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A B S T R A C T   

The viscoelasticity of glass-forming fluids contains sustantial information about space-time rigidity. Viscoelas-
ticity and rheology provide alternative experimental, computational and theoretical ways to asses chemical 
composition effects in the relaxation of supercooled liquids near the glass transition. In particular, the transverse 
current correlation and transversal dynamical structure factor contain space-time information allowing to relate 
the dynamical gap of transversal vibrational modes with floppy modes and relaxation times in the liquid. Here, a 
short revision is made of the subject, including simulations of Tellurium, a typical chalcogenide glass. Our results 
are similar to those obtained for typical metallic liquids. To rationalize this result, an statistical mechanics 
analysis in the strain ensemble is performed by using a model that incorporates flexibility and hard-core po-
tentials. This shows that the entropy is akin to a hard-cord fluid as angular bonds only renormalize the entropy if 
they are not substantially affected by temperature effects. Finally, a comparison is made with Selenium, where 
bond breaking effects do not allow such a straight-forward treatment.   

1. Introduction 

The relaxation properties of glass-forming fluids are at the core of the 
glass transition [1–8], yet many open questions remain [9–17]. A key 
aspect, important for technological and theoretical reasons, is the min-
imal cooling speed required in order to make a glass, i.e., the glass- 
forming ability [2]. Rigidity theory, in which atomic bonds are seen as 
mechanical constraints, gives excellent insights on how the network 
topology affects glass-forming ability [3,18,19]. Although it has been 
used to produce very accurate viscosity models, which allow to relate 
chemical composition with glass forming ability and viscosity of glass- 
former melts [20–22], fragility [23,24], the theoretical basis for its 
success in fluids near the glass transition is in our opinion not yet 
completely understood. The use of rigidity theory requires the identifi-
cation of rigid links between nodes, or, in this case, bonds between 
atoms. Below the glass transition temperature (Tg), this information can 
be obtained from different experimental sources, or estimated from the 
chemical composition of the compound. However, at temperatures 

above the glass transition not all possible links are active, so one needs 
an operative way to find them. Several aspects of how to answer this 
question have been addressed using numerical simulations [25], simple 
models [26–33], or comparisons with empirical laws [34,35]. In the 
computer simulations of Micoulaut and Bauchy, constraints of rigidity 
theory are obtained from bond angular excursions [25]. Also, in many 
cases it is not clear how the dynamical processes at the atomic scale lead 
to viscous flow and shear relaxation [36,37]. Even below Tg, compli-
cations arise, as the local chemical composition is affected by diffusion. 
Thus, the question of glass heterogenity needs to be addressed in detail 
as spatial gradients of the chemical composition produce gradients of 
the average coordination number [32,38]. 

While for organic glasses there is a vast literature concerning rigidity 
and rheology [1,39–41], for inorganic glasses, and specially for chal-
cogenide glasses, frequency-dependent rheology experiments are less 
numerous [42–46]. Organic glasses present transitions from folded to 
stretched chains leading to marked viscoelastic effects [41,47]. Visco-
elasticity is also present in inorganic glasses, but it is less significant 
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there. G. M. Bartenev adscribed such differences to the much higher 
C–C bonds rotation flexibility [1]. 

Recent rheology experiments for inorganic compounds near Tg reveal 
rigidity at high frequencies and flexibility at low frequencies [43–46]. 
Rigidity depends on the time-scale under consideration, and the rheo-
logical properties of fluids contain valuable information about this 
dependence. A lack of rigidity is the hallmark of an ideal fluid [48], 
manifested through the absence of transversal phonons. The associated 
transverse current fluctuations dissipate through several mechanisms, as 
for example diffusion. Yet this picture is valid only valid for small 
fluctuation frequencies (ω) and wavevectors (k). Above a certain critical 
wave vector kc, relaxation processes are less effective and shear waves 
appear [49]. Then a viscoelastic response is seen. In fact, it has been 
experimentally obtained that in the high-frequency (>0.5 THz) range, a 
liquid can be properly treated within the elastic limit and thus is almost 
indistinguishable from an amorphous solid [50]. 

In a previous paper we introduced space-time in rigidity by consid-
ering velocity auto-correlation fluctuations, where simulations of glass- 
forming hard-core systems indicated the relationship between rigidity 
and viscoelasticity [51]. The dynamical gap in the transversal dynamical 
structure factor was used as an alternative to test rigidity, in agreement 
with general ideas that view or understand liquids as perturbed solids 
[52,53]. For k < kc fluctuations have almost zero frequency, so these 
modes can be regarded as floppy. It turns out that kc can be interpreted 
as an order parameter in rigidity transitions, which is useful even for the 
Kosterlitz-Thouless transition [54]. 

Previous explorations of space-time rigidity were carried out for very 
idealized systems that do not form strong bonds [51,54]. In fact, for 
organic glasses it is known that bond angle contributions and polymer 
chain lengths increase relaxation times [1,39,40]. These factors have not 
been addressed in space-time dependent constraint theory for inorganic 
glasses. The aim of this work is to present a short revision of the topic of 
fluid rigidity, and to apply dynamical rigidity ideas to more realistic 
glass-forming fluid models. 

The layout of this work is the following. In Section 2 we present a 
general introduction on how to use density-density correlations to test 
the space-time rigidity of fluids. Therein we present the simulation re-
sults for chalcogenides and in particular, for Te. As the results are similar 
to those obtained for hard-core potential fluids, in Section 3 we present a 
simple model to rationalize such computational result. Finally, the last 
section is devoted to the conclusions. 

2. Correlations approach to space-time rigidity of fluids 

In this section we will discuss how the density-density correlations 
can provide valuable information about the rigidity of fluids. Then we 
will turn our attention to compute the response of a typical network 
glass former. As explained in the introduction, the hallmark of a solid is 
the presence of rigidity against shear strain and thus the presence of 
transversal phonons. These collective mode behavior is captured by 
studying density and velocity correlations, in particular by the trans-
versal part JT of the atoms current correlation as a function of k and ω, 
defined as [49,55], 

JT(k,ω) =

∫ ∞

0
dte− iωtJT(k, t) . (1)  

where JT(k, t) is the transversal current density correlation function, 

JT(k, t) =
〈〈

j*T(k, t)⋅jT(k, 0)
〉

k

〉
, (2)  

and the brackets 〈〈…〉k〉 represent an ensemble average which is taken 
after an average over all wave vectors k with the same norm k = ∣ k∣. The 
function jT(k, t) is the transversal density current, 

jT(k, t) =
1̅̅
̅̅̅̅

2N
√

∑N

j=1
k̂ × vj(t)exp

(
ik⋅rj(t)

)
. (3)  

where k̂ = k/k. In the previous expressions, vj(t) and rj(t) are the ve-
locity and position of atom j at time t. The transversal dynamical 
structure factor (ST(k,ω)) is related with the transversal current corre-
lation by [49], 

JT(k,ω) =
ω2

k2 ST(k,ω) (4) 

In a similar way, we define the longitudinal current, 

jL(k, t) =
1̅̅
̅̅̅̅

2N
√

∑N

j=1

[
k̂⋅vj(t)

]
k̂exp

(
ik⋅rj(t)

)
, (5)  

from where JL(k,ω) and SL(k,ω) are obtained using the correlation JL(k, 
t) = 〈〈jL*(k, t) ⋅ jL(k,0)〉k. JT(k, t) satisfies the transverse part of the 
linearized Navier-Stokes equation. In its most general expression this is 
written as [49], 

JT(k,ω) =
2v2

0k2K ′

T(k,ω)
[
ω + k2K ′′

T(k,ω)
]2

+
[
k2K ′

T(k,ω)
]2 (6) 

In the previous expression, v0
2 = JT(k,0) while KT(k,ω) is a complex 

memory function, with real KT
′(k,ω) and imaginary KT

′′(k,ω) parts. The 
memory function KT(k,ω) results from the Fourier transform of the shear 
viscosity (memory) function KT(k, t) which satisfies [49], 

∂
∂t

JT(k, t) = − k2
∫ t

0
KT(k, t − t

′

)JT(k, t
′

) (7) 

The simplest model for the shear viscosity function assumes an 
exponential relaxation of the type, 

KT(k, t) = KT(k, 0)e− t/τk , (8)  

where τk is a k-dependent relaxation time. It must satisfy τ0 = η/G∞(0), 
with G∞(k) the k-dependent high-frequency shear modulus and η the 
viscosity. This expression coincides with the Maxwell relaxation time for 
a viscoelastic fluid. By taking a Fourier transform of Eq. (8) we obtain 

K ′

T(k,ω) = KT(k, 0)
τk

1 + ω2τ2
k

(9)  

and 

K′′
T(k,ω) = KT(k, 0)

ωτ2
k

1 + ω2τ2
k
. (10) 

Several relaxation processes can be taken into account by using a 
Prony series made from a superposition of memory functions [56]. To 
have shear wave propagation and thus rigidity, a resonant condition is 
required in Eq. (6). Using Eq. (10), we must have k2KT(k,0) > 1/2τk

2. As 
k → 0, KT(k,0) decreases much faster than τk, and eventually the 
inequality breaks for a critical kc such that 

k2
c KT(k, 0) =

1
2τ2(kc)

. (11) 

For k < kc, the maximum of JT(k,ω) for a fixed k is at ω ≈ 0, while for 
k > kc the maximum occurs at ω > 0 and transversal modes appear. This 
phenomenon is known as the dynamical gap [53]. As an example, in 
Fig. 1 we present JT(k,ω) and JL(k,ω) obtained by Y. Zhou and S. Volz 
from a molecular dynamics simulation of amorphous superionic Li2S in 
its liquid state at 1100 K. We refer the reader to the original reference for 
the simulations details [55]. Fig. 1 a) shows a peak for JT(k,ω) that 
occurs at ω ∕= 0. This indicates the presence of transversal modes. In spite 
of this, there is a substantial nonzero response for ω = 0, indicating that 
k is close to kc. On the contrary, Fig. 1 b) shows that for JL(k,ω), the 

H.M. Flores-Ruiz et al.                                                                                                                                                                                                                         



Journal of Non-Crystalline Solids: X 15 (2022) 100117

3

response at ω = 0 is zero. 
Let us now discuss the case of typical network glass formers, in this 

case chalcogenides. Rigidity effects in such glasses are well known and 
studied [18,57,58]. Chalcogenides, as for example pure Se or Te, do 
have floppy modes, that is, ω ≈ 0 vibrational modes, which are associ-
ated with rotations of dihedral angles in chains [57–60]. 

For Se, the bonding is of Van der Waals origin, and it is easily 
destroyed by thermal agitation. For the case of Te, the metallic character 
is much stronger and has more structure in the liquid [61–63]. This is 
corroborated in Se viscoelasticity measurements and simulations, which 
show unequivocally that, in the polymeric fraction, chemical bonds are 
broken or reformed with an average frequency that depends on tem-
perature [42,63–65]. The dynamic character of bonds poses a problem 
when dealing with rigidity theory for fluid Se, although in principle this 
can be solved by using temperature dependent constraints [66]. On the 
other hand, Te is interesting because it keeps many bonds in the liquid 
phase and is known to exhibit several anomalous thermodynamic fea-
tures [67,68]. Due to these reasons, in this work we will study a Te fluid. 

Many experiments and simulations reported in the literature study 
the total dynamical structure factor S(q,ω) = ST(q,ω) + SL(q,ω) for 
chalcogenide glasses [57,69–71]. On the other hand, only a few of those 
analyze its longitudinal and transversal components separately. 

In this work, numerical simulations are used to obtain JT(q,ω) and 
ST(q,ω). As Te is quite a complex fluid, instead of assuming a classical 
force model, we decided to do a quantum-mechanical electronic struc-
ture ab-initio molecular dynamics simulation. Therein, forces are 
computed on-the-fly from quantum-mechanical calculations [72]. A 
trade-off is thus made between system size and the inclusion of quantum 
mechanical effects. Here, simulations are made using the Car-Parrinello 
Molecular Dynamics technique [73] for a system of 300 Te atoms. The 
NVT ensemble and periodic boundary conditions are employed. The 
simulation time-step and the fictitious electron mass are 0.024 fs and 
1500 a. u., respectively. The valence electrons are considered or 
included explicitly by means of a Troullier-Martins norm-conserving 
pseudopotential [74], in a plane wave basis set with an energy cutoff of 
20 Ry. The exchange-correlation energy is approached by the PBE 
functional [75]. The Grimme scheme [76] is then considered to improve 
the dispersion forces, while the experimental densities [67] are used in 
order to find or determine the size of the simulation cubic boxes. Table 1 
summarizes the temperatures and experimental densities [67] 

considered. In general, these systems are simulated at temperatures of 
2000 K, 1800 K, 1500 K and 1200 K, for a time of 15 ps at each tem-
perature, and subsequently at the target temperatures for a time of 50 ps 
[77]. 

In Fig. 2 we present JT(k,ω) for liquid Te at temperature T = 823 K 
using several k values. The lowest k value is k1 = 2π/L where L is the 
sample length. Fig. 2 shows that for k1 = 2π/L, JT(k,ω) presents a 
maxima near ω = 0 for k1 with a substantial response at ω = 0. For k6 =

12π/L and k10 = 20π/L, the maxima are blue shifted. In spite of this, the 
system still is flexible as there are floppy modes, seen here in the pres-
ence of a response for ω = 0. Similar results are obtained at different 
temperatures for the liquid phase. These results are similar to those 
shown in Fig. 1. 

To test the validity of the previous results, we can compare our nu-
merical JT(k,ω) and JL(k,ω) with its experimental counterpart J(k,ω). In 
Fig. 3 we present the frequency ν = ω/2π and energy of the highest peak 
for JT(k,ω), JL(k,ω) and J(k,ω) compared with the results reported from 
the experiment [78]. Our simulation is in general agreement with such 
experimental report. Also, the resulting radial distribution functions and 
speeds of sound show a fair agreement with experiments [71,79]. 

At this point it is worth while mentioning that the experimental 
measurement and presence of the transversal rigid response is difficult 
to asses [80,81]. Convincing experimental evidence is hampered by its 
loosely resolved and feeble spectral signatures. Moreover, usual spec-
troscopic methods like Inelastic Neutron (INS) and X-ray Scattering 
(IXS) are intrinsically unfit to assess the transverse polarization of an 
acoustic mode in S(k,ω) unless sided by a parallel computational effort 
[81]. Thus, although several computer simulations indicate that a shear 
response should be observed, yet more advanced experimental probes 
and statistical methods are needed [81]. In the following section we will 

Fig. 1. Panel (a), JT(k,ω) for amorphous superionic Li2S in 
its liquid state at 1100 K for the lowest wave-vector k = 2π/L, 
with L the linear system size. The filled circles were obtained 
from a molecular dynamics simulation while the solid curves 
are fittings using a Lorenzian function akin to Eq. (6). These 
data show a peak near frequency 0.5 THz and a nonzero 
response for frequency 0 THz. Panel b), JL(k,ω). The response 
is zero for frequency 0 THz. Reprinted with permission from 
Yanguang Zhou and Sebastian Volz, Phys. Rev. B 103, 
224,204 (2021). Copyright 2021 by the American Physical 
Society.   

Table 1 
Temperatures and experimental densities selected 
for Te in order to determine the size of cubic simu-
lation boxes.  

T (K) ρexp (gr/cm3) [67] 

773 5.7618 
910 5.6708 
1173 5.4694  
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discuss how to interpret the simulation results found in the present 
section. 

3. Statistical mechanics approach to the rigidity of glass former 
fluids 

The surprising lesson from Figs. 1 and 2 is that such results turn out 
to be quite similar to those obtained for a hard-core potential fluid 
[51,54]. In fact, earlier works highlighted the striking resemblance of Te 
viscoelasticity with other metallic liquids like Rb [71,79]. At this point, 
it is interesting to compare our results with a central experimental work 
on liquid metals [50]. Giordano and Monaco found that liquid sodium 
exhibits acoustic excitations of both longitudinal and transverse polar-
ization at frequencies strictly related to those of the corresponding 
crystal. The only relevant difference between the liquid and the 

polycrystal was found in the excitations broadening [50]. Our simula-
tion is in agreement with such remarkable experimental finding. Yet, as 
in liquid Te there is a competition between twofold and threefold local 
coordination that leads to chain and ring formation [62,68], it is not 
obvious why it should display a rigidity akin to a hard-core system 
typical of liquid metals. 

In fact, the open question here is why such a network glass former is 
akin to a hard-sphere fluid. Although we do not attempt to give an exact 
account of the previous result, we can provide a plausibility argument in 
the spirit of rigidity theory by adapting arguments from polymer rigidity 
[82]. We consider first a general Hamiltonian for such a system by 
including bonding and excluding volume effects, 

H = Hb +Vnb. (12) 

Vnb is an interaction potential that takes into account excluded 

Fig. 2. JT(k,ω) for Te at 823 K for the lowest non-zero wave-vector k1 = 2π/L, as well as for two other values of k. Notice the reduction in the response for ω = 0 as k 
grows, indicating fewer flexible modes, identified here with floppy modes. Note that ω = 2πν, where ν is the frequency. 

Fig. 3. Frequency (energy) of the maximal current JL(k,ω) 
(black circles) and JT(k,ω) (red circles) as a function of ω for 
Te at 773 K as obtained from the present computer simula-
tion. The maxima of the total current J(k, ω) (green di-
amonds) is compared with the experimental results (blue 
triangles) as reported in Ref. [78]. The order of magnitude 
and overall behavior is the same, discrepancies are mainly 
due to the limited size of the system and simulation time. The 
lines are only a guide to the eye. Note that ω = 2πν, where ν 
is the frequency. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web 
version of this article.)   
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volume effects, 

Vnb =
1
2
∑

i,j
u
(
rij
)
, (13)  

where rij is the distance between atoms i and j and u(rij) is for example, a 
Lennard-Jones or hard-core potential. Hb is a Hamiltonian that takes into 
account the kinetic energy and potential due to bonding inside chains 
and rings (Vb). It can be written by using a flexible model, 

Hb =
1
2
gμνpμpν +Vb, (14)  

where the Einstein summation rule over repeated indices is implied and 
the mass is unitary. pμ, qμ are suitable momentum and generalized co-
ordinates for each atom, and gμν is a metric induced by the change of 
coordinates between the Cartesian and curvilinear sets [83]: 

gμν = δi,j
∂xi

∂qμ
∂xj

∂qν, (15)  

where δi, j is the Kronecker delta-function. Next suppose that there are n 
degrees of freedom, c constraints and f = n − c flexible coordinates, 
associated with floppy modes [18]. Constraints can be introduced by 
assuming harmonic springs with spring constants κ such that κ → ∞. The 
potential energy Vb is written as, 

Vb =
1
2

κYA,BqAqB +Vb(qα), (16)  

where A, B = f + 1, . . , n are all labels for the constrained coordinates qA 

and qB, YA, B a positive-definite matrix that contains the couplings be-
tween constrained coordinates, and α = 1, …, f are the labels for the 
flexible coordinates (qα). Next we consider a strain-ensemble of chains 
with prescribed end-to-end vector R. The partition function of Hb is 
given by 

Zf (R,T) = (2πkBT)(n+c)/2κ− c/2
⃒
⃒YA,B

⃒
⃒− 1/2Df (R). (17)  

here, kB is the Boltzmann constant, ∣YA, B∣ the determinant of YA, B and 
Df(R) the volume, in configurational space, of the subspace Γα defined by 
all flexible coordinates, 

Df (R) =
∫

Γα

⃒
⃒gαβ

⃒
⃒1/2

0 e− Vb(qα)/kBT
∏f

α=1
dqα (18)  

where |gαβ|0 is the reduced metric associated with the flexible subspace 
by taking the constrained coordinates at their zero values [83]. For the 
case of a chain with one free end and fixed bond length a0, fixed valence 
bond angles θ0 and with flexible dihedral angles, we have 
⃒
⃒gαβ

⃒
⃒1/2

0 = (a0sinθ0)
NM (19)  

where NM is the number of atoms in the chain. In the case of perfectly 
floppy coordinates, V(qα) = 0, we can recover the result that the free 
energy and entropy is dominated by a term proportional to the number 
of floppy modes [84], as from Eq. (17), 

F ≈ − fkBTln[ν(Γα) ], (20)  

where ν(Γα) is an adimensional length, 

ν(Γα) =

∫ qα
max

0

⃒
⃒gαβ

⃒
⃒1/2f

0 dqα (21)  

associated with channels in phase-space due to floppy modes [85]. For a 
polymeric chain, ν(Γα) = (2π sin θ0)a0 as f = NM/3 (notice that here we 
are using adimensional units lengths as, for simplicity, the partition 
function has not been normalized to the Planck constant h). We now 
calculate the partition function of the whole Hamiltonian Eq. (12) 

including the non-bonding interactions. The only difference is that now 
Df(R) is given by 

Df (R) =
∫

Γα

⃒
⃒gαβ

⃒
⃒1/2

0 e− [Vb(qα)+Vnb(qα) ]/kBT
∏f

α=1
dqα. (22) 

If we consider a hard-core potential, Vnb(qα) = 0 whenever hard- 
spheres do not overlap and Vnb(qα) = ∞ otherwise. Then we have 

Zf (R,T) = (2πkBT)(n+c)/2κ− c/2
⃒
⃒YA,B

⃒
⃒− 1/2[Df (R) − Df ,0(R)

]
, (23)  

where Df, 0(R) is the inaccessible area of Γα due to the hard-core 
interaction. 

Now we consider many chains under deformation each identified by 
an index l = 1, …, M that runs over all chains, each with NM atoms. In 
that case, the end-to-end vector R0(l) of chain l in the initial reference 
configuration is related to that after the deformation (R(l)), by [82]. 

Ri(l) = sijR0
j (l), (24)  

where Ri(l) is the i-th component of R(l) and sij is the element of a matrix 
that defines the deformation. If now n and c are the total number of 
degrees of freedom and constraints considering all M chains, the parti-
tion function in the strain ensemble can be written is terms of such 
deformation as 

Zf
(
sij, T

)
= h(T)

[
Df

(
sij
)
− Df 0

(
sij
) ]

, (25)  

where h(T) is a function that only depends on T, 

h(T) = (2πkBT)(n+c)/2κ− c/2
⃒
⃒YA,B

⃒
⃒− 1/2

. (26) 

This partition function is made from a purely T-dependent factor 
times a purely entropic one. In the strain-ensamble, the internal energy 
is given by [82]. 

U = −
∂

∂β
logZf

(
sij, T

)
=

dh(T)
dT

, (27)  

with β = 1/kBT, and the internal stress given by 

V Tij =
∂

∂sij
(U − TS) = − kBT

d
dsij

S. (28)  

here V is the volume, Tij is an element of the first Piola-Kirchoff tensor, 
and S is the entropy, defined as 

S = − kBTlog
[
Df

(
sij
)
− Df 0

(
sij
) ]

. (29) 

As we can see, the stress has a purely entropic contribution as long as 
the chains do not break. This helps to explain why Fig. 2 closely re-
sembles the results of hard-core systems, basically the network effect is 
to reduce the entropy when compared with the hard-core fluid, and this 
contribution can be factored out as long as the chains do not reform too 
much. In other words, the entropy simply gets renormalized. On the 
other hand, this is not the case if the network has substantial changes 
with temperature or pressure. 

That is the case for systems like Se. For the Se liquid we must 
consider that: 1) chains, rings, 2) entanglements and 3) orientations are 
not frozen. The mean length of the Se chain-molecule is about 104 atoms 
near the melting point and decreases quickly with increasing tempera-
ture, resulting in about dozens of atoms per chain near the boiling point 
[64,86,87]. In fact, the dynamic structure factor of Se looks very 
different from the typical ones for monoatomic liquids [58,63,87]. 
Recent simulations identified three mechanisms of relaxation and aging 
near the glass transition [65]. Slowing down of atomic mobility, relax-
ation driven by diffusion (well described by a defect-enhanced diffusion 
model) and decay of bonds. These first two effects were identified before 
on metallic Lennard-Jones glass [88]. In addition, bond breaking 
without diffusion seems to be a particularity of covalently-bonded 
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liquids [65]. Chain and ring breaking effects can be captured in a rigidity 
model by considering that each breaking reduces the constraints [66], as 
the limit κ → ∞ cannot be strictly taken in Zf(R,T). Concerning entan-
glements, there are some rigidity models used for organic systems that 
can be useful to understand inorganic glasses, as e.g. the temporary 
network model [89]. Yet, their relevance in the context of inorganic 
glasses needs to be addressed. For example, in liquid Se, the slow 
relaxation mode is due to entanglement of –Se–Se–Se– chain segments 
[46]. Chain orientation is another important factor that leads to a 
plateau in the dynamical properties, falsely adscribed by many authors 
to entanglement networks [90]. 

4. Conclusions 

In conclusion, we have discussed how viscoelasticity and correla-
tions provide valuable information about rigidity of inorganic network 
glass forming fluids. This is exemplified here by considering the case of 
Te. For this system, our Car-Parrinello molecular dynamics simulations 
indicated that the rigidity is akin to the one seen in hard-core fluids, as 
for example in typical liquid metals. To rationalize such result, here we 
used a mechanical model in a strain ensemble. As very strong bonds are 
kept in the liquid, the entropy of the flexible coordinates renormalizes 
the whole entropy and thus the fluid behavior is determined by the 
excluded volume effects of the hard-core potential. Therefore, as long as 
the network is not substantially reformed in the liquid, the system can be 
regarded as a hard-core fluid with renormalized parameters. 

For other chalcogenides as Se, chain reformation, entanglement and 
orientation are factors to be included but still it is not clear how to relate 
them with the experimental and numerical simulation side. The vast 
literature devoted to the rheology of organic glasses can help enor-
mously [89]. A better understanding of such topics is needed in order to 
solve the current debate concerning what to expect in the structure of 
glasses around the rigidity intermediate phase [91,92]. Finally, more 
research is needed on the dynamical aspects of heterogeneity in rigidity, 
which is a major hallmark of glassy dynamics [48], and on new probes to 
experimentally asses the rigidity of fluids [81]. 
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gexasxs100â̂’2x ternary glasses, J. Alloys Compd. 868 (2021), 159101, https://doi. 
org/10.1016/j.jallcom.2021.159101. 

[39] R.C. Picu, J.H. Weiner, Stress relaxation in a diatomic liquid, J. Chem. Phys. 108 
(12) (1998) 4984–4991, https://doi.org/10.1063/1.475907. 

[40] R.C. Picu, G. Loriot, J.H. Weiner, Toward a unified view of stress in small- 
molecular and in macromolecular liquids, J. Chem. Phys. 110 (9) (1999) 
4678–4686, https://doi.org/10.1063/1.478351. 

[41] C.W. Macosko, R.G. Larson, Rheology: Principles, Measurements, and Applications, 
Vch New York, 1994. 

[42] G. Faivre, J.L. Gardissat, Viscoelastic properties and molecular structure of 
amorphous selenium, Macromolecules 19 (7) (1986) 1988–1996, https://doi.org/ 
10.1021/ma00161a035. 

[43] Y. Gueguen, V. Keryvin, T. Rouxel, M.L. Fur, H. Orain, B. Bureau, C. Boussard- 
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