j(r)ψΓ,j(r)d2r (53)

In this case, it is instructive to analyze first how H2

operates on the wave function. Consider for example one
of the differential equations resulting form Eq. (5),

(−∇2+α2|U(−r)|2)ψΓ,1(r)+αA†(r)ψΓ,2(r) = E2ψΓ,1(r)
(54)

where the square of energy E2 is also expanded in powers
of α, i.e., E2 = E2

0 + αE2
1 + α2E2

2 + .... Next we use the
relationship between wave functions on different layers,

(−∇2 + α2|U(−r)|2)ψΓ,1(r)

+iµααA
†(r)ψΓ,1(−r) = E2ψΓ,1(r)

(55)

If we collect terms up to order α using Eq. (52), two
equations are obtained. The zero order equation is,

−∇2U(−r) = E2
0U(−r) (56)

and at order α,

−1

3
∇2U(2r) + iµαA

†(r)U(r) = E2
0

1

3
U(2r) + E2

1U(−r)

(57)
From Eq. (56) we recover E0 as,

−∇2U(−r) = −∇2
3∑
l=1

eiqlrei(l−1)φ =

3∑
l=1

|ql|2eiqlrei(l−1)φ

(58)
and using |ql|2 = 1 we prove that Eq. (56) is indeed true
whenever E0 = 1, in agreement with Ref. [65].

Now consider Eq. (57). As we did for the order zero
component, is easy to show that,

−∇2U(2r) = 4U(2r) (59)

Next we compute A†(r)U(r) using the two operators

A†g(r) and A†f (r). Using the definition for A†f (r) and

U(r) we have,

A†f (r)U(r) = −i
∑
l,s

e−i(ql+qs)rei(s−1)φ (60)

and the sum term is then divided in terms with l = s and
l 6= s,∑

l,s6=l

e−i(ql+qs)rei(s−1)φ +
∑
l

e−i2qlrei(l−1)φ (61)

Using that q1 + q2 + q3 = 0 and defining a new index
n = 6− (l + s),∑

l,s6=l

e−i(ql+qs)rei(s−1)φ = −
∑
n

eiqnrei(n−1)φ (62)

From the definition of U(r) we finally obtain,

A†f (r)U(r) = −i(U(2r)− U(−r)). (63)

Let us know consider the operator A†g(r) action. We
have,

A†g(r)U(r) = −i
∑
l

e−iqlr2q⊥l ·∇
(∑

s

e−iqsrei(s−1)φ
)

(64)
from where,

A†g(r)U(r) = −i
∑
l,s6=l

e−i(ql+qs)rei(s−1)φ(2q⊥l · qs) (65)

Next we use that q⊥l · qs = (−1)ζP (l,s)
√

3/2 where ζP (l,s)

is the sign of the permutation of the indices l and s,
+1 for even and −1 for odd. Each pair permutation
is obtained from the usual cyclic order {1, 2, 3}, so for

example, q⊥1 · q2 =
√

3/2 while q⊥2 · q1 = −
√

3/2. Again
we use q1 + q2 + q3 = 0,

A†g(r)U(r) =
√

3
∑
l,s>l

(−1)ζP (l,s)eiqnr
(
ei(s−1)φ − ei(l−1)φ

)
(66)

where n = 6− (l + s). Finally,

A†g(r)U(r) = 3iU(−r) (67)

Then we collect all the previous results inside Eq. (57)
using µα = −1 to confirm that the wave vector is an
eigenvector of H2,

4

3
U(2r)−

(
U(2r)−U(−r)−3U(−r)

)
= E2

1U(−r)+
1

3
U(2r)

(68)
i.e., comparing terms, we get E2

1 = 4.
The previous analysis confirms that the solutions of H

are also eigenfunctions of H2. Now we find the expected
values of each operator and for the corresponding differ-
ential equation. We start with the kinetic energy in the
first layer,

〈T1〉 = − 1

N

∫
m

d2r
(
U∗(−r)+

α

3
U∗(2r)

)
∇2
(
U(−r)+

α

3
U(2r)

)
(69)

Using that Eq. (56), (59) and that U∗(2r) and U(−r)
are ortogonal due to symmetry, the contribution of or-
der α is zero, from where 〈T1〉 = 1/2. Now taking into
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account the contribution from the equation that results
from the second row of Eq. (5), we have 〈T1〉 = 〈T2〉.
Then, up to order α,

〈T 〉 = 〈T1〉+ 〈T2〉 = 1 (70)

In a similar way, as U∗(2r) and U(−r) are ortogonal,

〈V 〉 = 〈V1〉+ 〈V2〉 = 0 (71)

Finally, the other operators are,

〈Â†f 〉 = −α (72)

while,

〈Â†g〉 = −3α (73)

It follows that,

〈T 〉+ 〈V 〉+ 〈Â†f 〉+ 〈Â†g〉 = 1− 4α ≈ E2 (74)

In Fig. 8 we compare the previous results with the nu-
merical simulation obtaining a good agreement as α→ 0.

B. H2 at the K point

Here we consider a perturbative solution of Eq. (75)
for α→ 0 in the K point as was found in Ref. [65],

ΨK(r) =

(
ψK,1(r)
ψK,2(r)

)
=

(
1 + α2u2(r) + α4u4(r) · · ·
αu1(r) + α3u3(r) + · · ·

)
(75)

Considering only terms up to order α2 we get:

u1(r) = −i(eiq1·r + eiq2·r + eiq3·r)

u2(r) =
−i√

3
e−iφ(e−ib1·r + eib2·r + e−ib3·r) + c.c.

(76)

These functions must be normalized before calculating
the expected values. The normalization factor is,

N =
8π2

3
√

3
(1 + 3α2 + 2α4 +

6

7
α6 +

107

98
α8 + ...) (77)

With these expresions for ψ1 and ψ2 we obtain∫
ψ∗2(r)eiqu·rψ1(r)d2r =

8iπ2(α+ α3)

3
√

3N
, (78)

and ∫
ψ∗1(r)e−iqu·rψ2(r)d2r = −8iπ2(α+ α3)

3
√

3N
(79)

for µ = 1, 2, 3. Therefore, taking into account an extra α
and i factor from the operator definition, we have,

〈Âf 〉 ≈
−6(α2 + α4)

1 + 3α2 + 2α4 + 6
7α

6 + 107
98 α

8
(80)

This result is in agreement with the predicted bound
found in Eq. (50). Consider in the same limit the other
operator. We have that,

−2i

∫
ψ∗2(r)e−iqu·rq̂⊥µ ·∇ψ1(r)d2r = − 8π2α3

3
√

3N
(81)

and the terms containg eiqu·rψ∗1(r)q̂⊥µ ·∇ψ2(r) give the

same result. This confirms Eq. (46), i.e., 〈A〉 = 〈A†〉.
By collecting terms we finally obtain that,

〈Âg〉 ≈
−6α4

(1 + 3α2 + 2α4 + 6
7α

6 + 107
98 α

8)
(82)

Next we find the expected values of the kinetic and
confining potential operators to confirm the theoretical
and numerical analysis. Using that,∫

ψ∗1(r)∇2ψ1(r)d2r = −16π2α4

√
3N

(83)

∫
ψ∗2(r)∇2ψ2(r)d2r = −8π2α2

√
3N

(84)

and,∫
ψ∗1(r)|U(−r)|2ψ1(r)d2r =

8π2(3 + 2α2)

3
√

3N
(85)

∫
ψ∗2(r)|U(r)|2ψ2(r)d2r =

16π2α2

√
3N

(86)

It follows that,

〈V 〉 ≈ 3α2 + 6α4 + 2α6

1 + 3α2 + 2α4 + 6
7α

6 + 107
98 α

8
(87)

and for the kinetic energy term,

〈T 〉 ≈ 3(α2 + 2α4)

1 + 3α2 + 2α4 + 6
7α

6 + 107
98 α

8
(88)

By expanding the denominators we arrive to the final
perturbative expectation values,

〈T 〉 ≈ 3α2 − 3α4 (89)

〈V 〉 ≈ 3α2 − 3α4 (90)

and,

〈Âf 〉 ≈ −6α2 + 12α4 (91)

〈Âg〉 ≈ −6α4 + 18α6 (92)

in agreement with 〈V 〉 = 〈T 〉 > 0. Also, 〈V 〉 + 〈T 〉 +
〈A〉 ≈ 0 up to order α4. In Fig. 12 we plot Eqns. (90),
(91), (92) and compare them with the numerical results
obtained from finding numerically the eigenstates of the
Hamiltonian.
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