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In graphene, a Kekulé-Y bond texture modifies the electronic band structure generating two
concentric Dirac cones with different Fermi velocities lying in the Γ-point in reciprocal space. The
energy dispersion results in different group velocities for each isospin component at a given energy.
This energy spectrum combined with the negative refraction index in p-n junctions, allows the
emergence of an electronic analog of optical birefringence in graphene. We characterize the valley
birefringence produced by a circularly symmetric Kekulé patterned and gated region using the
scattering approach. We found caustics with two cusps separated in space by a distance dependent on
the Kekulé interaction and that provides a measure of its strength. Then, at low carrier concentration
we find a non-vanishing skew cross section, showing the asymmetry in the scattering of electrons
around the axis of the incoming flux. This effect is associated with the appearance of the valley
Hall effect as electrons with opposite valley polarization are deflected towards opposite directions.

I. INTRODUCTION

The similarities between the Helmholtz and
Schrödinger equations result in photons and electrons
displaying similar wave phenomena1. Furthermore, the
propagation of electrons through the two-dimensional
honeycomb arrangement of carbon atoms, known as
graphene, leads to the dressing of electronic states as
massless Dirac-like electronic excitations residing at
opposite corners of the Brillouin zone2, thus augment-
ing the analogies between the electronic and optical
phenomena. The ability to control the charge carrier’s
group velocity via graphene gating3 has led to the
prediction and experimental realization of electronic
Veselago lensing4,5. The sensitivity of this lensing to
the conduction electrons properties aids the detection
of anisotropies and tilting of the Dirac cones6,7, the
presence of strain8, and disorder9. Veselago lensing also
facilitates the waveguiding of electrons in p-n junctions10

and the emergence of caustics and cusps in circular
geometries11. Moreover, similar to optical birefringence
in anisotropic crystals where the group velocity depends
on light polarization12, spin birefringence for electrons
emerges in graphene due to the Rashba spin-orbit
interaction13,14 which leads to distinct Fermi velocities
for each spin component, and in circular geometries,
spin birefringence brings about the formation of caustics
with two cusps, with a space separation that depends on
the strength of the Rashba spin-orbit coupling15,16.

In addition to spin, electrons in graphene possess the
valley degree of freedom17. The valleys in graphene have
a large separation in momentum space18, which suggests
that this degree of freedom can be potentially used in ap-
plications where it will play a role similar to spin in spin-
tronics19,20. The field that aims to manipulate and con-

trol the valley degree of freedom in applications is known
as valleytronics21–33. Similar to spin-orbit interactions
in spintronics, interactions contrasting the degenerate
valleys in graphene play an essential role in valleytron-
incs. Such interactions include the Kekulé patterning
of graphene34,35,i.e., the periodic bond modulation of
the graphene lattice. Depending on the bond modu-
lation pattern36 two different Kekulé distortions phases
can emerge: the Kekulé-Y37 found in graphene deposited
on Cu[111] and the Kekulé-O38–42 that arises in bilayer
graphene intercalated with Li. The tight-binding calcula-
tions by Gamayun et al.36 found that Kekulé-Y produces
an effective interaction that leads to valley-momentum
locking, while Kekulé-O leads to the formation of a gap
in the electronic spectrum.

Kekulé-Y patterned graphene, breaks a valley degen-
eracy through valley-momentum locking which produces
a low energy spectrum with two nested Dirac cones
with different Fermi velocities36. The energy-momentum
dispersion modification caused by Kekulé-Y patterning
leads to drastic modifications in the magnetic and op-
tical response of graphene43–48, and crucially aids the
control of the valley degree of freedom in the electronic
transport49–56. In this paper we study the scattering
of Dirac fermions from circularly Kekulé-Y-patterned re-
gions in the semiclassical limit and we explore the effects
of this interaction on electron optics and the appearance
of valley birefringence. We also investigate the scattering
of charge carriers in graphene from short-range scattering
regions with locally enhance Kekulé-Y interactions due
to adatom deposition. Our analysis of the total, trans-
port, and skew cross sections for these short-range scat-
terers reveals the dependence of these cross sections on
the strength of the Kekulé-Y interaction and we show the
appearance of a valley Hall effects due to skew scattering

ar
X

iv
:2

20
8.

02
93

0v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  4
 A

ug
 2

02
2



2

from these scatterers.
The layout of this work is as follows. In section II we

present the model, section III is devoted the scattering
calculations. Valley birrefringence is analyzed in section
IV, while in section V we study the low-energy scattering.
Finally, we conclude by discussing our main findings.

II. MODEL

Our system consist of an infinite sheet of pristine
graphene containing a circularly Kekulé-ordered patch
of radius R, Fig. 1. We consider the scattering of an
incoming flux of electrons in the x-direction with mo-
mentum k. To describe the electronic properties of the
graphene sheet we adopt the low-energy description, i.e.,
the Dirac Hamiltonian18. Nevertheless, the Kekulé mod-
ulated portion of the lattice has a larger unit cell than
non-modulated graphene lattice. Hence, to match the
pristine and Kekulé patterned graphene wave functions it
is practical to use an enlarged unitary cell for the case of
undistorted graphene. This is equivalent to consider the
group C

′′

6v, with a cell with six atom graphene’s unit cell,
which avoids the treatment of degenerate states at two
inequivalent Dirac points57. This is more clearly seen if
we start with the Hamiltonian for the Kekulé region and
then pristine graphene appears as a limiting case.

y

x

R

k

FIG. 1. Schematic of the system (not to scale). A graphene
lattice where an incoming flux of electrons in the x direction
approaches a circular region of radius R with a gate potential
and Kekulé-Y bond texture (red bonds).

The space dependent Hamiltonian describing the sys-
tem in Fig. 1 is given by

H = H0 +HY (r) + V (r) , (1a)

where,

H0 = vf (p · σ)⊗ τ0 (1b)

is the low-energy graphene Hamiltonian with p =
−i~(∂x, ∂y) the momentum operator, vf ∼ 106m/s the
Fermi velocity, and σ, τ the sets of Pauli matrices acting

on the sublattice and valley pseudo-spin spaces respec-
tively.

HY = ∆vfσ0 ⊗ (p · τ )Θ(R− r) (1c)

is the Kekulé-Y bond perturbation36 with amplitude ∆
within the circular region,

V (r) = V0Θ(R− r)σ0 ⊗ τ0, (1d)

is a constant gate potential with amplitude V0 in the
Kekulé circular patch, and Θ is the Heaviside function.

The Hamiltonian in Eq. (1a) acts on the states ex-
pressed in the valley isotropic representation:

Ψ =

[
ψK′

ψK

]
=

−ψB,K
′

ψA,K′

ψA,K
ψB,K

 , (1e)

Notice that the subindex A and B in Ψ corresponds to
each graphene’s bipartite lattice while K and K ′ label
the valley. For regions outside the Kekulé modulated
region, the limit of pristine graphene is recovered, ∆ = 0,
thus having a 4× 4 operator which represents the Dirac
Hamiltonian in the enlarged unitary cell.

III. SCATTERING

In this section we study the scattering of Dirac
fermions from a circularly symmetric Kekulé patterned
region. We adopt the partial waves scattering method to
find the S-matrix, which requires finding and matching
the eigenstates in the different scatttering regions of our
system. For any effective theory that uses an envelope
wavefunction, as is the case of the Dirac equation for
graphene, the matching requires a supplemental bound-
ary condition of the form Ψ = MΨ in order to retain the
hermiticity and preserve currents. Here M is a matrix
containing the microscopic details and the symmetries
of the problem58–63. Since we consider the Kek-Y bond
modulation as a perturbation within the same graphene
sheet, no major misalignment is expected and thus for
small ∆ we can consider M as unitary throughout this
work. Moreover, as our system possesses circular symme-
try, it is natural to evaluate its eigenfunctions in polar
coordinates. The z-component of orbital angular mo-
mentum Lz = −i~∂θ does not commute with the Hamil-
tonian, [H,Lz] = i~vf (σ × p)z ⊗ τ0 + i~vfσ0 ⊗ (τ × p)z.
On the other hand, the sum of Lz and the intrinsic an-
gular momenta associated with the valley and sublattice
degrees of freedom, “valley-lattice-angular momentum”
Jz, is conserved and given by

Jz = Lz +
~
2

(σz ⊗ τ0 + σ0 ⊗ τz). (2)

Here, it is important to notice that [H, ~2σz ⊗ τ0] =

−i~vf (σ×p)z ⊗ τ0, and [H, ~2σ0⊗ τz] = −i~vfσ0⊗ (τ ×
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p)z, which leads to [H, ~2σz ⊗ τ0 + ~
2σ0 ⊗ τz + Lz] = 0.

We can express the eigenfunctions in their total pseudo-
angular momentum basis, such that JzΨn = n~Ψn, thus

Ψn(r, θ) = einθ


−e−iθΦB,K′(r)

ΦA,K′(r)
ΦA,K(r)
eiθΦB,K(r)

 . (3)

where θ = tan−1 y/x, and find the radial part of the
wave functions by applying the Hamiltonian in Eq. (1a)
to our spinor in Eq. (3) to get the following set of coupled
differential equations,

L−n [ΦA,K′(r) + ∆ΦA,K(r)] = −i(ε− ν)ΦB,K′(r), (4a)

L+
n−1ΦB,K′(r)−∆L−n+1ΦB,K(r) = −i(ε− ν)ΦA,K′(r),

(4b)

L−n+1ΦB,K(r)−∆L+
n−1ΦB,K′(r) = i(ε−ν)ΦA,K(r), (4c)

L+
n [ΦA,K(r) + ∆ΦA,K′(r)] = i(ε− ν)ΦB,K(r), (4d)

where,

L±n =
(
∂r ∓

n

r

)
, (4e)

here ε = E/(~vf ), ν = V0/(~vf ). Since L±n acts as a
ladder operator for the cylindrical Bessel functions Jn,

L±n Jn(kr) = ∓kJn±1(kr), (5)

thus, a natural ansatz is

ΦA,K(r) = i(ε− ν)CAJn(kr), (6)

ΦA,K′(r) = i(ε− ν)CBJn(kr), (7)

where CA and CB are constants, and k is the electron
wave number. Inserting the anzats in Eq. (6) in the rela-
tions in Eq. (4), results into the exact form of the spinor
solutions and determines the wave numbers

k± =
|E − V0|

~vf (1±∆)
. (8)

Thus the nth angular momentum eigenstates in the inner
region are,

Ψ<
n (r, θ) =T+

n e
inθ


Jn−1(k+r)e

−iθ

is′Jn(k+r)
is′Jn(k+r)
−Jn+1(k+r)e

iθ



+ T−n e
inθ


Jn−1(k−r)e

−iθ

is′Jn(k−r)
−is′Jn(k−r)
Jn+1(k−r)e

iθ

 ,
(9)

where T+
n and T−n are determined by s′ = sgn(E − V0)

and the boundary conditions. Since the pseudo-angular

momentum is conserved during the scattering process,
we can treat each component of n independently and use
the partial wave method to determine the S-matrix ele-
ments. In the region r > R, we describe the wavefunction
in terms of incoming (in) and outgoing (out) cylindrical
waves, where the corresponding spinor for each valley is

ψ
(out)/(in)
n,K′ (r, θ) |K ′〉 =

[
H

(1)/(2)
n−1 (kr)ei(n−1)θ

isH
(1)/(2)
n (kr)einθ

]
|K ′〉 ,

(10a)

ψ
(out)/(in)
n,K (r, θ) |K〉 =

[
−isH(1)/(2)

n (kr)einθ

H
(1)/(2)
n+1 (kr)ei(n+1)θ

]
|K〉 ,

(10b)

here H
(1)
n and H

(2)
n are Hankel functions of the first and

second kind respectively, and s = sgn(E). Now we can
write the wavefunctions in terms of the scattering matrix

Sn such that ψn = ψ
(in)
n + Snψ

(out)
n ,

Ψ>
n (r, θ) =

∑
α

cαψ
(in)
n,α (r, θ) |α〉

+
∑
α,β

cαSn,αβψ
(out)
n,β (r, θ) |β〉 ,

(11)

where α, β ∈ {K,K ′} and Sn,αβ corresponds to the scat-
tering from α to β valley, cK and cK′ are the weights
of the valley polarization. We can obtain the coefficients
for Sn, T+

n and T−n by applying the boundary conditions
at Ψ<

n (R, θ) = Ψ>
n (R, θ), as shown in Appendix A. Ad-

ditionally, an incident plane-wave in the x-direction can
be expressed with the aid of the Jacobi-Anger expansion
as,

eikr cos θ =

∞∑
n=−∞

inJn(kr)einθ, (12)

or equivalently as,

Φ0(r, θ) =

∞∑
n=−∞

∑
α

cα
in

2
[ψ(out)
n,α (r, θ) + ψ(in)

n,α (r, θ)] |α〉 .

(13)
The latter allows one to express Ψ>(r, θ) in terms of the
incoming plane and the outgoing waves, i.e.

Ψ>(r, θ) = Φ0(r, θ)

+

∞∑
n=−∞

∑
α=K,K′

ᾱ 6=α

cα
in

2

[
(Sn,αα − 1)ψ(out)

n,α (r, θ) |α〉

+ Sn,αᾱψ
(out)
n,ᾱ (r, θ) |ᾱ〉

]
,

(14)

and the total wave function is obtained by,

Ψ(r, θ) =

∞∑
n=−∞

[
Ψ<
n (r, θ) + Ψ>

n (r, θ)
]
. (15)
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IV. VALLEY BIREFRINGENCE

Partially subjecting a graphene sheet to a gate poten-
tial that reverses its carriers character from electrons to
holes between gated and non-gated regions leads to many
interesting analogies between its electron dynamics and
optical phenomena4,11,15 The key ingredient to this phe-
nomena is the reversal of the group velocity of quasi-
particles between the regions with and without gate po-
tentials. For example, if we consider a circularly gated
region on graphene (Fig. 1 with V0 and taking ∆ = 0),
then, in the outer region, r > R, a quasiparticle’s group
velocity is v>g = vf (kx,r>Rx̂ + ky,r>Rŷ)/|kr>R|, while
in the inner region we have a negative group velocity
v<g = −vf (kx,r<Rx̂+ky,r<Rŷ)/|kr<R| , here kr<R (kr>R)
is the wavevector in the inner (outer) region. The reversal
of the group velocity from the outer to the inner region
indicates that the gated region will act, in the semiclas-
sical limit, as a circular electronic lens with a negative
index of refraction n = −kr<R/kr>R, where kr<R is the
wave number inside the gated patch and kr>R outside,
and n is deduced from the electronic Snell’s law4,17. As
shown in Fig. 1, in the limit kR � 1, the negative in-
dex of refraction leads to constructive interference be-
tween the different partial wave components and results
in a probability density that forms cardioid caustics and
cusps11, in what mimics the optical caustics which arise
from light refraction through a shaped medium and be-
long to a class of cusps in catastrophe theory12. Using
differential geometry11, the positions of the cusps for each
p− 1 internal reflections can be shown to be

xcusp(p) =
(−1)p

|n| − 1 + 2p
R, (16)

and in the case shown in Fig. 2 a), as the amplitude de-
creases with each internal reflection, we can clearly dis-
tinguish the cusps corresponding to p = 1, 2.

If in addition to the gate potential the circular re-
gion contains the Kekulé bond texture, then the elec-
tronic bands in this region will be characterized by E± =
±~vf (1±∆)|k|+V0. Therefore, the gating of this region
leads to the Fermi level intersecting the two degenerate
hole bands, which are characterized by the two group
velocities, vg,± = −vf (1±∆). Then, when ∆ 6= 0, in ad-
dition to the sign reversal of the group velocity between
both regions we also have the two different group veloci-
ties in the inner region. Hence, the Kekulé patterned and
gated region will act as a circular lens with two negative
indices of refraction

n± = −k±,r<R
kr>R

, (17)

with k±,r<R = k+, k− and are given in Eq. (8). As
shown in Fig. 2b) The Kekulé patterning of the circular
region results into the doubling of the cusps and caustics
of the circular lens, which reflects its birefringent nature.
The degree of birefringence can be characterized by ζ =

|n+−n−|, and for the set of parameters in Fig. 2b) we get
ζ ≈ 0.25. Moreover, the cusps locations is now modified
to

x±cusp(p) =
(−1)p

|n±| − 1 + 2p
R, (18)

and the spatial separation between the two cusps is found
by |x+

cusp−x−cusp|. In Fig. 2 c) we show the valley preserv-

ing amplitude component, |ψKK(r)|2, and Fig. 2 d) the
valley mixing component, |ψKK′(r)|2. From these figures
we can notice that the Kekulé bond texture leads to the
oscillation of the valley component as electrons travel in
the patterned region, in what mimics the electron’s spin-
momentum coupling in the presence of a Rashba interac-
tion13,15.

V. LOW ENERGY SCATTERING

The scattering process can be further analyzed by ob-
taining the different types of cross sections, such as the
total cross section σt which tells us the magnitude of the
interaction between the incoming flux and the scattering
region, the transport cross section σtr that describes the
average momentum transfer during the scattering, and
the skew cross section σsk which shows the asymmetry in
the scattering around the axis of the incoming flux. This
quantities can be obtained through the scattering ampli-
tude f(θ), which can be found in the far field limit, i.e.,
via the asymptotic form of the wave function as r →∞

Ψ(r →∞)→ Φ0 +
∑
n

∑
α,β

cαfn,αβ(θ)
eikr√
r
|β〉 , (19)

and using the asymptotic expansion of the Hankel func-
tions,

Hn(kr)(1)/(2) →
√

2

πkr
e±i(kr−

nπ
2 −

π
4 ), (20)

by comparing Eq. (14) to Eq. (19) we can deduce the
scattering amplitude for each partial wave component in
terms of the S matrix components

fn =
e−iπ/4√

2πk

[
Sn,K′,K′ − 1 −iSn,K′,K

iSn,K,K′ Sn,K,K − 1

]
, (21)

where Sn,αβ are the valley preserving (α = β) and valley
mixing scattering (α 6= β) matrix elements correspond-
ing to the nth partial wave component (α and β represent
the Dirac points, either K or K ′). Then, for each pro-
cess (valley preserving and valley mixing), we find the
corresponding differential cross section,

σαβ(θ) =

∣∣∣∣∣
∞∑

n=−∞
fn,αβe

inθ

∣∣∣∣∣
2

, (22)
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a) b)

c) d)

FIG. 2. Space dependence of the probability density (in log10 scale), for an incoming electron flux in the x-direction with
valley polarization K′ and kR = 300. The dashed line shows the boundary between the scattering regions. A gate potential
V0R/(~vf ) = 600 is present in the inner region for, a) pristine graphene, b) Kek-Y distorted graphene in the r < R region with
∆ = 0.1. Panel c) shows the valley-preserving component and d) the valley-flip component, for the case described in b).

total cross section,

σt,αβ =

∫ π

−π
σαβ(θ)dθ = 2π

∞∑
n=−∞

|fn,αβ |2, (23)

transport cross section,

σtr,αβ =

∫ π

−π
σαβ(θ)(1− cosθ)dθ

= σt,αβ − 2π

∞∑
n=−∞

Re(fn,αβf
∗
n+1,αβ),

(24)

and the skew cross section,

σsk,αβ =

∫ π

−π
σαβ(θ)sinθdθ

= 2π

∞∑
n=−∞

Im(fn,αβf
∗
n+1,αβ),

(25)

by summing over all different allowed processes

ση =
∑
α,β

ση,αβ , (26)

we obtain the total, transport, and skew cross sections
(η ∈ {t, tr, sk}).

For low carrier concentrations and small regions with
Kekulé bond texture (kR� 1) the most significant scat-
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tering channels are those of angular momentum n =
−1, 0, 1. Within this regime, we show in Fig. 3 the total
cross section against the strength of gate potential V0.
In the absence of Kekulé patterning, the total cross sec-

FIG. 3. Total cross section σt as a function of V0 for incoming
electrons in the x-direction with kR = 1.5 × 10−3. (Inset)
Total cross section for intra-valley σt,KK + σt,K′K′ and inter-
valley σt,KK′ + σt,K′K process with ∆ = 0.01.

tion of the gated region displays one peak which uniquely
arises from the valley preserving process and indicates the
formation of quasi-bound states in this region with finite
life-time characterized by the width of the peak16,64. An
increasing strength of the Kekulé interaction leads to the
central (valley-preserving) peak height shrinking and its
location shifting, while two new resonant (valley-mixing)
peaks emerge. These two new peaks correspond to quasi-
bound states forming due to valley mixing processes as
it is shown in the inset of Fig. 3, and consequently their
height increases with increasing values of ∆, as shown in
Fig. 3.

When local interactions in a graphene sheet lead to
the breaking of effective time reversal (time reversal per
valley) while preserving the total time reversal, as is the
case for the Kekulé patterning, it is possible to have a
skew scattering, and by symmetry considerations it can
be shown that16

σsk,αα = −σsk,ᾱᾱ, (27a)

σsk,αᾱ = 0. (27b)

The latter equations indicate that electrons with opposite
valley polarization get deflected towards opposite direc-
tions as they get scattered, thus producing a valley-Hall
effect. To measure the asymmetry of the scattering per

valley we calculate the skew parameter γV , which is de-
fined as,

γV =
1

2
(γK − γK′), (28a)

where

γβ =

∑
α σsk,αβ∑
α σtr,αβ

, (28b)

this quantity is directly connected to the transverse valley
currents and is equal to the valley Hall angle at zero
temperature in the absence of side-jump effects65,

ΘV H =
jV H
jx

= γV . (29)

a) b)

c)

FIG. 4. a) Differential cross section for valley preserving pro-
cesses, K-valley (blue) and K′-valley (red), showing the tilt
of electrons with opposite valley-polarization towards oppo-
site directions around the x-axis. The dashed black line in a)
corresponds to the differential cross section without Kekulé
distortion. b) Valley skew parameter γV as function of both
energy and the gate potential for a region of R = 9Å and
Kekulé amplitude ∆ = 0.1, the star marker indicates the val-
ues used for a). c) Average of γV as a function of energy for
4000 randomly sized Kek-Y regions (9 ≤ R ≤ 18) Å, consid-
ering V = 1 eV and different values of ∆.

In the presence of the Kekulé-Y modulation, the val-
ley asymmetry of scattering around the x-axis can be also
deduced from the valley dependent differential cross sec-
tion. In Fig 4 a), we present the differential cross section
per valley for the set of parameters indicated by a star
marker in Fig. 4 b). In contrast, we notice a symmetric
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scattering in the absence of the Kekulé-Y modulation,
which is shown by the dashed black line in Fig 4 a). To
show the dependence of the skew scattering in our system
on the local potential of the Kekulé-Y patterned patches
V0, and the Fermi energy (E), in Fig. 4 b) we show a
map of the skew parameter, γV , as a function of V0 and E
for Kekulé patterned regions with R = 9 Å and ∆ = 0.1.
In the latter we should note that the regions of high γV
coincide with the regions of resonant scattering, i.e., res-
onant regime in the total cross section (Fig. 3), and which
indicates that skew scattering is resonantly enhanced65.
To demonstrate the robustness of skew scattering in the
system to variations in size of the Kekulé-Y patterned
patches, we consider a uniform random distribution of
impurity sizes in the dilute limit. In Fig. 4 c) we show
the average of γV for different values of ∆ and V0. Since
skew scattering is resonantly enhanced, then its detection
survives the random variations in the sizes of the Kekulé
patterned patches in the dilute limit, and which allows
for the detection of valley Hall effect signatures in trans-
port experiments. We also note that since the RV0/(~vf )
governs the appearance of the different scattering regimes
in Fig. 3, then skew scattering is also robust to variations
in the locally enhanced potential.

VI. CONCLUSIONS

We have studied the scattering of Dirac Fermions from
Kekulé distorted and gated regions in graphene. For large
Kekulé patterned and gated regions, we have shown that
the scattering of electrons from these circular patches
leads to the formation of caustics and cusps reminiscent
of a circular birefringent electronic lens with two negative
indices of refraction. Moreover, the separation of the
cusps in the circular lens is proportional to the Kekulé
interaction and provides a direct measure of its strength
in systems with tailored Kekulé patches.

For low carrier concentrations, we have shown that the
presence of scatterers with a locally enhanced Kekulé in-
teraction and gate potential leads to the electrons from
different valleys deflecting in opposite directions due to
the skew scattering that is enhance by the Kekulé dis-
tortion. Skew scattering in the system, leads to the ap-
pearance of a valley Hall effect. We have also shown
that the skew scattering-generated valley Hall effect can
be detected in systems where the Kekulé patterning is
not perfect, but it instead leads to the formation Kekulé
patches of random sizes and potentials. The latter sug-
gests the plausible experimental realization and detection
of the skew scattering induced valley Hall effect in Kekulé
patterned graphing systems via four probe experiments.
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Appendix A: Boundary Conditions

In this appendix we find explicit solutions for the co-
efficients in Sec. III, which are found by solving for the
boundary conditions. The solution of the system of equa-
tions resulting from the boundary condition Ψ<

n (R, θ) =
Ψ>
n (R, θ) gives us the following analytical expressions for

the Sn matrix elements and the amplitudes T±n ,

Sn,K′K′ =ss′(H(1)
n H

(2)
n−1Xn +H

(1)
n+1H

(2)
n Xn−1)/Dn

− (2H
(1)
n+1H

(2)
n−1Qn +H(1)

n H(2)
n Zn)/Dn,

(A1a)

Sn,KK =ss′(H
(1)
n−1H

(2)
n Xn +H(1)

n H
(2)
n+1Xn−1)/Dn

− (2H
(1)
n−1H

(2)
n+1Qn +H(1)

n H(2)
n Zn)/Dn,

(A1b)

Sn,K′K =
−ss′YnPn

Dn
, (A1c)

Sn,KK′ =
−ss′Yn−1Pn+1

Dn
, (A1d)

T+
n =c1(j−n+1H

(1)
n − ss′j−nH

(1)
n+1)Pn/Dn

+ c2(j−n−1H
(1)
n − ss′j−nH

(1)
n−1)Pn+1/Dn,

(A1e)

T−n =c1(j+
n+1H

(1)
n − ss′j+

nH
(1)
n+1)Pn/Dn

− c2(j+
n−1H

(1)
n − ss′j+

nH
(1)
n−1)Pn+1/Dn,

(A1f)

where we defined,

Dn =− ss′(H(1)
n H

(1)
n−1Xn +H

(1)
n+1H

(1)
n Xn−1)

+ 2H
(1)
n+1H

(1)
n−1Qn +H(1)

n H(1)
n Zn,

(A2a)

Xn = j+
n j
−
n+1 + j+

n+1j
−
n , (A2b)

Yn = j+
n j
−
n+1 − j

+
n+1j

−
n , (A2c)

Zn = j+
n−1j

−
n+1 + j+

n+1j
−
n−1, (A2d)

Qn = j+
n j
−
n , (A2e)

Pn = H(1)
n H

(2)
n−1 −H

(1)
n−1H

(2)
n , (A2f)

here all Hankel functions are evaluated at kR and j±n =
Jn(k±R).
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in graphene/transition metal dichalcogenide heterostruc-
tures, August 2022. arXiv:2208.01286.

43 Yawar Mohammadi and Samira Bahrami. Integer quantum
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