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Abstract
This is an update of a previous review (Naumis et al 2017 Rep. Prog. Phys. 80 096501).
Experimental and theoretical advances for straining graphene and other metallic, insulating,
ferroelectric, ferroelastic, ferromagnetic and multiferroic 2D materials were considered. We
surveyed (i) methods to induce valley and sublattice polarisation (P) in graphene, (ii)
time-dependent strain and its impact on graphene’s electronic properties, (iii) the role of local
and global strain on superconductivity and other highly correlated and/or topological phases of
graphene, (iv) inducing polarisation P on hexagonal boron nitride monolayers via strain, (v)
modifying the optoelectronic properties of transition metal dichalcogenide monolayers through
strain, (vi) ferroic 2D materials with intrinsic elastic (σ), electric (P) and magnetic (M)
polarisation under strain, as well as incipient 2D multiferroics and (vii) moiré bilayers
exhibiting flat electronic bands and exotic quantum phase diagrams, and other bilayer or
few-layer systems exhibiting ferroic orders tunable by rotations and shear strain. The update
features the experimental realisations of a tunable two-dimensional Quantum Spin Hall effect in
germanene, of elemental 2D ferroelectric bismuth, and 2D multiferroic NiI2. The document was
structured for a discussion of effects taking place in monolayers first, followed by discussions
concerning bilayers and

∗
Authors to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

1361-6633/24/016502+46$33.00 1
© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1361-6633/ad06db
https://orcid.org/0000-0002-1338-1522
https://orcid.org/0000-0001-7404-9630
https://orcid.org/0000-0002-2490-7606
https://orcid.org/0000-0002-5789-1954
https://orcid.org/0000-0002-4301-3317
mailto:naumis@fisica.unam.mx
mailto:sbarraza@uark.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6633/ad06db&domain=pdf&date_stamp=2023-11-28
https://creativecommons.org/licenses/by/3.0/


Rep. Prog. Phys. 87 (2024) 016502 Review

few-layers, and it represents an up-to-date overview of exciting and newest developments on the
fast-paced field of 2D materials.

Keywords: 2D materials, strain, moiré, electronic properties, optical properties, piezoelectricity,
ferroic properties
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1. Motivation and Update’s structure

One Review of strain and the electronic and optical properties
of graphene and other 2D materials appeared six years ago
[1]. Exciting advances since then include (1) strain on lateral
superlattices; (2) non-linear Hall effects, Berry dipoles, and
exotic quantum phase diagrams due to strain in graphene; (3)
the experimental verification of piezoelectricity in hexagonal
boron nitride (hBN) monolayers; (4) the creation of strain by a
sudden thermal quenching during 2D material growth and the
effects of strain on the optical properties of transition metal
dichalcogenide (TMDC) monolayers; (5) the role of strain on
2D phase transitions in 2D ferroelectrics and ferromagnets; (6)
twisted (moiré) 2D materials exhibiting flat electronic bands;
(7) the role of local and global (and even time-dependent)
strain on superconductivity and topological phases of twis-
ted few-layer graphene; (8) magnetoelectric couplings on 2D
magnetic bilayers; among others. Previous list of topics con-
tains strained monolayers (topics 1 through 5) and few layers
(topics 6 through 8) under strain. Strain is an integral part of the
field of 2D materials, and recently synthesised 2D materials
such as (Quantum SpinHall) germanene, (elemental ferroelec-
tric) bismuth monolayers, and (magnetoelectric multiferroic)
NiI2 monolayers–all adding functionalities and additional 2D
material platforms–are featured here as well.

The Update is written to reflect that order: section 2 lists
experimental techniques to strain 2D materials, section 3 con-
tains a discussion of strained graphene, piezoelectric hBN
monolayers, strained TMDC monolayers, ferroelectric and
magnetic 2Dmaterials under strain, and section 4 is devoted to
strained bilayers and multilayers (including moirés, ferroelec-
tric and antiferroelectric bilayers, as well as engineered mul-
tiferroic bilayers). Recently synthesised 2D materials appear
within those sections. Conclusions are presented in section 5.

2. Experimentally available methods to strain 2D
materials

The most common strategy for straining 2Dmaterials involves
placing them into flexible polymer substrates, which are bent
or stretched afterwards [1]. Nevertheless, adhesion is usually
weak, preventing strain from being fully transferred [2]. This
limitation calls for novel techniques to produce strain, and the
following processes are being pursued to that end:

(i) Propagating potential traps induced by surface acoustic
waves (SAWs) in h-BN encapsulated bilayer WSe2 [3].

(ii) Time-dependent piezoelectric substrates [4].
(iii) Reversible ion intercalation in multilayers [5].
(iv) Stain created by electromagnetic fields [6–8].
(v) Nanoindentation under scanning tunnellingmicroscopes

(STMs) for reversible strain under tip-induced electric
fields [9, 10].

(vi) Folding (origami) [11, 12], cutting (kirigami) [13], or
both [14].

(vii) Polymer encapsulation of both surfaces of the 2D
material [15, 16].

(viii) Moiré superlattices [17–19].
(ix) Coherent lateral superlattices on TMDCs [20–24], and

on group-IV monochalcogenide monolayers [25].
(x) Thermally-induced strain on 2D materials undergoing

2D phase transformations [26].
(xi) Patterned substrates or nanopillars with prescribed

geometries [27–31].
(xii) Strain created by the substrate monolayers are grown on

[32, 33].
(xiii) Nanobubbles [34–38].

Prior to undertaking the main task of this Update, it may
be necessary to reassess the physical meaning of mechanical
strain and to disclose the definition followed here. Before the
atomistic hypothesis was born, strain was a measure of mech-
anical stress and of the elasticity of bulk materials at finite
temperature, without concern for their microstructure. In this
sense, strain is an out-of-equilibrium mechanical modification
of a material. Examples of this definition include topics (i)
through (vi) in the list above.

But, sometimes strain is also thought of as a modification
of a ‘pristine’ (crystalline) zero-temperature lattice. In other
words, though a lattice may be in mechanical and thermal
equilibrium (and hence unstrained in the strictest sense of
the word), its lattice parameters or atomic positions may
have changed with respect to those in the pristine scenario.
Examples of that definition of (permanent–or quasi-permanent
in case a nano-bubble were to explode, or temperature changed
through a 2D phase transition) strain include processes (vii)
through (xiii).

Both uses of the word strain are employed by the com-
munity, and it is important to make the point that those defin-
itions are not identical.

The effect of strain on materials’ properties is studied in
what follows.

3. Strained monolayers

Strain affects the electro-optical properties of 2D materials
due to the stretching, bending and torsion of chemical bonds.
Stretching has the largest effect because it alters electronic
hopping between atoms the most [39].

3.1. Updates on graphene strain engineering

The most common theoretical approaches for graphene’s
strain engineering are tight-binding (TB) methods, the low
energy approximation in a continuum or within a discrete lat-
tice, and density-functional theory (DFT) calculations [1].

Aiming for continuity of the theoretical descriptions, the
notation and definitions used in [1] will be maintained. For
example, graphene’s zero-temperature lattice vectors are still
given by:
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a1 = a

(
−
√
3
2
,
3
2

)
, and a2 = a

(√
3
2
,
3
2

)
, (1)

where a= 1.42Å is the distance between carbon atoms.
Standard notation for atomic displacements induced by strain
is kept unchanged as well, so that atomic positions under
deformation are given by this field:

r ′ = r+(ux (r) ,uy (r) ,h(r)) , (2)

with in-plane displacements given by u= u(r) =
(ux(r),uy(r)) and out-of-plane displacements denoted by
h= h(r), where r= (x,y) is a 2D position vector. The strain
tensor ϵ̄ (with components εµν) is related to the deformation
field as follows:

εµν =
1
2
(∂µh∂νh)+

1
2
(∂µuν + ∂νuµ) , µ,ν = x,y. (3)

3.1.1. Correcting second- and third-nearest neighbour inter-
actions on empirical tight-binding Hamiltonians. There are
quantitative discrepancies between calculated electronic prop-
erties using DFT and TB methods without ab initio input.
The π-electron TB Hamiltonian for strained graphene is given
by [1]:

H=−
∑
r ′,n

tr ′,d ′
n (r)c

†
r ′cr ′+d ′

n (r) +H.c., (4)

where r ′ runs over all sites of the deformed honeycomb lat-
tice and the hopping integral tr ′,d ′

n (r) varies due to changing

interatomic distances. The operators c†r ′ and cr ′+d ′
n (r) create

an electron at r ′ and annihilate another at r ′ + d ′
n(r). Vectors

d ′
n(r) include multiple nearest neighbours and thus update

equation (51) in [1], which included first-nearest neighbours
only.

Considering up to third-nearest neighbours, the dis-
agreement between DFT and a first-nearest neighbour TB
Hamiltonian without ab initio corrections was tracked down
to an angular dependence of the TB hopping parameters for
second- and third-nearest-neighbours [40]. Figure 1 shows that
the TB parameters up to third-nearest neighbours are modi-
fied depending on the angle of the tensile deformation. The
radius of the blue and red circles in figure 1 is the deviation
from the TB hopping parameter. Large corrections of the TB
Hamiltonian are observed in second- and third-nearest neigh-
bour interactions [40]; those corrections must be added to
the Hamiltonian set up by Hasegawa et al [41] to describe
graphene under tensile strain appropriately.

3.1.2. Corrections of empirical TB Hamiltonians due to spin–
orbit coupling. In-plane strain leads to quadratic corrections
on spin–orbit coupling [42]. Out of plane deformations, on the
other hand, hybridise π-orbitals with σ−electrons and produce
a first-order contribution in the spin-orbit interaction strength
[43] with three contributions [42]:

Hso =HA1 +HB2 +HG ′ , (5)

Figure 1. Effect of a uniform (15%) tensile deformations at different
angles θ on TB hopping parameters. Three sets of lattice vectors for
different values of θ are shown in the main plot, while the tensile
deformation is shown as an inset. The radiuses of the circles indicate
the strength of hopping parameters from an atom centred at the
origin. The colour red (blue) indicates a positive (negative) hopping
parameter. The colour map corresponds to the angle θ, which varied
from 0 to π. Second- and third-nearest neighbour interactions
require a larger relative correction when compared to first-nearest
neighbour interactions. Reprinted with permission from [40].
Copyright (2018) American Chemical Society.

where the labels A1, B2, and G′ represent the irreducible rep-
resentations of the group C ′ ′

6 , which results from consider-
ing a

√
3×

√
3 supercell with six atoms. The non-primitive

cell was employed to avoid dealing with degenerate states at
two inequivalent Dirac points [42]. The corrections give rise
to a Kane–Mele mass and to a Rashba-like coupling, which
is present only when a mirror symmetry is broken [42]. Both
coupling effects are weak (in the 1− 15µeV range [42, 44]).

3.1.3. Low-energy effective models: Dirac equation with
pseudomagnetic vector potentials. Low-energy models for
non-interacting electrons in graphene with (in-plane) strain
and (out-of-plane) flexural deformations [44–48] have found
unusual applications, such as the holographic imaging of black
holes [49], and other proposals for cosmological models [50].

Other studies relying on low-energy approximations dwell
on the optical and electronic properties of graphene [51, 52],
on curvature-induced quantum spin-Hall effects in Möbius
strips [53], on the topological Hall effect in strained twisted
graphene bilayers with enhanced interactions [54], and on the
valley-dependent time evolution of coherent electron states in
tilted anisotropic Dirac materials [55]. In addition, the optical
properties of massive anisotropic tilted Dirac materials [56],
valley polarisers and filters [57], the creation of complex mag-
netic fields [58] or of Landau levels in curved spaces [59],
the propagation of pseudo-electromagnetic waves [60], and
comparisons between twistronics and straintronics in twisted
bilayers of graphene and TMDCs [61] have also appeared in
the literature.
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The low-energy continuum approximation takes a Dirac
equation in two dimensions and a minimal coupling to effect-
ive pseudo-electromagnetic fields. The dynamics may include
additional contributions caused by π−σ band hybridisation
(which is proportional to curvature) and/or by external elec-
tromagnetic fields. Nevertheless, this approach only works for
small deformations; something most clearly seen when per-
forming the low-energy approximation at each unit cell within
the atomistic lattice [62].

Under large strain, higher-order contributions give rise to
sizeable pseudomagnetic fields [63, 64]. Those corrections
to the low-energy approximation can be captured through
gradient expansions in real space. According to Roberts and
Wiseman, corrections with nontrivial frame contribute at the
same order as higher covariant derivative terms, and there-
fore ought to be included [64]. Comparisons against numerical
diagonalisation of the empirical TBmodel seem to be in agree-
ment with their observations [65]. An effective Hamiltonian
for non-uniform strain taking the displacement of Dirac points
into account looks as follows [66, 67]:

Hps =− ih̄σ · v̄(r) ·∇− vFσ ·As (r)
− h̄vFσ ·Γs (r)+σ0V(r) , (6)

where the position-dependent Fermi velocity tensor v̄(r) is
given by:

v̄(r) = vF (σ0 + ϵ̄(r)−βϵ̄(r)) , (7)

with vF the Fermi velocity (vF/c≈ 1/300, where c is the speed
of light in vacuum), σ = (ησx,σy) is the Pauli matrix vec-
tor and η =±1 labels the valley, and σ0 is the 2× 2 identity
matrix. In turn, the (deformation) scalar and (pseudomagnetic)
vector potentials are given by:

V(r) = g(εxx+ εyy) and (8)

As (r) = (Ax,Ay) =
h̄β
2a

(εxx− εyy,−2εxy) , (9)

respectively. The dimensionless coefficient β≈ 2.0–3.0 [68]
measures the effect of the deformation on the first-nearest
neighbour TB hopping parameter. The coupling g has been
renormalised to about 4 eV [69].

The l-component of the corresponding complex vector field
Γs(r) (l= x,y,z) is:

Γs,l =
∑
j

i
2vF

∂jvlj (r) =
∑
j

i(1−β)

2
∂jϵlj (r) . (10)

Unlike As, Γs is purely imaginary and cannot be inter-
preted as a gauge field [67, 70]. Experimental signatures
of the imaginary field remain elusive, but the term may
become important at boundaries. (Boundaries are accoun-
ted for in effective-mass approaches of semiconductor het-
erojunctions by establishing consistency relationships that
match atomically-resolved TB states to boundary envelope
wave functions [71].) One is to remember that the low-energy
approach for strain engineering is a semiclassical approach

that mixes real and reciprocal space pictures, which breaks
down at boundaries (periodic within neighbouring cells [62]
or at edges) unless treated with care.

Indeed, a consistent treatment of boundaries within
graphene strain engineering remains lacking. Nevertheless,
multiple deformation fields are uniquely determined by
boundaries and by sharp strain profiles: as it is the case in semi-
conductor heterojunctions, effective theories based on envel-
ope wave functions call for supplemental boundary conditions
of the form ψ =Mψ to retain hermiticity, and for self-adjoint
extensions to preserve currents [72–75]. M is a matrix con-
taining microscopic details and symmetries, and ψ is the elec-
tron/hole wavefunction at the boundary. Here, Γs(r) restores
hermiticity. The need for non-Hermitian corrections can also
be ascertained by the breakdown of hermiticity as phasors
do not add up to zero within individual unit cells under non-
homogeneous strain [1, 62].

Debus, Mendoza and Herrmann matched the Hamiltonian
in equation (6) and the more common version (denoted
with the superindex c here) by means of the following
transformations [76]:

vµ =
√
geiµ, Aµ =

√
geiµA

c
i , Γ =

√
geiµΓ

c
i , (11)

where

eiµ =
gai+ δai

√
g√

Tr(g)+ 2
√
g
, (12)

gµν is the metric tensor associated with strain, δai is the
Kronecker delta,

√
g the square root of the determinant of the

metric tensor, and Tr(g) =
∑

µ gµµ is its trace.
The position-dependent Fermi velocity tensor components

obtained from equation (6) were validated on graphene under
uniaxial strain εxx, and used to tune the sensitivity factor of a
graphene pressure sensor GF= ((∆R)/R)/εxx, where R was
the resistance and ∆R the change of R due to strain [77].
Modifications of optical properties under uniaxial strain are
detailed elsewhere [78, 79].

On samples with large out-of-plane deformations, σ−π
orbital hybridisation leads to corrections [47, 80]:

Vπσ (r) =−g1
(
∇2h

)2
(13)

that must be added to the scalar potential V(r). Here, g1 =
α(3/4)a2 and α≈ 9.23 eV.

3.1.4. Electrostatic effects due to substrates. Substrate
deformations can also make the on-site energies vary. Such
deformation potential [68] can be treated by decomposing the
interaction into a smooth spatial effective potential Vsub(r)σ0
[47] and, if the substrate produces a bipartite symmetry break-
ing, an extra term ∆V(r)σz = (VA(r)−VB(r))σz [44], which
measures the difference of the electrostatic potential in the A
and B sublattices [81].
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Figure 2. (a) Tip-induced tearing and folding at a step edge. Inset:
zoom-in of the folded edge. (b)–(d) Folded graphene on a graphitic
surface. Insets are snapshots taken prior to folding. Reprinted with
permission from [82]. Copyright (2022) by the American Physical
Society. (e), (f) Graphene folding with specific chirality. (g)
Localised electronic states at folds. From [83]. Reprinted with
permission from AAAS.

3.1.5. Cut and folded graphene: sublattice and valley
polarisation. The tearing and subsequent folding of the
topmost graphitic layer by an STM tip is depicted in figure 2
[82]. There, the tip approaches graphite right before a step
edge, moving across it afterwards (figure 2(a)) [82]. As a res-
ult, the tip (i) tears and (ii) folds the uppermost monolayer
(figures 2(b)–(d)), creating nonuniform strain at the folded
edge. The effects of the resulting effective gauge potential
were seen by dI/dV measurements taken at locations marked
by circles in figures 2(e) and (f) [85]. The splitting of dI/dV
peaks (and their weight redistribution) in figure 2(g) are mani-
festations of localised states on folded graphene [82, 83].

One-dimensional electronic bands were created along the
longest fold in figure 2(d). There, the axial direction of the
fold turned out to be parallel to graphene’s armchair direc-
tion, and the experimental electronic density [82] was con-
trasted against a linear chain TB Hamiltonian model, where
the strain appears as a modulation of hopping parameters and
self-energies [1]. According to the model, the flat bands are
topological in nature [86]. Folds also create curvature [87] that
pushes π-electrons onto the outer side of the fold [80]. The cre-
ation of valley polarisation through folds will be discussed in
subsequent pages.

Wu et al [84] (figure 3) revealed a Coulomb blockade, so
that their fold acted as a quantum dot. Linear folds as the one
in figure 3(a) [84, 88–90] were theoretically studied using con-
tinuous models with effective pseudomagnetic fields and TB

Figure 3. (a) Scanning electron microscope image of a graphene
fold (dark line within cyan dashed rectangle). (b) Hall bar device
created within the cyan rectangle in (a): graphene is encapsulated
with hBN, and Hall bar contacts are made. (c) Device image: side
contacts to graphene are labelled G1 and G2, while contacts to the
graphene fold (nanowire) are N1 and N2. The red dashed line
between blue lines highlights the linearly-shaped strain region.
Reprinted with permission from [84]. Copyright (2018) American
Chemical Society.

models. Those folds feature bands originating from a mass
term in the Dirac equation [91]. Calculations using the Dirac
equation in a continuum and including strain were consist-
ent with measured bound state energies, and predicted valley-
polarised currents [84], opening an avenue for graphene folds
as straintronic quantum wires [92, 93].

Triangular periodic ripples in suspended graphene were
found in another work. There, bending was limited to a region
few unit cells wide [94]. Triangular ripples are unlike the
sinusoidal ripples found in fabrics.

The effects of folds in the electronic structure are modeled
with effective pseudomagnetic fields within a continuum
picture [95]: one considers a pure deformation perpendicular
to graphene’s plane, i.e. u(r) = 0. From equations (3) and (9),
one gets:

V(r) =
g
2
|∇h|2, and (14)

As (r) = (Ax,Ay) =
h̄β
4a

(∂xh∂xh− ∂yh∂yh,−2∂xh∂yh) . (15)

By the definition of uniaxial fold, the deformation field is
constant in one direction, say (h(x,y) = h(y)). If periodic, it is
expressed by a Fourier expansion:

h(y) =
kc∑

k=−kc

ake
iky, (16)

in which the Fourier coefficients obey a−k = a∗k (because h(y)
is real), and kc is a cutoff parameter that can be estimated
from experiment [95]. This way, As(r) has only one non-zero
component [95]:

Ax (y) =
h̄β
4a

[∑
k

akke
iky

]2
. (17)

Equation (17) implies that ∇·As(r) = 0, so that As(r)
is in the Coulomb gauge. Thus it can be derived from a
pseudoscalar magnetic potential:

Ai = ϵij∂jΦ(r) , (18)

6
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with i, j = x,y and εij a 2D Levi-Civita tensor. ExpressingΦ(y)
as a Fourier series:

Φ(y) = Φ0 (y)+
∑
k̸=0

eikyΦ̃(k) , (19)

with

Φ0 (y) =
h̄β
4a

(∑
k

k2|ak|2
)
y, (20)

and

Φ̃(k) =−i h̄β
4ak

[∑
k ′

aka
∗
k ′−kk

′ (k ′ − k)

]
. (21)

The associated pseudomagnetic field becomes:

Bs =∇2Φ (r) . (22)

Φ0(y) does not produce a pseudomagnetic field, but instead
an Aharonov–Bohm effect manifested by a phase change
along closed circuits enclosing folds. AsAs(r) is derived from
Φ(r), zero-modes can always be found for any fold with an
arbitrary cross-section (periodic, random, quasi-periodic, etc
assuming a large unit cell for the periodic function h(y)), and
being topologically protected, their existence is independent
of V(r). Using equation (6) for E= 0, two wave functions are
obtained:

ψ± (r) = (const.)(1±σz)

(
eΦ(y)

e−Φ(y)

)
, (23)

where σz is the Pauli z-matrix. Those topological modes
appear as a consequence of the Atiyah-Singer theorem, and
correspond to soliton solutions of the Dirac equation with a
space-dependent mass [96].

This approach permits exploiting similarities with the
integer quantum Hall under a random magnetic field [97]. In
such field, the vector potential is given by a gaussian distri-
bution with zero mean and variance ∆A. The average of the
coefficients in equation (19) can be expressed as:

⟨Φ̃(k)Φ̃(k ′)⟩= (2π)2 δ (k− k ′)
∆A

k2
. (24)

From this analogy with real magnetic fields it can be con-
cluded that the wave-function is multifractal [97]. The mul-
tifractal localisation can be determined from the participation
ratio moments Pq(L) where L is the sample length [98]:

Pq (L) = ⟨|ψ (r) |2q⟩, (25)

from where it follows that [97]:

Pq (L)≈
1

L2+τ(q)
, (26)

with

τ (q) = 2(q− 1)+
∆A

π
q(1− q) . (27)

Such multifractal conductance fluctuations have been
measured in high-mobility mesoscopic graphene devices
under external magnetic fields [99]. In addition, edge modes
arising in graphene under periodical strain-induced pseudo-
magnetic fields have been contrasted to those arising under
real, periodic magnetic fields [86, 100].

It is now time to address the creation of sublattice charge
imbalance, which can be visualised in local density of
states (LDOS) calculations and dI/dV STM measurements
[62, 91, 101–103]. Strain-induced sublattice imbalances cre-
ate an energy separation of the two pseudospin degrees of
freedom due to the pseudomagnetic field Bs. The creation
of charge imbalance can be seen by squaring graphene’s
Dirac Hamiltonian with the strain-induced pseudo-magnetic
field Bs:

E2ΨA = vF
2
[
π2 + eh̄Bs

]
ΨA,

E2ΨB = vF
2
[
π2 − eh̄Bs

]
ΨB, (28)

where E is the electron’s energy, vF the Fermi velocity, ΨA

(ΨB) the wave function amplitude on the A (B) sublattice,
and π the canonical momentum. The term proportional to Bs
appears with opposite signs at each sublattice, shifting their
energy in opposite directions and leading to a (Zeeman-like)
pseudospin (sublattice) polarisation.

An STM setup was designed to induce and visualise sublat-
tice imbalance [101]. Similar to [104], the tip lifted graphene
from the substrate, creating a gaussian-shaped deformation
that moved along with the tip (see figures 4(a) and (b)) and
a pseudomagnetic field with 3-fold symmetry (figure 4(c)).
dI/dV measurements (figures 4(d)–(g)) performed by the
same STM tip show increasing sublattice LDOS imbalance
with increasing tip current. Analytical expressions for sub-
lattice contrast [103] and molecular dynamic simulations
showed good agreement with experiment. Gaussian deforma-
tions have been proposed as valley filters [84, 105–110], and as
Aharonov–Bohm interferometers [111]. Strain fields similar to
those created by gaussian-like deformations were observed in
graphene nanobubbles [34].

Producing valley-polarised states is the aim of valleytron-
ics [113, 114]. However, there are important differences
between graphene’s valley, sublattice, and spin degrees of
freedom: spins can be controlled by magnetic fields dir-
ectly, and the sublattice can be polarised directly by strain
as well. Unfortunately, controlling the valley polarisation of
charge carriers in graphene is not that straightforward [46].
For example, while a real magnetic field BR splits spin polar-
ised states, a pseudo-magnetic field Bs does not split valley
polarised states [46].

Some types of strain can be employed to control the valley
pseudospin of graphene’s carriers [112, 115–118]. Depicted
in figure 5, one method involves the combination of strain-
induced pseudo-magnetic fieldsBs and real magnetic fieldsBR
[116, 117]. The approach works because Bs points in opposite
directions at each valley to satisfy time-inversion symmetry,
while the direction of BR is the same for all carriers. This way,
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Figure 4. Sublattice symmetry breaking by gaussian deformations
in graphene. (a) Gaussian deformation induced by an STM tip
(amplitude H= 1Å, width b= 5Å). (b) The deformation (black
dashed line) follows the STM tip (whose atomistic structure is
depicted by red atoms and a blue apex), leading to the apparent
STM image (blue curve) which is lifted with respect to the relaxed
one (red curve). Yellow bars represent tunnelling currents. (c)
Pseudomagnetic field pattern of the gaussian deformation of panel
(a). The brightness corresponds to the LDOS calculated from a first
nearest neighbour TB Hamiltonian. Insets (white squares) are areas
of maximum Bs. (d)–(g) Constant-current STM images of the same
graphene area. Hexagons and the two sublattices were overlaid. The
LDOS is higher in the sublattice corresponding to the red dots at
higher currents. Reprinted with permission from [101]. Copyright
(2017) American Chemical Society.

magnetic and pseudo-magnetic fields add up in one valley, and
suppress one another at the other valley, leading to different
energy locations of Landau levels for each valley K±:

En± ∼
√
n|BR±Bs|. (29)

Thus, energy levels of theK+ valley are pushed up, while those
of the K− valley are pushed down.

This effect was observed in rippled graphene grown on rho-
dium foil [112, 119–121]: atomically-resolved STM images
along the ripple reveal compressive strains along graphene’s
zigzag direction (figure 5(a)). A TB Hamiltonian accounting
for deformations along the ripple was used to approximate the
resulting pseudo-magnetic field Bs, which was non-uniform
along the ridge of the ripple (dropping to zero and reversing
its sign) as shown in figure 5(b).

Spectra recorded at different positions along the ripple for
BR = 0 T (figure 5(c)) show pseudo-magnetic Landau levels
only at points where Bs ̸= 0. The (n ̸= 0) pseudo-magnetic
Landau levels further split in two when a magnetic field is
introduced. This splitting is only seen at points along the
ripple where both Bs and BR are nonzero, in agreement with
equation (29).

The valley energy levels invert their energy as the pseudo-
magnetic field Bs changes sign in equation (29): beyond their
valley polarisation, charge carriers also exhibit valley inver-
sion along the ripple becauseBs reverses sign along the y direc-
tion (figure 5(b)). This is shown at the top panel of figure 5(d):

Figure 5. Valley polarisation and inversion in a graphene ripple. (a)
STM image. Dots mark positions where tunnelling spectra was
measured. The pseudo-magnetic field measured in the region
between the two dashed curves was zero and valley-polarisation was
not detected in Landau levels there. (b) Pseudo-magnetic field Bs
along the arrow in panel (a). (c) Three tunnelling spectra measured
at different positions in panel (a) at BR =0 T. Pseudo-Landau level
indexes were marked. (d) Tunnelling spectra curves measured at
different positions in panel (a) at BR =11 T. The indexes for the
Landau levels are indicated. The subscript + (−) represents Landau
levels at the K+ (K−) valley. Reprinted (figure) with permission
from [112]. Copyright (2020) by the American Physical Society.

the energy levels of valleyK+ (n+ = 1,2,3) lie lower in energy
than those of the K− valley (n−) when Bs is positive. Bs is
negative at the lower panel of figure 5(d) and the levels split
again, but now the order is inverted and the LLs of the K+ val-
ley appear at higher energy than those of the K− valley. The
non-strained region where the Bs reverses its direction is not
necessary to create valley polarisation, but it is critical for val-
ley inversion.

3.2. Graphene superlattices

The focus on this section are periodic patterns on graphene.

3.2.1. Strain-modulated superlattices. There is a comprom-
ise between the magnitude and the spatial extent of magnetic
fields at the nanoscale: fields created by large magnets tend
to be homogeneous across the samples’ dimensions, while
inhomogeneous fields produced by micromagnets or by super-
conducting gates are rather weak. However, strain makes it
possible to produce pseudogauge fields Bs(r) that are strong
and vary at nanometer scales.

For instance, strong and inhomogeneous pseudo-magnetic
fields were created in graphene deposited on Cu foils in [122]
(figure 6): those foils exhibit flat terraces separated by vertical
steps up to ∼35 nm in height. Graphene drapes over the steps
when it is grown, becoming pulled by contact forces at the ter-
races. This gives rise to a periodically modulated strain profile
in the (vertical) draped region, and to a graphene superlattice
with pseudomagnetic fields of alternating signs modelled in
figure 7(a).

The nanometer-scale modulation of the pseudomagnetic
field affects the electronic spectrum in radical ways. Indeed,
the spectrum does not exhibit Landau quantisation of Dirac
fermions of the form En ∝

√
n, but to a quantisation appear-

ing linear in energy (En ∝ n). Although a similar type of
quantisation can occur due to confinement, such explanation
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Figure 6. (a) STM topography showing draped graphene over a
step separating two terraces. The draped section forms ripples due to
strain. (b) STM topography around a step edge, highlighting
locations at which measurements were taken. Reprinted with
permission from [122]. Copyright (2020) American Chemical
Society.

Figure 7. (a) A model of Dirac electrons in an alternating magnetic
field with period LB is used to understand the dI/dV features of
graphene on a draped step (figure 6). (b) LDOS as a function of LB
for |B|= 160 T. The black curve depicts Landau levels in graphene
with energy peaks at En ∝

√
n. As LB is reduced (blue trace) until it

has the same order of magnitude of the magnetic length (red curve),
the LDOS turns drastically different from that created by Landau
levels, with peaks becoming almost equally spaced. Plots were
offset for clarity. (c) and (d) Additional calculations reproduce the
spatial variation of the quantised states. (c) Strained and (d)
unstrained plus pseudopotential TB models capture features
observed in the experimental spectroscopy along the ripple (blue
arrow in figure 6(b)). Reprinted with permission from [122].
Copyright (2020) American Chemical Society.

is discarded because the gap between peaks is independ-
ent of the ripples’ wavelength [122]. Instead, calculations
with a TB model indicate that this quantisation is a con-
sequence of a pseudomagnetic field oscillating with a period
LB of the same order of magnitude than the magnetic length
(lB =

√
h̄/eBs).

To reproduce the LDOS spectra, Banerjee et al considered
both the pseudomagnetic and deformation potential fields cre-
ated by the periodic strain [122]. Figures 7(c) and (d) contrast

Figure 8. (a) Graphene on nanopillars. (b) Schematics of a graphene
membrane supported on a pillar (red arrow) and the resulting
strain-induced ripples (blue arrows). Reprinted with permission
from [28]. Copyright (2017) American Chemical Society.

the calculated LDOS from a TB Hamiltonian considering the
strained graphene system, and those based on a Dirac equation
with a periodic pseudomagnetic field and electric potential of
the form:

Bs = Bmax sin(4π y/λ)ez, (30)

V= Vmax cos(4π y/λ) , (31)

respectively. Both types of calculations showed good agree-
ment with experimental measurements [122]. Strain patterns
with alternating zones of up/down pseudomagnetic fields
can create valley-Hall edge states, which could be observ-
able at room temperature due to the pseudo-magnetic fields
(Bs ∼ 100T) that can be experimentally created: graphene
ripples might provide a platform for valley-dependent electron
transport.

3.2.2. Inducing strain via patterned substrates. Methods to
induce pre-designed strains are highly desirable, and a prom-
ising avenue is to support graphene on patterned substrates
[28, 123–126] which create a network of wrinkles (figure 8).
Depending on the height-to-separation ratio of those pillars,
sections of graphene might rest on the substrate, or the entire
monolayer may be suspended like a canopy.

Estimations of strain with a STM are usually derived from
dI/dV spectra. Nevertheless, the magnifying effect of moiré
patterns allowed to characterise the strain in graphene directly
in [28]. The setup consisted of a gold nanopillar array over a
hBN flake, which produces a moiré due to the mismatch with
graphene (see figure 9). The pillar-induced strain on graphene
modifies the moiré [127], making it possible to quantify the
strain in graphene (whose maximum value turned out to be
about 4.5%) with standard STM resolution. The measured
strainwas in agreementwith estimationsmade from the energy
separation of pseudo-Landau levels from the dI/dV spectra.
Such levels of strain would have been difficult to detect dir-
ectly without the additional moiré pattern, which allowed for
a 20-fold increase in atomistic precision.

Similar rectangular nanostructure arrays were used to strain
graphene in [126]. There, wrinkles–quasi-1D ‘channels’ with
a near-uniform pseudo magnetic field–developed on graphene
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Figure 9. (a) Scanning electron microscopy image of graphene over
gold nanopillars (white spots) and strain-induced ripples (lines in
between nanopillars). (b) STM topography of graphene at a region
away from the nanopillars. The dI/dV curve shown as an inset
displays the characteristic ‘V-shape’ of unstrained graphene. (c)
Fourier transform of the image shown in (b). The superlattice
reflects a moiré pattern between graphene and an hBN flake. (d)
Measured moiré pattern on strained graphene over the nanopillars
(top) and simulated model (bottom). The supercell is shown in black
in both panels. (e), (f) Moiré pattern and its Fourier transform on the
strained graphene lattice and the hBN substrate at the position
marked by the red square in (a). Arrows are the lattice vectors of the
distorted graphene. Reprinted with permission from [28]. Copyright
(2017) American Chemical Society.

when it was placed between two nanostructures having a crit-
ical separation. Calculations revealed that parallel arrays of
those channels can be used to realise valley polarisation. Other
works have studied strained graphene over SiO2 nanospheres
[124], or over black phosphorus substrates [128].

3.2.3. Second harmonic generation on sublattice-polarised
graphene. As discussed in section 3.1.5, a non-zero sub-
lattice imbalance (this is, an in-plane electric polarisation
P) can be created by strain that breaks the inversion sym-
metry of the graphene lattice. Sublattice charge imbalance
has also been verified through optical second-harmonics: the
schematics on figure 10(a) show graphene on nanopillars
again (see figures 8 and 9), and this sample is irradiated
with a pump laser at 1035 nm. Figure 10(b) is a measure of
strain through Raman spectra: according to [129], the sample
is non-uniformly strained up to ∼2.4% by the nanopillar
array. The temperature-dependent peak at half wavelength
(1035/2 nm) displayed in figure 10(c) confirms the creation
of a second harmonic on non-uniformly-strained graphene.
That a pseudomagnetic field can be obtained from within
atomistic displacements was stated in [102], and the fact
that the polarisation differs in between lattices under aniso-
tropic strain can be traced down to the fact that the effect
on the diagonal entries of the Dirac Hamiltonian can be
written as [81]:(

Es,A 0
0 Es,B

)
= Ēσ0 +∆Eσz, (32)

Figure 10. (a) Strained graphene on a nanopillar array gives rise to
second harmonic generation. (b) The shift of Raman 2D peak
verifies the strain on graphene. (c) Temperature-dependent emission
at 1035/2 nm. Since the wavelength of the pump laser is 1035 nm
is, emission at half-wavelength confirms the creation of SHG.
Reproduced from [129]. CC BY 4.0.

where Ē= (Es,A+Es,B)/2 and ∆E = (Es,A−Es,B)/2.
Second-harmonic generation has also been experimentally

employed to sense strain in MoS2 monolayers [130], and it is
a powerful and promising technique suitable for strain char-
acterisation of arbitrary 2D materials. More will be said on
structures lacking a centre of inversion, on the existence or cre-
ation of electric dipoles, and on second harmonic generation
in forthcoming pages.

3.2.4. Flat-band superconductivity in strained graphene.
The absence of superconductivity (SC) in intrinsic graphene
(with its Fermi energy located at the zero-density Dirac point)
is expected from the Bardeen–Cooper–Schrieffer (BCS) the-
ory: in the limit of small DOS at the Fermi level ρ(EF), that
theory indicates a critical temperature depending exponen-
tially on the coupling strength λ, Tc ∼ e−1/(|λ|ρ(EF)) [131], and
a large charge doping would be required to produce a Tc of a
few Kelvin.

Because flat bands enhance electronic interactions, strained
graphene can be of interest for studying many-body phases
arising due to a flat electronic spectrum. Flattening of the elec-
tronic bands provides an alternative to increase the DOS and
hence to induce SC, because the BCS theory leads to a linear
dependence between Tc and the coupling strength λ, Tc ∼ λ
[132–134] for large ρ(EF).
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Now, although large magnetic fields can induce flat bands
(Landau levels), they also break time reversal symmetry
and suppress (singlet) SC order. This is due to the Zeeman
effect, which causes alignment of the electron spins and
breaks Cooper pairs. Strain-induced flat bands, on the other
hand, do not break time reversal symmetry and open the
possibility to engineer SC [133–139]. Furthermore, one can
choose the strain field’s symmetry, period, and strength sep-
arately. (This situation is unlike that observed in twisted
bilayer graphene (TBG), where the corresponding paramet-
ers are mostly determined by the moiré pattern. Note that flat
bands can also be created in few-layer rhombohedral graphene
[140].)

Strain-induced flat bands in graphene are due to wave-
functions localised at domain walls where the strain-induced
potential changes sign [134, 141]. This permits mapping the
system into a continuum Jackiw–Rebbi model with pseudo-
Landau levels [141]. In fact, an exact Su–Schrieffer–Hegger
(SSH) model is obtained when the momentum is set parallel
to the direction of the strain modulation [134]. Interestingly,
the inclusion of the electron–electron interaction leads to mag-
netic domains and a pairing effect [141]. A model for super-
conductivity in graphene with strain-induced flat bands was
studied in [139], and it is discussed next. Strain was added
to the low-energy dispersion of graphene via periodic (1D or
2D cosine) pseudo-vector potentials As of period d and strain
strength u0 (see equation (9)):

A1D
cos (x,y) =

h̄u0
d

(
0,cos

2π x
d

)
, or (33)

A2D
cos (x,y) =

h̄u0
d

(
cos

2π y
d
,cos

2π x
d

)
, (34)

which can be realised by the following in-plane displacement
fields:

u1Dcos (x,y) =−u0a
βπ

(
0,sin

2π x
d

)
, or (35)

u2Dcos (x,y) =−u0a
βπ

(
0,sin

2π y
d

+ sin
2π x
d

)
, (36)

(see figures 11(a) and (b)) with β the Grüneisen parameter for
graphene. The vector potentials can be obtained from these
displacement fields by following equations (3) and (9), and the
notation in [139] was modified for consistency with the one
used here. The resulting pseudomagnetic field Bs = |∇×As|
is shown in figures 11(c) and (d). (The pseudomagnetic field
strength (Bs ≈ 100 T) and period (d≈ 14 nm) visualised in
experiments [142] would lead to u0≈ 5 for the displacement
fields defined here.)

The SC state was modeled by the Bogoliubov–de Gennes
mean-field theory [143] once strain was introduced, assum-
ing an intervalley local attractive interaction leading to a
s-wave pairing ∆ order parameter (figures 11(e) and (f)).
Critical values are studied as a function of the interaction

Figure 11. (a), (b) Displacement fields in graphene leading to
pseudo vector potentials A1D

cos and A
2D
cos (the amplitudes were

increased for clarity). (c), (d) Corresponding pseudomagnetic fields
Bs =∇×As. (e), (f) Corresponding (sublattice-dependent) SC
order parameter ∆A/B (A orange, B blue), which peaks at the
extreme values of Bs. Adapted from [139]. © IOP Publishing Ltd.
All rights reserved.

strength. The low-energy states of strained graphene exhibit a
sublattice polarisation that follows the pseudo-magnetic field
and, accordingly, the SC order parameter ∆A/B is sublattice-
dependent. ∆A/B always peaks at the largest value of the
pseudomagnetic field. This situation can be contrasted against
TBG, where∆ is localised around AA stacking regions for the
first-magic angle.

The electronic energy dispersion of graphene with strain
fields and without them is shown in figure 12. The case with
A1D
cos is shown both in the mixed and reduced zone schemes for

easier comparison. Substantial band flattening occurs at low
energies, similar to those observed in TBG.

The SC order parameter∆ exceeds the flat-band bandwidth
for high enough values of the strain strength u0 and the inter-
action strength λ, and its dependence is linear in λ [132–134].
At lower values of u0 and λ, the dispersive behaviour of the
bands becomes important and the order parameter is exponen-
tially suppressed.

While the buckled graphene studied by Mao et al [142]
is a promising platform for correlated phenomena, it is not
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Figure 12. Low-energy electronic dispersion in the normal state of
unstained (orange) and strained (blue) graphene for the 1D cosine
potential A1D

cos (subplots (a) and (b)) and the 2D cosine potential A2D
cos

(subplot (c)). The dispersion arising from a 1D strain is shown in
both the mixed and reduced zone schemes for better visualisation.
Adapted from [139]. © IOP Publishing Ltd. All rights reserved.

in the flat band regime (where the linear dependence ∆∼ λ
occurs) and it would require increasing the strain strength u0
by a factor of 4 in order to lead to a SC transition at a temper-
ature on the order of 1 K. Moreover, for this strain strength,
Peltonen and Heikkilä [139] estimated a transition temperat-
ure of ≈11 K for a period d≈ 8 nm. The calculation is done
using the same λ estimated for TBG [144]. SC could still be
possible for lower strain fields outside of the flat band regime,
but a Tc well under 1 K would be expected. Regardless, the
possibility of having tunable SC and order parameters via
strain is attractive, and the generality of the model might be
of relevance in the study of SC in other graphene systems
like TBG–where intrinsic strain is always present (more on
this later).

Correlations were introduced in a similar model
of periodically strained graphene via a spatially-
dependent antiferromagnetic coupling [138], showing
that a chiral, d-wave SC can be stabilised via strain as
well.

3.2.5. Flat electronic bands and electron-electron correla-
tions in buckled graphene. It was just argued that flat
bands are a necessary ingredient to create superconductivity in
graphene. Additional approaches to achieve flat electron bands
are arising because of that.

Figure 13. (a) Buckled graphene with pseudomagnetic field Bs
indicated in false colour. (b) The local density of states shows the
formation of an effective, large-scale honeycomb lattice.
Valley-projected band structure of the graphene superlattice across a
path in the mini-Brillouin zone (c) without strain, and (d) with
buckling-induced strain. Reprinted with permission from [145].
© IOP Publishing Ltd. All rights reserved.

Stiff membranes can undergo a buckling transition when
exceeding a critical value of in-plane compressive strain
(because out-of-plane distortions reduce the elastic energy of
the membrane). Those distortions lead to periodic strain pat-
terns, which in turn create periodic pseudomagnetic fields that
(as seen in the previous section) can give rise to flat electronic
bands [142].

Triangular buckling patterns consisting of alternating crests
and troughs have been observed in graphene deposited over
NbSe2 [142]. Those superstructures had a height modulation
of 0.17 nm and a period of about ab = 14.4 nm. A schem-
atic of buckled graphene is shown in figure 13(a). In the crest
regions, the dI/dV spectra exhibited peaks that were identi-
fied as the pseudo-Landau levels induced by a pseudomag-
netic field Bs (En ∼ sgn(n)

√
|n|Bs for n= 0,±1,±2, . . .), con-

firming the existence of a pseudo-magnetic field with a mag-
nitude of about Bs = 108 T. Furthermore, sublattice polarisa-
tion, a hallmark of the wavefunction of the n= 0 pseudo-
Landau level, was visualised through STM measurements at
crests and troughs [142]. The sublattice polarisation (A or B)
seen in the STM measurements changes when moving from a
crest to a trough, indicating a change in the sign of Bs between
these two regions (there was no sublattice polarisation at the
interface between crests and troughs, indicating that Bs = 0
there).

The dI/dV spectra and the pseudo-Landau levels were
described by a TBmodel of graphene in the presence of a peri-
odic pseudo-magnetic field with triangular symmetry [142]:
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Bs (x,y) = B [cos(b1 · r)+ cos(b2 · r)+ cos(b3 · r)] , (37)

where B is the amplitude of the pseudo-magnetic field, ab
the superlattice period, b1 = 2π

ab
(1,− 1√

3
), b2 = 2π

ab
(0, 2√

3
) and

b3 = b1 + b2. The choice of coordinates is consistent with C6

symmetry and with the fact that the total pseudo-magnetic flux
has to vanish (since time-reversal symmetry is not broken by
strain). When the sample is doped to partially fill the n= 0
pseudo-Landau level, a pseudo-gap feature splits the peak in
two, indicating the appearance of a correlation-induced state.
Moreover, a spectral weight redistribution between the two
peaks is observed when doping away from charge neutrality.
Similar signatures have been observed upon partially filling
the flat band of magic-angle TBG.

Milovanović et al studied the flat bands in periodically
buckled graphene [146] considering three different geomet-
ries: a triangular pseudo-magnetic field mode (experimentally
observed in [142]), a hexagonal bucklingmode (which leads to
a pseudo-magnetic field similar to the ones obtained for gaus-
sian bumps and bubbles), and a herringbone buckling mode
corresponding to an undulating 1D strain pattern. The herring-
bone buckling has the lowest energy of those three configura-
tions at large strain.

The amplitudes and periods of pseudo-magnetic fields
required to access correlated phases were ascertained by com-
paring the bandwidth∆E to the characteristic energy scale for
the interactions, EI. The critical pseudo-magnetic field takes
this form when employing the triangular pseudo-magnetic
field mode [146]:

Bint
n = cnΦ0/S, (38)

at which ∆E= EI for the nth band. Φ0 is the magnetic flux
quantum and S is the area of the unit cell. In the triangular
pseudo-magnetic field mode, c1 = 6.5 for the lowest band. For
the next band c2 = 4.4. Because higher bands have smaller
bandwidths and are also gapped, they might also be relevant
for studies of correlated phenomena.

Bands are not as flat in the hexagonal buckling mode:
broader LDOS peaks indicate that this pseudo-magnetic field
cannot localise electrons efficiently. Similarly, the herring-
bone mode does not exhibit a gap opening nor flat bands, even
for strains as large as 20%. This is a consequence of this buck-
ling mode being the lowest-energy configuration: the average
strain in the herringbone mode is generally half of that dis-
played in the hexagonal mode (and its pseudo-magnetic field
is even an order of magnitude smaller).

Buckled graphene superlattices do not localise charge car-
riers fully. Spatial regions in between those undergoing large
pseudo-magnetic fields turn into percolating paths, along
which charge carriers propagate. This is seen in the longit-
udinal conductance, which shows peaks coinciding with the
LDOS [146] and confirms the non-localised nature of flat band
states.

Electron–electron interactions were introduced by a
Hubbard term in a TB model for buckled graphene [147]:

H=−t
∑
s

∑
⟨i,j⟩

c†iscjs+U
∑
i

c†i↑ci↑c
†
i↓ci↓, (39)

while strain was introduced by modifying the hopping ener-
gies connecting the three nearest neighbours tn = t+ δtn (n=
1,2,3) with

δtn =−
√
3evFLM
4π

sin(bn · r) , (40)

and the model was solved with the non-collinear mean field
formalism for U= t [147].

They found correlated states at values close to LM/lm ≈ 6.
While the system remained gapless in the non-interacting case,
an emergent magnetic state with a non-homogeneous mag-
netisation and a correlation gap of∆≈ 0.01t (consistent with
experiment [142]) was obtained when interactions were turned
on. The correlated state is not expected to arise for pristine
graphene at the same value ofU. The strain-induced band flat-
tening is essential for such magnetism to emerge, because it
creates a bandwidth ∆E smaller than the Hubbard interaction
U (∆E/U∼ 0.2). The periodic magnetisation patterns give
rise to an emergent honeycomb superlattice with antiferro-
magnetic ordering. The regions of highest LDOS can be under-
stood asWannier orbitals, and the sign of the net magnetisation
at a given region follows the sign of the pseudo-magnetic field.
The magnetic ordering decays as the system is doped away
from half filling, a result consistent with experiment [142].

Because of the strain-induced crests and troughs in the
superlattice, an electric field impinging along the z-direction
can induce non-homogeneous local energy shifts, which
are modeled via height-dependent onsite energies µ(r) =
µ0
∑3

i=1 cos(bi · r) in the TB Hamiltonian. This term creates
sublattice imbalance in the emergent honeycomb superlattice,
and competes with the magnetic ordering, thus holding poten-
tial for electrically tuning the magnetic ground state, and for
exploring the interplay between strain-induced gauge-fields
and electron-electron interactions.

Manesco and Lado [145] derived an effective model for the
emergent honeycomb lattice that arises in buckled graphene
(figures 13(a) and (b)). The minima and maxima of Beff(r)
contain the highest LDOS, and were considered as Wannier
orbitals. The effective TB model for the emergent honeycomb
lattice includes sublattice imbalance and a valley-dependent,
second-nearest neighbour hopping. Remarkably, such model
turns out to be fully analogous to the Kane–Mele model for
a spin quantum Hall insulator [148, 149]. Here, the valley
isospin plays the role of spin, and the superlattice’s mini-
valleys play the role of the valleys. Due to the height variation
in the buckled graphene, out-of-plane displacement fields
increase (or decrease) the energy of states at the Beff(r) max-
ima (minima). In the effective model, this is equivalent to
increasing the sublattice imbalance, which in turn acts as a
knob to tune the system’s topology.
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Onsite and nearest neighbour Hubbard terms were part
of the effective model (with interaction strengths U and V,
respectively), and a mean field approach was used. Two dif-
ferent ground states (a charge density wave and an antifer-
romagnetic state) were found at different values of U and V
[145]. Each ground state creates different sublattice imbal-
ances and, as in the Kane–Mele model, this leads to topolo-
gical transitions.

Indeed, the valley Chern number was calculated for differ-
ent values of the interaction-induced sublattice imbalance, and
both the charge density wave and antiferromagnetic phases
in the interacting phase diagram can be further divided into
topologically trivial and nontrivial phases. Analogous to the
Kane–Mele model, the non-trivial phases are quantum val-
ley Hall insulators that exhibit counter-propagating edge states
with opposite valley polarisation. Edge states are further spin-
polarised in the topologically non trivial antiferromagnetic
phase.

A closely related phenomena is the curvature-induced spin-
Hall effect in a graphene Möbius strip. The solution of the
Dirac equation shows that despite the absence of a Hall cur-
rent, a spin-Hall current is a natural consequence for such a
topology [53]. Other works have studied topological phases
arising from strain and its interplay with interactions in
graphene [100, 116, 136, 150–152]. Buckling was also shown
to allow control of topological edge states via electric fields in
germanene [153].

The results within this subsection place buckled graphene
at the interface of strain, flat bands, correlations, and valley
topology.

3.2.6. Adatom-induced graphene superlattices. Massive
and massless charge carriers were observed on caesium-doped
graphene; a systemmodelled as a strained quantumwell [154].
Extended flat bands were reported for this system in a later
work [155].

3.2.7. Short-wavelength periodic lattice deformations: Kekulé
and other

√
3×

√
3 patterns. Adatoms within substrates,

localised mechanical probes, and electron-electron interac-
tions induce short wavelength lattice modulations on graphene
[156]. This subsection is focused on the paradigmatic case
of Kekulé patterning observed on graphene deposited over a
Cu(111) single crystal (and dubbed Kek-Y) [157] and on Li-
intercalated graphene (Kek-O) [158]. As depicted in figure 14
by bonds of two different strengths, Kekulé patterns have few
hopping strengths changed within a

√
3×

√
3 periodic super-

cell (shown by dashed lines within the figure). Two Kek-Y
structures–related by a reflection with respect to the vertical
line–are shown in figure 14 as well [159].

A study on strongly-interacting electrons in hexagonal
lattices [160] will be highlighted now. Figure 15 presents
graphene (a semimetal (SEM): this is, an electronic sys-
tem with interactions turned off), an antiferromagnetic insu-
lator (AFI), the Kek-O superlattice (renamed as ‘dimerized
insulator’ (DIM) in [160]), and a lattice with a hexagonal

Figure 14. The Kek-O (subplot (a)) and two possible Kek-Y
honeycomb structures (subplots (b) and (c)): as schematically
indicated by thicker or thinner lines, bond strengths are different.
The

√
3×

√
3 unit cells were drawn with dashed lines. The two

Kek-Y structures are related by a reflection with respect to a vertical
line.

distortion (dubbed HEX). Those will turn out to be compet-
ing phases on the honeycomb lattice.

One sets graphene onto a Hubbard model Hamiltonian with
an additional elastic energy term [161]:

H({txy}) =−
∑

σ=↑,↓

∑
⟨x,y⟩

txy
(
c†x,σcy,σ + h.c

)
+U

∑
x

(
nx,↑ −

1
2

)(
nx,↓ −

1
2

)
+
∑
⟨x,y⟩

F(txy) .

(41)

The cx,σ on equation (41) are fermion annihilation operators
at lattice site x with spin σ. The occupation number of such
site is nx = c†x,σcx,σ. The on-site repulsion U can have any
sign as long as it is the same for all lattice sites. The first
nearest-neighbour hopping integrals tx,y between sites x and
y are real, as there is no magnetic field, and are assumed posit-
ive although not necessarily independent of the x,y pair (x and
y here do not denote Cartesian components but different sites
within the Honeycomb lattice). The TB parameters txy depend
on the physical distance rxy between the lattice sites x and y,
and are usually assumed to decay exponentially [1].

The main addition in equation (41) with respect to
equation (39) is the elastic distortion energy F(txy), which
makes the updated Hamiltonian depend on the distortions of
the lattice. The configurations {txy} that minimise the ground
state energy, including all periodic, nonperiodic and chaotic
structures depend on a Peierls-type of instability of the bond
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Figure 15. Competing phases when electron-electron interactions
and deformations are included: (a) semimetallic (SEM) graphene,
(b) honeycomb antiferromagnetic insulator (AFI), (c) Kek-O or
dimerised Kekulé-like insulator (DIM), and (d) distorted hexagonal
(HEX) insulator. The labels tA, tB and tC are hopping integrals for
the corresponding TB models used in the kinetic part of a Hubbard
Hamiltonian that includes the elastic energy due to elastic distortions
given in equation (41). Reprinted (figure) with permission from
[160], Copyright (2018) by the American Physical Society.

lengths similar to the one employed in the archetypical poly-
acetylene chain model [162, 163]–also known as the SSH
model.

Frank and Lieb demonstrated that only periodic, reflection-
symmetric distortions are allowed on the

√
3×

√
3 supercell

[161] in the thermodynamic limit, and figure 15 presents all
the possible structures satisfying such criterion.

A phase diagram based on (quantum) DiffusionMontecarlo
(DMC) simulations is provided in figure 16 [160]. The figure
presents a comparison between the ground state energies of the
competing phases seen in figure 15 for isotropically strained
graphene, as obtained fromDMCandDFT, and it also includes
the magnitude of the enthalpies when the lattice is under
stress. DMC produces the lowest enthalpy when compared
to unperturbed graphene. For uniform graphene strain in the
7%–15% range (corresponding to a ∼27–31Nm−1 stress),
the lattice correlation-driven dimerisation freezes Pauling’s
resonating valence bond into a valence-bond solid real-
ised by an insulating Kekulé-like dimerised phase (DIM)
[160, 164, 165] that creates a topological band gap open-
ing in isotropically strained graphene. Kekulé patterning has
been observed by STM in strained graphene [166], and it
seems to play a role in the superconducting phases of TBG
[165, 167, 168].

Strong magnetic fields can also create Kekulé distortions
in graphene: Using scanning tunnelling spectroscopy (STS), a

Figure 16. (a) Ground state energy E relative to graphene’s (SEM)
energy E−ESEM versus strain ε. The trends were obtained by DMC
and DFT for the insulating Kekulé like dimerised (DIM),
antiferromagnetic insulator (AFI), and the distorted hexagonal
insulator (HEX) phases. (b) Stress (σ)-strain (ε) relation for strained
graphene obtained by fitting DMC energies. Dashed lines mark the
transition stress values for the SEM-DIM transition. (c) Enthalpy H
of strained graphene relative to the SEM phase HSEM versus tensile
stress σ. The blue-shaded region indicates the error bars on the
enthalpies for DIM and AFI phases by DMC. Reprinted (figure)
with permission from [160], Copyright (2018) by the American
Physical Society.

continuous quantum phase transition from a valley-polarised
state onto an intervalley coherent state with a Kekulé distor-
tion was observed under magnetic fields [169]. Importantly,
the valley texture extracted from STS measurements of the
Kekulé phase revealed valley skyrmion excitations localised
near charged defects [169].

Gamayun et al obtained a low-energy four band model
from the complete six-band TB model for both Kek-O and
Kek-Y patterns without strong electron-electron interactions
[159]. Some features of the Y Kekulé pattern will be discussed
next.
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Figure 17. Effect of strain on a Kekulé distorted lattice. Lattices in
real space, first Brillouin zones, and energy dispersion for: (a)
pristine graphene, (b) Kek-Y distorted graphene, (c) strained
graphene, and (d) Kek-Y distorted graphene with strain. The Kekulé
and strained Kekulé vectors G and G ′ are indicated in the upper
side of the hexagonal first Brillouin zones. In (a), the Dirac cones
are shown in dark gray. In (b), the gray Dirac cones are folded into a
degenerate (blue) Dirac cone to the Γ point. In subplot (c), the
original Dirac cones (in gray) are deformed and translated to the
(red) points K±

D . Dirac cones (gray) are folded into the Γ point in
panel (d). Strain breaks the degeneracy resulting in an overlap of the
two shifted Dirac cones, indicated in purple. Reprinted (figure) with
permission from [171]. Copyright (2019) by the American Physical
Society.

Pristine graphene and a structure hosting a Kek-Y pattern–
indicated by red and black bonds–are shown in figures 17(a)
and (b), respectively. As indicated in figure 14, the Kek-Y
unit cell contains six atoms and lattice vectors ã1 and ã2 in
figure 17(b). The corresponding reciprocal lattice vectors are
scaled as K̃± = (1/

√
3)K± [170].

The system is modelled by a TB Hamiltonian with one
π-orbital per carbon atom [1]. Going beyond first-nearest
neighbour hopping [159], a second-nearest neighbour TB
Hamiltonian was employed [172]:

H=−
∑
r,l

t0r,lâ
†
r b̂r+δl +

∑
r,m ̸=n

t2â
†
r âr+δm−δn

+
∑
r,m̸=n

t(2)r b̂†r+δm
b̂r+δn + h.c., (42)

where âr and b̂r are annihilation operators at site r for a carbon
atom in the A or the B sublattice, respectively. Operators â†r
and b̂†r are the corresponding creation counterparts. A bond-
density wave modulates the TB parameters and originates
the Kekulé distortion: the first-neighbour hopping is given by
[159]:

tr,l/t0 = 1+ 2Re
[
∆ei(pK++qK−)·δl+iG·r

]
, (43)

where t0 = 2.8 eV is the hopping parameter for first-nearest
neighbours in pristine graphene andG=K+ −K− is a recip-
rocal lattice vector coupling both valleys (see figure 17(b)).
The amount of the bond modulation was∆≈ 0.1. In addition,
p and q are two integers such that the index:

ν = (1+ q− p)mod 3 (44)

distinguishes the Kekulé O pattern (ν= 0) from the two Y pat-
terns (ν =±1) alluded to in figure 14.

The subsequent, second-nearest neighbour parameters
were periodically modulated as:

t(0)r /t0 = t(2)r /t2 = 1+ 2∆cos(G · r) , (45)

where t2 = 0.1t0 is the second-nearest neighbour TB para-
meter of pristine graphene.

A column vector is now defined:

ck =


ak
bk
ak+G

bk+G

ak−G

bk−G


that collects annihilation operators at k and k+G, so that the
Hamiltonian can be written as a 6× 6 matrix:

H= c†k

(
HΓ T
T† HG

)
ck, (46a)

made from the original graphene Hamiltonian at the Γ−point:

HΓ =

(
fk −ϵk
−ϵk fk

)
, (46b)

the Hamiltonians at the G and −G points:

HG =


fk+G −ϵk+G 0 −∆ϵk−G

−ϵ∗k+G fk+G −∆ϵ∗k+G ∆f−k−G
0 −∆ϵk+G fk−G −ϵk−G

−∆ϵ∗k−G ∆f+k+G −ϵ∗k−G fk−G

 ,
(46c)

and the interaction between them:

T=

(
0 −∆ϵk+G 0 −∆ϵk−G

−∆ϵ∗k ∆f−k+G −∆ϵ∗k ∆f+k−G

)
, (46d)
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where

ϵk = t0

3∑
j=1

eik·δj , (47a)

fk = t2
∑
m ̸=n

eik·(δm−δn), and (47b)

f±k = t2
∑
m ̸=n

eik·(δm−δn)e∓iG·δn . (47c)

The spectrum can be found by diagonalisation of the 6× 6
operator or by a projection technique that permits obtaining a
low-energy 4× 4 matrix effective Hamiltonian. That effective
Hamiltonian becomes for the Kek-Y case [172]:

H= vF
(
1−∆2

)
(p ·σ)⊗ τ 0

+ vF∆(1−∆)σ0 ⊗ (p · τ )

+
µ

2
(σ0 ⊗ τ 0 +σx⊗ τ x+σy⊗ τ y−σz⊗ τ z) , (48)

whereσ = (σx,σy,σz) and τ = (τx, τy, τz) are two vectors with
components defined from Pauli matrices, σ0 and τ 0 are two
2× 2 identity matrices, and µ is defined as:

µ=
9∆2t20t2
t20 − 9t22

. (49)

The resulting four low-energy bands turn out to be:

E±
D =±vD|p|, and

E±
M = µ±

√
v2Mp2 +µ2, (50)

were two new velocities have been defined: vD = vF(1−∆),
and vM = vF(1−∆)(1+ 2∆)≈ vF(1+∆).

As indicated in figure 17(b), the Kek-Y pattern folds the
two valleys K+ and K− into the Γ point when t2 = 0. One
valley is a fast Dirac cone with Fermi velocity vM , and the
other a slow Dirac cone with Fermi velocity vD. Specific sig-
natures on the optical and electrical conductivities, as well
as in plasmons, are associated with those two charge carrier
flavours [170, 173, 174]: the valley-dependent splitting of the
Fermi velocities due to the Kekulé distortion leads to a similar
splitting in the dielectric spectrum [173].Moreover, an absorp-
tion phenomenon was found where a resonance peak related to
intervalley transport emerges at a ‘beat frequency’ determined
by the difference between characteristic frequencies of each
valley [173].

Kekulé-patterning was observed in a work that combined
STM and DFT calculations for both graphene monolayers and
bilayers [175]. It was shown that strain induced a splitting of
the Dirac cones and a band gap (it is not clear if the mechan-
ism is the one predicted in [171] though). Flat bands measured
with ARPES were shown to coexist with the bond order in Li-
intercalated graphene [176].

The inclusion of second-nearest neighbour hopping
changes this picture slightly, as one of the cones gets a
small mass [172]. In a similar way, a gap opens in the energy

dispersion for the Kek-O pattern [159]. Such band gap was
experimentally confirmed by strain-induced Kekulé patterning
[166].

Uniform strain has been proposed as a tool to engineer
the valley degree of freedom [171]: while valleys are too
far away to mix under realistic strain in pristine graphene
[1], the folding induced by patterning reduces the sep-
aration between them, so that strain can modulate their
interactions more easily.

As seen in figure 17(c), uniform strain moves theK± points
toK ′

± in graphene [1]. Moreover, strain changes the symmetry
of the Bravais lattice, and high-symmetry points of the recip-
rocal lattice must be labelled differently. As an example, the
K± points of the P6/mmm space group are replaced by the
F0 and ∆ points in the Cmmm space group when under uni-
axial strain, and the Dirac points K

′±
D of the strained lattice

do not necessarily coincide neither with K ′
±, nor with F0 or

∆. Figure 17(c) sketches those general observations to avoid
confusion.

Uniform strain in Kekulé patterned graphene leads to the
situation depicted in figure 17(d): the original valleys are fol-
ded into new cones located at K̃+

D and K̃−
D . These new Dirac

points are very close to the Γ point, and their separation can
be tuned by experimentally accessible strain [171] to enhance
valley interactions.

3.2.8. Time-dependent strain. In analogy to electromag-
netic fields, strong time-dependent gauge fields can be gen-
erated by time-varying strain in graphene. Time-dependent
deformations can be induced by local probes such as a trans-
mission electron microscope (TEM), or by SAWs created at a
proximal piezoelectric layer [4].

The possibility of controlling electron transport by time-
dependent gauge fields was suggested in [1, 177], and phonons
were seen to generate effective pseudoelectromagnetic waves
[60, 177]. Since then, acoustic waves have been shown to
induce a giant synthetic Hall voltage without external mag-
netic fields [4], and the experimental setup is depicted in
figure 18(a): graphene lays on top of LiNbO3, which itself
lays on an insulating SiO2 substrate, which sits on a p-doped
silicon wafer. The carrier concentration is tuned by a voltage
VBG applied to the p−doped substrate.

The device can interchangeably be used in a magnetotrans-
port Hall configuration under a real magnetic field B, or in
an acoustic transport configuration. In the latter configuration,
acoustic waves are induced in the graphene by an interdigit-
ated resonator. Figure 18(b) displays a typical Hall measure-
ment with Hall resistivity Rxy and magnetoresistance Rxx. The
plateaus in Rxy indicate the presence of a quantum Hall effect.
Figure 18(c) presents the acoustic induced Hall effect, seen in
the current ISAW.

SAWs can also provide alternative ways to study topo-
logical properties [178–180] and the topological non-
adiabaticity at the Dirac point [181]. The issue at hand is
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Figure 18. Synthetic Hall voltages in graphene by acoustic waves.
(a) Top: Raman spectra of graphene (MLG). Inset: diagram of
graphene on substrate. Carrier concentration was tuned by a voltage
VBG applied to the p-doped substrate. Bottom: two measurement
configurations. In the magnetotransport configuration, a constant
current I is passed through the Hall bar. In the acoustic transport
configuration, a microwave frequency is applied to the
inter-digitated top contacts (IDT) and the resulting acoustic current,
ISAW, is measured in a short-circuited configuration. (b) A typical
magnetotransport measurement for VBG =−20 V for the Hall
resistivity Rxy and magnetoresistance Rxx versus magnetic field B.
The inset is carrier density versus VBG. (c) In the acoustic
measurement, ISAW as a function of frequency, power and VBG for
the fundamental resonance of the IDT. Data were obtained at 4.2 K.
Reprinted (figure) with permission from [4]. Copyright (2022) by
the American Physical Society.

that the main assumption of topological phases is the adia-
baticity of the time-dependent change of external parameters
of a quantum system, which could require a bigger bandgap
than the energy provided by external probes. However, there
is no bandgap in Dirac materials, and transitions are induced
at all frequencies. This produces a region of non-adiabaticity
around the cones that requires additional theory to be properly
understood [181–183].

Extensions to the strain engineering of other 2D Dirac
semimetals–which might be more sensitive than graphene and
could thus function as strain sensors–are underway [184].

3.2.9. Berry dipole and nonlinear transport from strain.
Strain can also appear in the non-linear conductivity of gapped
graphene [185].

When both time reversal and inversion symmetry are
present, these higher order phenomena vanish because the
Berry curvature Ω is zero [186].

Thus, breaking of inversion symmetry becomes neces-
sary [187] if no magnetic field is present (i.e. when graphene’s
Hamiltonian is invariant under time reversal). If space sym-
metries are further reduced by strain, the Berry curvature
becomes asymmetrical in reciprocal space, and the integ-
ral
´
dkf0∂kxΩ (the so-called Berry dipole, with f 0 a Fermi–

Dirac distribution) turns nonzero. Sodemman and Fu [188]

have shown that (under time-dependent bias) the Berry dipole
contributes to the second order conductivity in the direc-
tion normal to the bias, that is, in the same way as the
Hall effect, the resulting second order transversal conductivity
tensor being proportional to the Berry dipole.

The stretching of the crystal structure (as a consequence of
strain) implies the reduction in the number of crystal symmet-
ries of the lattice. In Bernal-stacked bilayer graphene under a
normal electric field, or in graphene on top of hBN, sublattice
equivalence is broken and so is inversion symmetry, reducing
the symmetry fromC6v toC3v. Uniaxial strain reduces the sym-
metry further, from C3v to C2v [189]. When combined with the
wrapping of the bands, this leads to an effective Hamiltonian
with a nonzero Berry dipole [190].

3.3. Experimental verification of a tunable electronic
topology in germanene

The discussion continues with germanene, another monoele-
mental 2D material with a honeycomb lattice, because of the
very recent experimental verification of its tunable topological
properties [153]. Its availability opens possibilities for topolo-
gical field-effect transistors whereby a back or top gate turns
dissipation-less transport along its edge on and off [148].

Unlike silicene [191, 192], 2D germanium stabilises on
a hexagonal closed packed bilayer structure with ninefold
coordination [191, 193, 194]. Nevertheless, it does form a
low-buckled hexagonal configuration when grown on either
gold(111) [195] or Ge2Pt(101) [153] substrates.

There are advantages in growing germanium onGe2Pt(101)
though [153]. The most salient one is the creation of a buffer
layer reminiscent of that created in epitaxial graphene grown
on silicon carbide [196], which renders a graphene-like disper-
sion on the next subsequent carbon layer. Here, a second layer
above appears electronically and chemically decoupled, thus
featuring the electronic and topological properties predicted
in freestanding germanene [191]. In particular, a spin–orbit-
coupling-induced band gap of 23.9 meV, which is sufficiently
large to observe theQuantumSpinHall effect. Experimentally,
the observed gap was much larger at 70 meV; this discrepancy
may be due to strain, buckling [43], stacking sequence, and
effects due to the proximity to the substrate.

3.4. Piezoelectricity by strain in hexagonal boron nitride
monolayers

An essential feature of noncentrosymmetric crystals is piezo-
electricity, which permits exchanging strain and intrinsic
(internal) electric fields. The induced charge density ρ couples
to strain through variations in the intrinsic polarisation P
through [197]:

ρ(r) =−∇ ·P(r) . (51)

The ith-component of the intrinsic polarisation P couples
to the crystal strain through:
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Figure 19. (a) Topography and (b) electric images of a hexagonal
boron nitride monolayer triangular bubble. (c) Profiles along the
lines in (a) and (b) and in a corresponding dielectric image. (d)
Simulated topography image and corresponding (e) electric-field
energy density and (f) polarisation. Reproduced from [35].
CC BY 4.0.

Pi =
3∑

j,k=1

γijkujk (r) , (52)

where γijk is the 3rd rank piezoelectric tensor, whose only
non-zero entry is γ ≡ γyyy =−γyxx =−γxyx =−γxxy for 2D
materials with D3h symmetry. This way, it can be shown that
P(r) = γA(r)× ẑ, where A(r) = (uxx− uyy)x̂− 2uxyŷ, with
x̂= (1,0,0), ŷ= (0,1,0), and ẑ= (0,0,1). The piezoelec-
tric coefficient is estimated to be 2.91× 10−10 Cm−1 using
the modern theory of polarisation, working with a two-
band model of a massive Dirac equation with a 5.97 eV
band gap [35].

Electrical measurements performed by electrostatic force
microscopy on top of bubbles and creases of hBN monolay-
ers (figure 19) show a net electric field, which in turn repres-
ents another method to quantify local strain [35]. (Electrostatic
force microscopy is a non-contact technique that maps the
local electrostatic interaction a tip and a sample.) No such con-
trast was observed on hBN bilayers nor in bulk samples, which
recover a centre of inversion despite strain.

3.5. Quantifying strain on transition metal dichalcogenide
(TMDC) monolayers

TMDCs transition from an indirect onto a direct band gap
at monolayer thickness. They display multiple electro-optical
properties [198], including strong exciton binding energies
and photoluminiscence, that can be tuned by strain.

Quantitatively assessing the degree of strain, neverthe-
less, is not a trivial task. The difficulty stems from the fact
that x-ray diffraction (XRD)–the most powerful technique
to measure precise lattice constants–is not readily applic-
able to monolayers not having a macroscopically uniform
in-plane orientation. This is because the incident x-ray will
spread over a macroscopic distance (of the order of milli-
meters) for a grazing-incidence XRD geometry required to

probe any in-plane strain (figure 20), thus leading to a small
averaged signal for a sample with small size and/or random
orientation.

Substrates can impose a uniform strain in the film grown on
the surface. In standard epitaxial growth, substrates are chosen
so that their surfaces have the same in-plane lattice symmetry
as the film to be grown. In this case, strain is caused by the dif-
ference in the in-plane (super)lattice spacing of the substrate
and the film. Synchrotron-based grazing incidence XRD was
used to measure such strain in a WSe2 monolayer epitaxially
grown on graphene, where a lattice compression of −0.19%
was found in WSe2 [32] (figure 20). The 3× 3 unit cell of the
slightly compressed WSe2 was perfectly commensurate with
a 4× 4 graphene lattice with a experimental mismatch below
0.03%, which could explain why the WSe2 monolayer was
compressed on graphene.

As indicated in section 3.2, non-uniform strain may be
realised by patterned structures manufactured on substrates.
For the sake of quantitative evaluation, XRD can be applied
more accurately under uniform strain conditions. Non-uniform
strain, on the other hand, can be characterised with local
probes such as Raman spectroscopy. In that case, the expec-
ted shift of phonon frequencies as a function of strain should
be available, at least theoretically, to convert observed shifts
in Raman modes into a magnitude of strain. As seen in
figure 21 and similar to graphene (section 3.2.3), non-uniform
strain can be measured through second harmonic genera-
tion when inversion symmetry is removed by strain [130] as
well.

Shifts as large as ∼100–200 meV in excitonic emission
energies have been reported in experiments where mechan-
ical strain is applied to TMDC monolayers, which corres-
ponded to maximum strain levels of 1%–2% [199–204], as
evaluated by Raman spectroscopies via the softening of spe-
cific Raman-active phonon modes (figure 22). For example,
MoS2 monolayers experienced strain-induced softening of
1.7–2.1 cm−1/% for the A1g phonon mode [203, 205].

Using methods such as local heating, strain induced on
amorphous substrates by a thermal expansion mismatch has
been studied [207]. CVD-grown MoS2 monolayer is also
seen to be strained after the cool down from growth at high
temperatures [208]. The (per cent) strain induced in the TMDC
monolayer in the latter scenario can be estimated by:

Strain(%) = (αTMD −αsub) ·∆T · 100, (53)

where αTMD is the thermal expansion coefficient of a TMDC
monolayer, αsub is that of the substrate, ∆T= Tgrowth −Troom
(where Tgrowth and Troom denote the growth temperature and
room temperature, respectively). Recently, strain in TMDC
monolayers was enhanced by utilising a high growth temper-
ature in PVD (Tgrowth = 1200 ◦C) and a systematic change in
strain levels for Si3N4 and SiO2 substrates, consistent with the
above scenario, was observed by using PL and Raman spectro-
scopy. The resultant strain caused large shifts in the excitonic
transition energy of ∼80 meV for MoS2 monolayers on SiO2

(figure 22).
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Figure 20. Superlattice strain of WSe2 monolayer on graphene measured by grazing-incidence in-plane XRD. (a) Schematic diagram of the
grazing-incidence XRD geometry. α∼ 0.2◦ is the incidence angle of the x-ray beam. (b) Low energy electron diffraction (LEED) image
taken after the growth of WSe2 monolayer on graphene. The two primary in-plane lattice spacings are highlighted. (c) In-plane δ-θ scans
along two distinct crystallographic directions (Q || SiC[1010] and SiC[1120]). (d) Schematic diagram showing superlattice matching
between 3×3 WSe2 monolayer and 4× 4 graphene. A slight lattice compression (−0.19%) of the WSe2 monolayer enables the
commensurate matching. Reproduced from [32]. CC BY 4.0.

Figure 21. Determination of strain by second harmonic generation
on a MoS2 monolayer: the arrows indicate the strain field. A SEM
image is shown as an inset. Reproduced from [130]. CC BY 4.0.

Similar to graphene and hBN monolayers, TMDC mono-
layers can also be strained by polymer encapsulation [15, 16],
dielectric nanopillars [29, 31, 209, 210], nanobubbles [36–38],
and nanoindentation [10]. Nevertheless, and in contrast with
graphene, metal nanogaps [211], metal nanostructures [212],
and optical waveguides [213–216] are also employed to create
strain and/or to enhance their optical response. An additional
pathway for strain and the tuning of optical properties is the
creation of lateral heterostructures [20–24].

3.5.1. Tuning optical properties of TMDCmonolayers by strain.
2D semiconductors are an important platform for the emission
of light because of the reduced dielectric screening in two
dimensions, the intrinsic absence of total internal reflection

Figure 22. Strain dependence of exciton transition energy as well
as Raman shifts (out-of-plane A1g mode) for MoS2 and MoSe2
monolayers. Solid and dashed lines are linear fits to the data from
mechanically-strained monolayers [203, 205] and theory [206],
while filled squares denote those for PVD-grown monolayers on
Si3N4 (blue square) and SiO2 (orange square) in which strain is due
to thermal expansion mismatch induced after the high-temperature
growth. Grey lines are linear fits to data from strained PVD
monolayers.

within their atomically-thin thickness [217], and because local
tensile strain is the only mechanism to move through space
(i.e. to funnel) charge neutral electron–hole pairs (i.e. Wannier
excitons, or excitons for short) created in monolayers [218,
219]. Furthermore, the deterministic and position-dependent
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Figure 23. (a) Band diagram of a WSe2 monolayer with (spin-allowed) bright (X0) and (spin-forbidden) dark exciton (XD) states. ∆ECB is
the spin-split energy difference at the conduction band. (b) Schematics of tip-enhanced photoluminescence with a cantilever gold tip. The
bottom and tip metals create a Purcell (optical resonance) effect. (c) Bright exciton and (d) dark exciton intensities. (e) Average
cross-section of intensities and strain for blue dotted regions in (c) and (d). (f) Increasing bright (X0) and dark (XD) emission under tensile
strain from data shown in (e). (g) Average cross-section of intensities and strain for red dotted regions in (c) and (d). (h) Increasing bright
(X0) and dark (XD) emission under compressive strain. Adapted with permission from [38]. Copyright (2023) American Chemical Society.

creation of few or single photons is one of the main goals of
this field of research (see, e.g. [210]). A recent review on this
subject is available [220], and the following paragraphs are
mainly an update. A discussion of semiconducting TMDCs
monolayers under strain follows, while TMDC monolayers
encapsulated within a van deer Waals heterostructure are the
subject of section 4.6.

Electron and hole effective masses are comparable in
excitons, which makes those oppositely-charged quasi-
particles wander for long distances until they break apart as
they collide with phonons. The collision processes (and crys-
tal imperfections), combined with exciton-polariton excita-
tions give rise to a broad optical emission spectrum aided
by multiple successive exciton creation and reabsorption
events. Such broad emission spectrum is customarily known
as photoluminiscence [221] and most experimental studies
to be described now will be based on this optical technique.
Importantly, the photoluminiscence spectrum depends on the
quality (impurity density) of the semiconductor or insulating
2D material.

Mukherjee et al placed a WSe2 monolayer over a reg-
ular array of nanopillars separated by 4 µm and having
heights of 100 nm. They observed a strain gradient in the
vicinity of nanopillars, which periodically localises bright
excitons in the WSe2 monolayer at 4.2 K [29]. As confirmed
by auto-correlation measurements with a Hanbury–Brown–
Twiss interferometer, localised emission lines turned out to be
sources of quantum light. The need for spectral control of the
emitted light calls for the encapsulation of the WSe2 mono-
layer within a van der Waals stack, and those results will be
discussed in section 4.6.

Strain and defect engineering were simultaneously pursued
in an effort to increase operating temperatures, photon yield,
and purity of single-photon emitters on WSe2 monolayers by
Parto et al [222]. Those emitters show biexciton cascade emis-
sion, single-photon purity above 95%, and working temperat-
ures up to 150 K [222].

As depicted in figure 23(a), the spin–orbit coupling in
TMDC monolayers splits the conduction band with an optical
dipole-allowed bright exciton, but it also leaves the possib-
ility of creating a (spin-forbidden) dark exciton transition at
the K and K′ points [223–227]. In this context, the bright
excitons correspond to a transition among states of the same
spin, while the dark excitons correspond to transitions between
states with opposite spins. In general terms, a ‘dark’ exciton is
a light excitation requiring additional perturbations–the spin-
flips described thus far, and/or momentum transfer [228]—to
occur.

In the WSe2 monolayers studied by Hasz et al, the dark
exciton has a lower energy (∼40 meV) than that of the bright
exciton [38]. Dark excitons have a longer radiative lifetime
than dipole-allowed bright excitons due to their spin- (and/or
momentum) forbidden transitions [38, 229] and hence may
function as coherent two-level quantum systems, or as Bose–
Einstein excitonic condensates.

Excitonic states can be resonantly enhanced by the use of
an AFMmetallic tip sampling with a metal surface underneath
(figure 23(b)) through the Purcell effect [38], which is the res-
onant increase of the spontaneous emission rate usually cre-
ated within a cavity [230]. This technique is especially insight-
ful to scan the photoluminiscence created at defects, grain
boundaries, edges, nanobubbles (see figures 23(c) and (d)),
and under uniform strain [231]. Additional strain induced dur-
ing growth on silica has been shown to red-shift Raman fea-
tures and to create a slowing down of exciton dynamics [33].

Under both bright and dark excitons, and as seen on
figures 23(e) and (f), greater tensile strain increases peak
intensity and decreases peak energy, while compressive
strain increases the intensity and increases peak energy
(figures 23(g) and (h)) [38].

Strain can help tune the electronic bandgap of TMDC
monolayers [232] and inhomogeneous local strain results in
bent band structures with a band gap gradient–the magnitude
of the band gap is location-dependent–and bright excitons
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are driven toward a region of maximum strain [233]; those
excitons have been seen to move over distances up to a
micrometer.

Working with aWS2 monolayer placed onto a regular array
of nanopillars, momentum-forbidden dark excitions move
away from the region of maximum strain in an effect dubbed
anti-funnelling. Anti-funnelling is a consequence of a valley-
dependent exciton energy within the funnels [30]. In this
experiment, amaximum strain of 0.6% takes place at the centre
between two pillars, rather than directly atop of pillars. The
WS2 monolayer lies flat there, providing a homogeneous local
dielectric environment.

Because of funneling, dark KΛ excitons reach spatial
regions in which spectral separation of dark and bright
excitons turns small, locally enhancing phonon-driven inter-
valley scattering. This way, originally darkKΛ excitons scatter
into bright KK states, which turn visible in the photoluminis-
cence spectra [30]. An additional study showed that excitons
created on a MoS2 monolayer do not feature anti-funnelling,
thus emphasising the crucial role of the electronic structure of
a WS2 monolayer (having almost degenerate conduction band
edges at the K and Λ k-points) to achieve this effect.

Localised strain was created in encapsulated WSe2 mono-
layer nanobubbles, which were demonstrated to operate as
single photon sources [37, 234]. Lastly, the conversion of
excitons under non-uniform strain to more complex particles
(multiexcitons) such as trions has been demonstrated in WS2
monolayers [235].

3.6. Ferroic behaviour and strain in monolayers with
degenerate structural configurations

3.6.1. Context. The electric polarisation P created by break-
ing centrosymmetry in graphene (section 3.2.3), or exist-
ing within a nanobubble in a hBN monolayer (section 3.4),
requires an extrinsic source of energy (strain) to take place.

There are at least three intrinsic ferroic orders: ferroelasti-
city, ferromagnetism, and ferroelectricity. Ferroelasticity is
the ability of a material’s unit cell to change its orientation
upon the application of strain, and ferroelastic 2D materials
will be discussed in section 3.6.2. In analogy with ferromag-
nets, ferroelectrics lack a crystalline center of inversion and
develop an intrinsic electric dipole P that switches orient-
ation by the application of an external electric field [236].
Historically, ferroelectrics have been insulating ternary mater-
ials (i.e. they contain at least three chemical elements), and
the interplay between electronic properties and ferroelectric
ones has been seldom addressed for that reason. (2D ferroelec-
tric monolayers under strain are covered from sections 3.6.3–
3.6.8.) The external fields used to control (ferroic) orders are
strain (u), electric fields (E), and/or magnetic fields (B) that
can switch the crystal structure and/or the magnetic config-
uration within the available degenerate (or nearly degenerate)
quantum states. The conjugated inner fields are the stress (σ),
the intrinsic electric dipole (P) and/or the magnetisation (M).
Combinations of at least two ferroic orders in a material lead
to a multiferroic; incipient 2D multiferroics will be covered in
sections 3.8 and 4.9.

Just as it was the case thus far, the Update has been
structured in a way that coverage of monolayers will be fol-
lowed by a discussion of bilayers or few-layer ferroelectrics
in sections 4.1, 4.2 and 4.5. Layered antiferroelectrics will be
covered in section 4.3.5.

3.6.2. Structural degeneracies and ferroicity of some 2D
materials. Graphene turns out to be an exception to a trend of
structural degeneracies taking place in multiple 2D materials
[240]. Even a hBN monolayer, which has a honeycomb struc-
ture with two sublattices, is degenerate: its structural energy
remains unchanged regardless of whether (i) the A-sublattice
contains boron atoms and the B-sublattice contains nitrogen
atoms or (ii) the A-sublattice contains nitrogen atoms and the
B-sublattice contains boron atoms.

Nevertheless, a hBN monolayer is not ferroic, because
ferroic behaviour requires the switching of degenerate struc-
tures by strain or temperature. But exchanging all the boron
and nitrogen atoms in a hBN monolayer necessitates remov-
ing (breaking) and restructuring back all chemical bonds:
Trying to switch boron and nitrogen positions will rather burn
that 2D crystal down. As it will be next discussed, ferroic
2D materials (having switchable degenerate ground states) do
exist.

Ferroic materials are prone to undergo structural phase
transitions different frommelting at finite temperature, and the
structural transformations in figure 24 highlight three ferroic
materials: (a) ferroelastic silicene [191, 194], (b) the quantum
paraelectric SnO monolayer [237, 241], and (c) a ferroelec-
tric and ferroelastic SnSemonolayer [239, 242–245]. Subplots
(i) in figure 24 display energy paths joining two degener-
ate ground state structures through the smallest possible bar-
rier J, while subplots (ii) in figure 24 show the two degener-
ate structures and a unit cell with the optimal configuration
at the height of the barrier J (which has a higher structural
symmetry) explicitly.

The following similarities are found: (1) All ferroic mater-
ials have energy landscapes with structural degeneracies. In
the case of silicene, the degeneracy is created upon a reflection
with respect to the z-axis, which swaps the signed vertical sep-
aration between atoms in the A and B sublattices. The SnO and
SnSe monolayers display a degeneracy upon exchange of their
two orthogonal lattice vectors. (2) It is possible to trace paths
of steepest descent joining the two degenerate minima, creat-
ing Landau-like double-well potentials. At the height of the
barrier J, one reaches an atomistic structure with an enhanced
symmetry, which is a graphene-like (planar) structure labelled
∆z = 0 for silicene, and a square unit cell labelled C for the
SnO and SnSe monolayers.

Now, if the barriers J are sufficiently large (say, lar-
ger than 100 K per primitive unit cell) but also sufficiently
small (say, smaller than 1000 K per primitive unit cell), then
2D structural transformations into average structures with
an enhanced symmetry become possible, as exemplified in
the three subplots labelled (iii) in figure 24, which were
obtained by ab initiomolecular dynamics [26, 194, 237–239].
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Figure 24. Highlighting similar features of ferroic 2D materials: (i) energy landscapes featuring energy degeneracies and small energy
barriers J< 1000 K per primitive unit cell, (ii) atomistic structures with enhanced symmetry at the top of the barrier, and (iii) thermally
driven 2D structural transformations. (a) Ferroelastic silicene. Reprinted (figure) with permission from [194]. Copyright (2023) by the
American Physical Society. (b) Quantum paraelectric SnO monolayer. Reprinted (figure) with permission from [237]. Copyright (2019) by
the American Physical Society. (c) Ferroelectric and ferroelastic SnSe monolayer. Reprinted (figure) with permission from [26], Copyright
(2022) by the American Physical Society. Reprinted (figure) with permission from [238], Copyright (2018) by the American Physical
Society. Reprinted (figure) with permission from [239], Copyright (2020) by the American Physical Society. Note that traversing the
landscape from one minima up to the height of the barrier J requires interatomic distances to change, and hence, that the transformations
along the landscape can also be realised by strain.

The structural transformation of the SnSe monolayer was
expressed in terms of the parameter ∆α, a shear strain to be
defined in section 3.6.4.

Traversing the landscape from one minima onto the height
of the barrier requires the unit cell to vary: the 2D transform-
ations depicted in figure 24 are driven by strain.

3.6.3. 2D ferroelectrics within group-IV monochalcogenide
monolayers. Until about a decade ago, most known ferro-
electrics were insulating ternary compounds that lost their fer-
roelectric properties down a few-nanometer-thickness limit.
A field of 2D ferroelectrics took off shortly before [1] and,
as it will be discussed in what follows, there are ferroelec-
trics that are only two-atoms thick nowadays (and one or two
monolayers thick). Some of those 2D ferroelectrics are bin-
ary compounds, but even elemental 2D materials have been

proven to be ferroelectrics recently. Ferroelectric materials
tend to undergo structural phase transitions at finite temper-
ature, and 2D transitions aided by shear strain will feature in
section 3.6.4.

2D ferroelectrics can be semiconductors, semimetals, and
even metals. They can display non-trivial topological band
structures that couple with P. Those materials command a
strong interest for those reasons [246, 247].

3.6.4. Two-dimensional phase transformations in 2D ferro-
electric and ferroelastic materials driven by shear strain.
Honeycomb lattices are prevalent on many 2D materials

such as graphene, hBN monolayers, silicene, germanene, and
TMDC monolayers with 1H and 1T atomistic configurations.

Nevertheless, other important and experimentally available
2D materials such as 1T’ TMDC monolayers [249, 250],
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Figure 25. (a) Schematics of the relation the lattice parameters of
the rectangular unit cell a1 and a2, and ∆α leading to equation (54).
Reprinted (figure) with permission from [238]. Copyright (2018) by
the American Physical Society. (b) Experimental coalescence of the
rhombic distortion angle ∆α on a ferroelectric SnTe monolayer
grown on epitaxial graphene: both ∆α and the in-plane intrinsic
electric dipole Px become zero at 270 K. From [248]. Adapted with
permission from AAAS.

phosphorene [251–253], SnO multiferroic monolayers [237,
241], group-IV monochalcogenide monolayers [238, 242,
243, 246, 248, 254–256], bismuthmonolayers [257], and some
antiferromagnetic monolayers [258] possess rectangular unit
cells. 2Dmaterials with rectangular Bravais lattices are degen-
erate in energy, as the total energy of the unit cell remains the
same upon exchange of x- and y-coordinates.

As shown in figure 25(a), rectangular unit cells can be cir-
cumscribed within a rhombus: the short and long diagonals
(with magnitudes 2a2 and 2a1, respectively) form a 90◦ angle,
and the AB and CD sides of the rhombus raise by an angle
∆α (known as the rhombic distortion angle) away from the
horizontal (line AE). Shear strain can turn the rhombus onto
a square, whose diagonals are now identical (and set to aC in
figures 24(b)-(ii) and (c)-(ii)) and ∆α= 0.

Some materials with rectangular unit cells undergo two-
dimensional structural phase transformations at finite temper-
ature, whereby the 2D unit cell suddenly changes from a rect-
angle onto a square: figure 25(b) depicts ∆α experimentally
determined as a function of temperature [248] for a ferroelec-
tric and ferroelastic SnTe monolayer on epitaxial graphene. Its
coalescence to zero is the tell sign of a structural transforma-
tion of the two-dimensional SnTe monolayer from a rectangu-
lar unit cell onto a square one.

This coupling of the order parameter Px to strain has been
neglected in some theoretical works, where it was instead
coupled to an optical phonon on a structure with fixed lattice
vectors; see [246] for more details.

As indicated since [242], it is more sensible to couple the
magnitude of the intrinsic electric dipole P to the in-plane lat-
tice parameters on 2D ferroelectrics with an in-plane polar-
isation: P= P(a1,a2) [238, 243, 246]. Such a direct coupling
is the only one consistent with the experimental observation
that the rhombic distortion angle (displayed in figure 25(b))
becomes zero. In other words [238, 248]:

a1
a2

=
1+ sin(∆α)
cos(∆α)

, (54)

so a1 = a2 = aC when ∆α= 0, and P(aC,aC) = (0,0,0)
(figure 25).

3.6.5. Elastic properties of 2D ferroelectrics through 2D struc-
tural transformations. The sudden changes in lattice para-
meters at a critical temperature Tc depicted in figure 24(c)
are different from the isotropic thermal expansion seen on
graphene, hBN monolayers, or TMDC monolayers. This
observation calls for a definition of strain at finite temperat-
ure, which is provided now.

Thus far, the theoretical discussion has considered 2D
materials at zero temperature. In that context, strain has been
implicitly thought of as anything that changes (locally or glob-
ally) the atomistic structure of a given 2D with respect to its
magnitude at zero temperature (a0):

εi =
ai− a0,i
a0,i

. (55)

Nevertheless, the sudden compression of the lattice parameter
a1 and the elongation of a2 at Tc driving the collapse of
∆α to zero in figures 24(c) and 25(b) reflect the optimal,
lowest-energy atomistic configuration at finite temperature of
2D ferroelectrics with in-plane polarisation, and strain should
be measured against the structure in thermal equilibrium.
In other words, strain should be temperature-dependent, and
equation (55) should be modified as follows:

εi (T) =
ai−⟨a0 (T)⟩i
⟨a0 (T)⟩i

, (56)

where ⟨a0(T)⟩i is the mean lattice parameter at finite temper-
ature. This modification of strain applies to any 2D material
undergoing 2D phase transformations [259].

To go beyond the zero-T paradigm to elasticity, one first
obtains an analytical expression for the energy landscapes
(subplots (i) in figure 24), and the discussion that follows
focuses on the energy landscape depicted in figure 24(c)-(i).
That landscape is symmetric with respect to the dashed diag-
onal line, and a new coordinate system (X,Y) is defined to
reflect such symmetry.

The analytical form for the energy landscape U(X,Y) is
given in [26]. With it, one can build a function f(X,Y) (for
example, the lattice parameter a1(X,Y)) and calculate its mean
value within the energy landscape ⟨f(Umax)⟩ as an average over
classically accessible states [26]:

⟨ f(Umax)⟩=
¸
e−U(X,Y)/Umax f(X,Y)dXdY¸

e−U(X,Y)/UmaxdXdY
, (57)

with dXdY an area element within the confines of an isoenergy
contour Umax around structure A in figure 24(c)-(i).
U(X,Y) here is a classical potential energy, and one samples

accessible crystalline configurations within isoenergy con-
fines. When Umax ⩾ J nevertheless, the average structure
encompasses minima A and B in figure 24(c)-(ii), yielding
⟨a1⟩= ⟨a2⟩, and it thus is a square (see figure 26(a)). The
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Figure 26. (a) Thermal evolution of lattice parameters of a
ferroelectric SnSe monolayer as a function of an effective
temperature Umax. (b) Evolution of lattice constants. The evolution
is calculated using a normalised Boltzmann distribution over the
energy landscape. Reprinted (figure) with permission from [26].
Copyright (2022) by the American Physical Society.

sampling over independent crystalline unit cells is a limita-
tion of the model, as 2D structural transformations in 2D are
driven by disorder [239, 242, 243, 246].

Thermal averages of elastic constants Cij are then determ-
ined by [260]

⟨Cij (Umax)⟩= kB

{⟨
∂2u

∂εi∂εj

⟩
− 1
Umax

[⟨
A ∂u
∂εi

∂u
∂εj

⟩
−⟨A⟩

⟨
∂u
∂εi

⟩⟨
∂u
∂εj

⟩]}
,

(58)

(with kB Boltzmann’s constant, A= a1a2, and u= U/A) and
presented in figure 26(b).

At energies above Umax the 2D material transitions from
a rectangular onto a square unit cell and ⟨C11⟩ and ⟨C22⟩
must be identical, but that is not obtained when employing
the regular expression for strain based on a zero-temperature
value (equation (55)). The need for ⟨C11⟩= ⟨C22⟩ for Umax >
J dictates the redefinition of equilibrium lattice parameters
evolving with temperature (equation (56)), and hence of a
thermally-evolving strain.

⟨C12⟩ is the softest elastic modulus and ⟨C11⟩ hardens at
the transition (Umax = J), while ⟨C22⟩ softens at Umax = J.
According to figure 26(b), SnSe monolayers are softer than
graphene, for which C(0)

11 = C(0)
22 = 336Nm−1, and C(0)

12 =
75Nm−1.

By direct comparison J and TC from numerical calculations
[239], a correspondence T∝ 1.42Umax is established, such that
TC = 212K, and finite−T elastic behaviour can be extracted
from figure 26(b).

3.6.6. Photostriction: anisotropic, non-thermal strain created
by illumination. The discussion now turns into optical ways
to modify lattice parameters in a non-thermal manner, but with
illumination.

Illumination by light can excite electrons onto the con-
duction band, changing the electronic density away from its
ground state configuration. The modification of the electronic

Figure 27. (a) Structural snapshot of a SnS monolayer. The four
atoms in the unit cell are indicated. The direction of the intrinsic
electric dipole are shown by red arrows in the top view, and the side
view features a 0.3 eÅ−3 isosurface. (b) Three direct optical
transitions between valence and conduction bands. (c) Monolayer
states at the nX conduction local valley minima have mostly px
orbital symmetry. (d) Reduction of the magnitude of the intrinsic
electric dipole P as a result of photoexcitation to occupy the states in
the nX conduction valley indicated within inset. (e) The longer
lattice parameter a1 elongates and the shorter lattice parameter a2
shrinks as a result of the photoexcitation. Reprinted (figure) with
permission from [7]. Copyright (2017) by the American Physical
Society.

density–in turn–screens the intrinsic electric dipoles of 2D fer-
roelectrics, producing uniform and anisotropic strain as a res-
ult. The process, called photostriction, was theoretically pre-
dicted on group-IV monochalcogenide (SnS, SnSe, and GeS)
monolayers [7].

The atomistic structure of a SnS monolayer is shown in
figure 27(a), and its electronic band structure in figure 27(b).
The material has an indirect bandgap, with the top of the
valence band at the valley dubbed nX (which stands for near
X-point) and the bottom of the conduction band at the valley
labelled nY (for near Y-point).

Indirect optical transitions require momentum transfer and
have low probability of occurrence. For this reason, one con-
siders direct optical transitions instead. Three such transitions
are indicated by arrows on figure 27(b). The local valence
band valleys at the nX, Γ, and nY k-points have a predomin-
antly s-orbital (spherically-symmetric) hybridisation, and the
largest change in intrinsic polarisation occurs upon transitions
onto px and py orbitals. The electronic wavefunction densit-
ies at the conduction band edges at the nX k-point is shown in
figure 27(c) [7].

Working on a nk× nk k-point grid and considering spin–
orbit coupling, one gets a density of charge carriers nc =
1/(n2kA0), where A0 is the area of the unit cell before the
photoexcitation. Setting nk = 41, a photoexcitation around the
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Figure 28. Experimental demonstration of photostriction on
orthorhombic, bulk GeS. The sample was excited by a 400 nm
femtosecond laser with a photon energy above GeS’ bandgap and
probed by ∼100 fs ultrashort electron pulses at normal incidence.
The reversible photoinduced mechanical deformation of the lattice
was obtained from the shift of Bragg peak center positions in
reciprocal space (Q). The {020}AC ({200}ZZ) direction corresponds
to the x (y) direction in figure 27(a). As seen in figure 27(e), an
anisotropic strain in which the x direction compresses and the y
direction elongates is experimentally verified. Reprinted with
permission from [8]. Copyright (2023) American Chemical Society.

nX k-point is simulated by sequentially changing of occupa-
tion of the valence band edge by the removal of the occupation
at points labelled 1, 2, and 3 within the inset in figure 27(d),
promoting the removed electronic density into the conduc-
tion band at the same k-point(s), and relaxing the struc-
ture. This way, the intrinsic polarisation is shown to decrease
as a result of the photoexcitation, which screens P (see its
decreasing value in figure 27(d)). Furthermore, while the unit
cell remains rectangular with lattice parameters a1 > a2, one
observes in figure 27(e) that a2 increases in magnitude while
a1 decreases. This way, one achieves an optomechanical coup-
ling to produce anisotropic strain by illuminating 2D ferro-
electrics. The realisation of photostriction in 2D materials is
important because the photostriction response time depends
on the sample’s thickness, ranging from picoseconds in thin
films up to a few seconds in the bulk [7].

The effect described in figures 27(d) and (e) persists upon a
reflection of the structure depicted in figure 27(a) with respect
to the yz plane; an operation that swaps the direction of the
intrinsic electric dipole from the +x̂ onto the −x̂ direction.
Then, photostriction is not limited to monolayers, but it per-
sists in bulk layered (orthorhombic) IV–VI compounds with
an antipolar dipole configuration [246]. Briefly breaking the
logical flow of the update to discuss experiments carried out on
a bulk sample now, a technique called megaelectronVolt ultra-
fast electron diffraction was employed to confirm an expan-
sion of a2 and a contraction of a1 on bulk (layered) GeS [8]:
measured strains of 0.1% are consistent with those predicted
in [7]. Furthermore, and as seen in figure 28, they also report
an ultrafast photoexcitation of the order of 10 picoseconds.

Figure 29. (a) Ferroelectric SnSe monolayer clamped onto a
strained substrate. (b) Clamping prevents∆α from becoming zero
(panel (i)), which is no longer a good order parameter to tell the
structural transformation. Nevertheless, a 2D structural phase
transition can still be registered if angles α1 and α3 turn identical
(panel (ii)), and distances d2 and d3 turn equal as well (panel (iii)).
(c) Thermal evolution of (i) lattice parameters a1 and a2, (ii) ∆α,
(iii) angles α1, α2, α3, and α4, (iv) distances d2 and d3, and in-plane
intrinsic dipole (Px,Py,0) under a 2% strain along the x-direction
(the 2D material is still able to change a2, which is not fixed). As a
result of strain, Tc increased up to 500 K. (d) Similar to (c), but for a
strain applied along the y-direction: strain raises Tc to 250 K. TC
increases regardless of the clamping direction, and it can swap the
intrinsic electric dipole from being oriented along the x-direction
(plot (c)) onto the y-direction (plot (d)). Solid curves in plots (c) and
(d) are the result of a Potts model. Reprinted (figure) with
permission from [238]. Copyright (2018) by the American Physical
Society.

3.6.7. Using uniaxial strain to tune the critical temperature of
2D ferroelectrics. Similar to graphene, it may be possible
to strain 2D ferroelectrics by clamping them onto a substrate
and a subsequent bending (figure 29(a)) and one wonders how
strain affects the critical temperature Tc at which the intrinsic
electric dipole turns zero. To determine the effect of strain on
Tc, multiple structural order parameters such as angles and
interatomic distances of a ferroelectric SnSe monolayer were
tracked as a function of temperature (figure 29(b)) through ab
initio molecular dynamics calculations.

The results are presented in figure 29(c) for strain applied
along the x-direction, and in figure 29(d) when strain is applied
vertically. Datapoints are results from molecular dynamics,
and solid lines (when present) correspond to a Potts model
[238, 261]. The extreme right within the yellow boxes to the
left of figures 29(d) is the value of Tc without applied strain.

As seen in figure 29(c), a modest strain of 2% along the
direction defined by the largest lattice vector a1 increases
the value of ∆α–from about 2◦ in the non-clamped SnSe
monolayer (figure 24(c)-(iii))–up to about 3.3◦; see subplot (ii)
in figure 29(c).
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Still considering subplot (ii) in figure 29(c), one sees that
clamping precludes a situation in which∆α= 0. In this case,
and as illustrated in figure 29(b), a transition from a rectan-
gular onto another rectangular unit cell takes place though. In
those rectangular cells, the transition takes place through the
coalescence of anglesα1 andα3, and of distances d2 and d3. Tc
increases regardless of the direction in which uniaxial tensile
strain is applied. (Symbols ⟨·⟩ stand for thermal averages.)

There are few studies addressing the electronic properties
of group-IV monochalcogenide monolayers at domain walls
[25, 245, 248, 262], and the amount of strain at those appears
to be rather small.

3.6.8. 2D bismuth: an elemental ferroelectric monolayer.The
attention now turns to two atomic layers of bismuth, in which
a new frontier in 2D elemental ferroelectrics is arising [263].
(On a bilayer configuration, this material couples a non-
trivial electronic topology with ferroelectric behaviour [264].)
Similar to SnTe, bulk bismuth has a rhombic structure in the
bulk [265, 266]. In the recent past, a structural transforma-
tion on ultrathin SnTe was determined whereby it turns into
a (layered) orthorhombic phase instead [267, 268].

Consisting of a single chemical element, if a similar
rhombic to orthorhombic transition is to take place in bis-
muth (whose electronic configuration is 6s26p3), one may
first imagine that its 2D structural configuration may resemble
that of phosphorene (electronic configuration 3s23p3), a non-
ferroelectric 2D material possessing a center of inversion
[251–253].

Nevertheless, and as stated in [263], the larger principal
number on bismuth–and its disposition within the Periodic
table of the Elements in between insulators and metals–makes
its electronic configuration different from that of phosphorus,
to the point of developing a net in-plane intrinsic dipole P:
while the 3s and 3p orbitals lie at comparable energies in phos-
phorene, the 6s orbitals lie at a significantly lower energy than
the 6p orbitals, which weakens their sp : unlike phosphorene,
in which bonds are shared s and p−orbitals, atomic bonding
on Bi monolayers is mainly due to p−orbitals. Furthermore,
the originally degenerate pz orbitals split by occupying the
lowermost and highermost atomswithin the bilayer, in an elec-
tronic configuration resembling that of group-IV monochalco-
genide monolayers whereby the chalcogen is more negatively
charged: this intrinsic electronic redistribution (polarisation)
creates two sublattices and drives the intrinsic electric dipole
with an in-plane polarisation in bismuth monolayers.

The atomistic configuration of the bismuth monolayer
in figure 30(a) thus resembles that seen in group-IV
monochalcogenidemonolayers [246] (figures 24(c)-(ii), 27(a),
and 29(b)). Unlike phosphorene–similar to the structure B in
figure 30(b)—it features different heights for all four atoms in
the unit cell, and a twice-degenerate energy landscape remin-
iscent of that of figure 24(c)-(i) that is depicted in figure 30(c).

Even though there are four bismuth atoms in the unit cell,
the two ones closest to vacuum receive extra charge from pz

Figure 30. As, Sb, and Bi monolayers undergo a structural
distortion onto a ferroelectric phase with an in-plane intrinsic
electric polarisation P. (a) Generic atomistic structure. (b)
Ferroelectric phases (A and A’) and a rectangular paraelectric phase
(B) with a higher symmetry. (c) Two-fold degenerate elastic energy
landscape as a function of the height of the red atoms in (b); blue
atoms were left unchanged with respect to their positions in
structure B. (d) An electronic reconfiguration of pz orbitals onto
outermost atoms drives the creation of a purely-electronic in-plane
intrinsic dipole P. Figure taken from [263]. John Wiley & Sons. ©
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

orbitals, giving the unit cell two nonequivalent atoms and a
Pmn21 space group, just like that taking place in group-IV
monochalcogenide monolayers [246].

Structure A’ (B) here was labelled B in figure 24(c)-(i).
Structure B here is calculated on the same rectangular unit
cell used to compute structures A and A’, while structure C in
figure 24(c)-(i) was calculated on the minimal-energy square
unit cell and are thus not equivalent. The charge distribution
underpinning the electronically-driven intrinsic dipole is dis-
played in figure 30(d).

Similar to the experimental realisation of SnTe monolayers
[248], bismuth monolayers were also grown in epitaxial
graphene. The authors verified its in-plane intrinsic electric
polarisation by noticing that the higher-most atom appears
bright (dark) in valence (conduction) band sweeps [257], thus
confirming the non-equivalence of bismuth atoms in the unit
cell.

Furthermore, polarisation switching by the field created by
the tip was observed at a domain wall, which verifies the fer-
roelectric character of 2D bismuth experimentally.

Unlike the case of the SnTe monolayer [262, 267], and sim-
ilar to SnSe monolayers on epitaxial graphene [245], the bis-
muth monolayer displays 180◦ domain walls [257].

3.7. Tuning the magnetic configuration of 2D magnets by
strain

Strain can modify the spin configuration of magnetic 2D
materials and make them undergo ferromagnetic (FM) to anti-
ferromagnetic (AFM) phase transitions [269–271].
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Figure 31. (a) Magnetic phase diagram versus percent strain and
temperature for a CrGeTe3 monolayer under uniaxial compressive
strain along the zigzag (a∥) direction. (b) Similar to (a), but for
compressive strain along the armchair (a⊥) direction. The color
coding corresponds to the level of magnetic frustration (f ). Insets
depict the AFM phases, with black and white circles representing Cr
ions with opposite spin directions. Reprinted (figure) with
permission from [269]. Copyright (2021) by the American Physical
Society.

As a first example–obtained via Monte Carlo calculations–
uniaxial compressive strain was applied to CrGeTe3 monolay-
ers to switch in between FM and AFM phases. The switching
of magnetic phases happens by crossing a region of parameter
space with a high degree of magnetic frustration (f ) [269].
Uniaxial strain breaks the equivalency Cr−Cr bonds and mod-
ifies exchange coupling parameters, resulting in a change in
magnetic configuration [269].

A zero-temperature, quantum phase transition from a FM
to an AFM takes place at about 2.8% uniaxial compressive
strain applied along the zigzag direction. The critical temper-
ature increases for larger compresive strain (figure 31(a)). On
the other hand, FM and AFM phases are separated by 2.9%
compressive strain at zero temperature when strain is applied
along the armchair direction (figure 31(b)) [269].

Similar strain-induced magnetic phase transitions have
been predicted for CrI3, CrSe2, and CrTe2 [270, 271].

3.8. Magnetoelectric multiferroic monolayers

This section is written to highlight a new frontier on 2Dmater-
ials that is quickly converging with another area of research
dealing with bulk materials having combined magnetic and
electric ferroic orders. This section will also serve as pre-
amble for a discussion of engineered multiferroics on mag-
netic bilayers.

NiI2 is a layeredmaterial with a screw spin helix in an other-
wise centrosymmetric lattice [272]. As it turns out, the electro-
magnetic coupling takes place within a generalised Katsura–
Nagaosa–Balatsky interaction that is written as follows [273]:

Pij =M(Si×Sj) , (59)

where Pij is the intrinsic electric polarisation vector (at point
i in the lattice, created by a spin at lattice positions i and

i), M is the electromagnetic coupling, Si is the spin at loc-
ation i, and Sj the corresponding spin at location j. Such
polar helimagnetic phase persists down to a monolayer, mak-
ing NiI2 the first experimentally-verified 2D multiferroic
hosting an improper electronic ferroelectricity, where P is
driven by an inversion-symmetry-breaking screw spin helix,
in an otherwise centrosymmetric lattice. Spin interactions
beyond nearest-neighbour Ni sites stabilise the screw spin
helix.

The discussion ofmonolayers ends at this point, to giveway
to a discussion of novel phenomena taking place in few-layer
materials.

4. Strained multilayers (including moirés)

The emphasis turns into stacks of 2D materials in what fol-
lows. We start with a discussion of non-rotated bilayers and
few-layers, and end with a discussion of few-layers with rel-
ative rotations (moirés).

4.1. Energy landscape of slid homo-bilayers without relative
rotations

Homo-bilayers are created out of monolayers made from the
same 2Dmaterial. A hetero-bilayer, on the other hand, is made
from two dissimilar 2D materials and it will always produce
a moiré. The discussion in the rest of this review is mostly on
homo-bilayers and on stacks made from the same 2D mater-
ial. Hetero-layers will only be discussed when dealing with
encapsulated devices here.

To understand the atomistic reconstructions taking place in
moirés, it is illustrative to first realise that there is an optimal
stacking of two monolayers on a homo-bilayer without relat-
ive rotations. The optimal stacking can be calculated using ab
initio techniques that yield (sliding) energy landscapes similar
to those displayed in figures 24(subplots (i)) and 30(c) (later
on, figure 43(a) will feature an energy landscape as well).

Indicated in figure 32(a), graphene’s preferred bilayer
stacking is labeled AB [275] (or BA) and it is two-fold degener-
ate. Binary compounds expand the number of possible stack-
ing sequences, and a hBN bilayer can be either set on its lower-
most energy configuration AA’ (figure 32(b)), or on the AB
configuration seen in figure 32(c) (which is related by a 60◦

rotation–or a reflection of the upper monolayer in the AA’
structure given the three-fold symmetry).

The energy landscapes on figures 33(a), (c), (e), (g) and
(h) indicate the optimal relative placement of a homo-bilayer
without moiré. The important observation is the existence of
two degenerate energy minima per unit cell in figures 33(a),
(e) and (h). Those minima correspond to the structures
shown in figures 34(a), (b), (c), (d) and (f). The (degener-
ate) energy landscapes can be fitted to the following function
[274]:
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Figure 32. (a) Three possible stacking sequences of a graphene
bilayer; the AB stacking is the preferred one. (b) Three stacking
sequences for a hexagonal boron nitride bilayer. The AA’ staking is
the preferred one. (c) Reflecting the upper hBN bilayer, additional
stacking sequences without a center of inversion arise. Similar
stacking sequences to subplots (b) and (c) can be set on TMDC
bilayers. Reprinted (figure) with permission from [274]. Copyright
(2015) by the American Physical Society.
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All bilayers with a honeycomb lattice have sliding energy
landscapes like the ones shown in figure 33 [274, 276].

While the discussion of ferroelectric monolayers was tak-
ing shape (see section 3.6.3 and [246]), Li and Wu determined
a way to generalise 2D ferroelectrics into more widely avail-
able and chemically inert bilayers of 2Dmaterials such as hBN
[277] and TMDCs [278] by removing their center of inver-
sion through a relative 60◦ rotation among monolayers. Such
insightful realisation led to an increased interest in ferroelec-
tricity at the two-dimensional limit that remains ongoing.

4.2. Paraelectric behaviour of homo-bilayers by
‘telegraph-noise’ shear sliding

Recent experimental work showed a transition from a fer-
roelectric configuration on WSe2 bilayers (one in which the
intrinsic electric dipole moment P is finite) onto a paraelectric
one (in which P = 0) at finite temperature [279]. The atom-
istic phenomena leading to a paraelectric behaviour on those

Figure 33. (a) Energy landscape of a graphene bilayer; the AB
stacking is the preferred one, and it is degenerate (note the dark blue
regions). On the other hand, the AA-stacked configurations (shown
in red) are the most energetically unfavorable. (b) Corresponding
optimal relative height of the graphene bilayer. (c) Optimal energy
and (d) relative height of the hexagonal boron nitride bilayer,
originally on the AA’ configuration (darkest blue). (e) Energy
landscape and optimal relative height of the non-centro-symmetric
hexagonal boron nitride bilayer: note the existence of degenerate
two minima within the unit cell. Reprinted (figure) with permission
from [274]. Copyright (2015) by the American Physical Society. (g)
Energy landscape of a WSe2 2H bilayer; it has only one minima in
the unit cell. (h) Energy landscape of the non-centro-symmetric
rhombic WSe2 bilayer. Reprinted with permission from [276].
Copyright (2022) American Chemical Society.

homo-bilayers is quite different to that observed in ferroelec-
trics before, where a two-fold degenerate energy landscape
(figure 35(a)) suffices to describe such behaviour.

The first observation to justify a novel description of ferro-
electricity on bilayers lacking a center of inversion is the pres-
ence of multiple degenerate minima (two per unit cell) that are
all accessible by sliding (figure 35(b)).

The second observation is that the paraelectric phase is cre-
ated by sliding events on the honeycomb lattice, with the out-
of-plane polarisation P changing direction at every discrete
sliding step shown in figures 35(d)–(f) [276].

A third and most remarkable experimental observation is
that layered ferroelectrics can sustain an intrinsic electric
polarisation that increases in discrete steps with the number
of added monolayers [280].

As it turns out, it is extremely challenging to realise bilayers
with lattice vectors of each monolayer forming exact multiple
of 30◦ angles with respect to one another [281]. This fact will
give rise to a wealth of physical behaviours that will be sur-
veyed in the next section.

4.3. Moiré patterns

4.3.1. Relevance and brief historical survey. The word
moiré has an arabic origin and it means ‘to wet.’ The term
is commonly used within the textile industry to describe
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Figure 34. (a) AB bilayer graphene [275]. (b) BA bilayer graphene can be obtained by a reflection or by a relative sliding (see degenerate
minima in figure 33(a). (c) Substitution of carbon atoms in the AB configuration by boron and nitrogen removes the point of inversion,
creating an intrinsic electric dipole P that (d) switches direction upon reflection and/or sliding (see figure 33(e) for the two degenerate
minima within the unit cell). Adapted with permission from [277]. Copyright (2017) American Chemical Society. This phenomenology
extends to other readily available bilayers, such as TMDC (MX2) bilayers, which have a center of inversion in their ‘hexagonal’ (H)
conformation, but lack a point of inversion in their ‘rhombohedral’ (R) configuration, and develop an out-of-plane intrinsic electric dipole P
as well. Reprinted with permission from [278]. Copyright (2018) American Chemical Society.

Figure 35. (a) Ferroelectrics are traditionally described by a polynomial energy landscape with two degenerate minima, an energy barrier J,
and energy-confining potential energy walls. (b) Rhombohedrally-stacked (R) TMDC bilayers are unusual ferroelectrics having an
infinite number of degenerate minima. The paraelectric state is the time average of P over long times; P swaps sign at random times
and it averages down to zero. (c)–(f) Demonstrating the temperature-activated relative sliding of the R WSe2 bilayer: The vector
rM−M = (r1,M−M,r2,M−M,r3,M−M) tracks a pair of W atoms belonging to opposite monolayers on the same unit cell as a function of time.
Sliding events are observed at temperatures above 490 K; the magnitude of those displacements is consistent with the vectors drawn as an
inset in plot (c) which furnish a honeycomb lattice. The critical temperature TC is assigned to that for which the first sliding event occurs
within the full 1 µs simulation time. Reprinted with permission from [276]. Copyright (2022) American Chemical Society.
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the appearance of interwoven silk and it should not be
capitalised.

The first observation of moirés on turbostatic graphite
dates back to 1993 [282]. (This moiré has been revisited
quite recently [283].) According to [284], the first observation
of unusual electronic properties on rotated bilayer graphene
moirés is due to Eva Andrei [285], who determined that the
energy separation between van Hove singularities reduces
with the relative angle of rotation amongmonolayers, and pos-
ited that their energy separation would be zero at an angle
smaller than 1.1◦ (a magic angle), at which point the lin-
ear momentum of charge carriers would turn zero as well.
Calculations of a rotated graphene bilayer performed within
a continuum model demonstrated the possibility of renormal-
isation of the Fermi velocity of graphene [286]; velocity renor-
malisation was confirmed by tight-binding calculations [287,
288]. Bistritzer and MacDonald suggested the possibility of
strongly correlated electron–electron quantum phases at the
flat bands taking place at magic angles [289]. The subsequent
experimental confirmation of unconventional superconductiv-
ity and correlated insulating phases by Jarillo-Herrero’s group
[290] has led to intense and ongoing research in this area.
Nowadays it is known that velocity renormalisation also takes
place in other moiré 2D materials, such as a twisted hBN
bilayer [291]. The experimental challenges in creating precise
rotations have been addressed in a recent review [281].

4.3.2. Different ways to create moirés. There are multiple
ways to create moirés [292] with 2D materials out of the fol-
lowing basic ‘ingredients:’

(i) by a relative twist between two monolayers in a
homobilayer

(ii) by isotropically straining onemonolayer in a homobilayer
(iii) by relative shear strain in a homobilayer
(iv) by uniaxial simple shear in a homobilayer
(v) by an unrelaxed hetero-bilayer
(vi) by stacking more than two monolayers with angular

stacking faults

The first three of those alternatives are shown in figure 36.
The rotated homo-bilayer moiré is the most commonly

described in the theoretical literature, and the process to cre-
ate a commensurable moiré bilayer by a relative rotation
is described now. When commensuration between the two
monolayers exists, the lattice vectors of a rotated moiré super-
cell can be obtained following a process delineated in [282,
292–295] and multiple other publications. Let

S= a

(
−

√
3
2

√
3
2

3
2

3
2

)
(61)

be a matrix built from the lattice vectors written down in
equation (1). (Lattice vectors were written in column form in
equation (61).)

Let θ be the mismatch angle (this is, the relative rotation
angle between the two monolayers). Customarily, the lower

Figure 36. Strain from (a) twisting, (b) isotropic strain, or (c) pure
shear have signatures that allow identification from one another.
Reproduced from [292], with permission from Springer Nature.

monolayer is rotated by −θ/2, while the upper monolayer is
rotated by θ/2. The respective rotation matrices are:

R(±θ/2) =

(
cos
(
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)
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cos
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) ) ,
and the moiré superlattice vectors (figure 37(a)) are obtained
as:

SM (θ) =
(
S1 (θ)

−1 − S2 (θ)
−1
)−1

, (62)

where

S1 (θ) = R(−θ/2)S, and S2 (θ) = R(θ/2)S (63)
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Figure 37. (a) Wigner–Seitz supercell of a twisted graphene moiré
bilayer (atomic positions were not relaxed). Regions with AA, AB
and BA stacking configurations, as well as the moiré lattice vectors
a1 and a2 are indicated. (b) Reciprocal lattice of the twisted bilayer
graphene. High-symmetry points are indicated along with moiré
reciprocal lattice vectors b1,b2,b3 and a set of vectors q1,q2,q3. (a)
Reprinted (figure) with permission from [296]. Copyright (2021) by
the American Physical Society. (a) Reprinted (figure) with
permission from [297]. Copyright (2022) by the American Physical
Society.

are the rotated lattice vectors for the lower and upper mono-
layer, respectively. Carrying out the math, the moiré lattice
vectors (equation (62)) are given by:
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√
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or
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, (65)

with the length of the moiré superlattice vector given by
aM(θ) =

√
3a

2sin(θ/2) ≃
√
3a
θ for θ < 15◦ (when expressed in

radians). The area of the moiré is given by AreaM(θ) =

[
√
3
2 aM(θ)]

2 ≃ 3a2

2 θ
−2, and the corresponding reciprocal space

is shown in figure 37(b).
Strain and corrugations play a major role in the TBG flat

band and energy gaps at the magic angle [298]. As seen in
figures 36(a)–(c), different sections of the bilayer form relat-
ive conformations that explore every local unit cell configura-
tion seen in figure 33. In principle, the energy cost varies, and
certain configurations can be minimised by a process of local
atomistic (strain) reconstruction [17, 283, 299–304]; Cazeaux
et al have deployed a process to optimise moiré bilayers that
minimises a functional of the local strain [292]. It relies on an
energy landscape set on a unit cell similar to the one given by
equation (60) (but slightly simpler). Configurations (a)–(c) in
figure 36 lead to triangular homo-bilayer moirés and to exper-
imentally differentiable patterns.

Figure 38. TBG in plane relaxation for (a) the top and (b) bottom
graphene layers for a mismatch angle of θ = 1.08◦. The vectors
represent the displacement field. Its magnitude is also highlighted
by colour. Perfect AA stacking points are at the corners. The
minimally strained regions are AA stacking-like. Vortices of the
strain field are seen around AA like regions. One dimensional
channels are also seen. Reproduced from [19]. CC BY 4.0.

The energetic preference for AB and BA regions over AA
stacking regions (see figure 37(a)) leads to lattice deforma-
tions and local strain [17, 19, 292, 298, 305] due to the steric
repulsion between carbon pz orbitals. Therefore, carbon atoms
move apart from each other producing a corrugation that tracks
the different kinds of stacking regions. As seen in figure 38,
DFT calculations indicate that out-of-plane displacements are
accompanied alongwith significant in-plane relaxation [19]. A
vortex-like pattern can be observed in figure 38. The direction
of circulation on the vortex reverts in between monolayers.
Overall, the atomic relaxation results in the shrinking of the
AA stacking regions in favor of the AB/BA stacking domains
[19].

At very small twist angles (θ ∼ 1◦), the structural relaxa-
tion in TBG leads to the formation of triangular domains with
Bernal stacking. Under an interlayer bias, these domains are
gapped and the electronic transport occurs in one-dimensional
networks formed by domain walls. Those states have been
visualised in experiments recently [17, 299]. Transport in these
one-dimensional networks has been studied using a model
where the AA regions in TBG are represented as scattering
centers connected by one-dimensional helical channels [306,
307]. Pseudo Landau levels and an effective honeycomb lattice
for this model were also discussed [308].

The structural relaxation of AA stacking regions diminishes
the tunneling in such regions. Theoretically such tunnelling
can be set to zero resulting in a chiral model that contains the
basic features of the magic angle physics [296, 297, 309, 310].
In fact, it can be proved that the squared chiral Hamiltonian is
basically a Quantum Hall effect hamiltonian [310]. From the
chiral model, one can obtain the magic angles for multilayer
graphene [311].
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Figure 39. (a) Subplots (i)–(iv): definition of possible atomic
displacements; the direction of relative monolayer motion is coded
by color. Subplot (v) folds the displacements back into a single unit
cell, and it defines an order parameter. (b) Transmission electron
microscopy and Fourier transforms permit identifying the type of
moiré created. For instance, the domains seen in subplots (i)–(v)
correspond to a moiré created away from a bilayer near an AB
configuration, while those in subplots (iv) and (vi) take place in a
moiré near an AA’ configuration. (c) Identification of domains and
domain walls (see figure 36). (d) Probability of displacements
folded into a single unit cell: coloring is consistent with that in
subplot (c). Reprinted (figure) with permission from [315].
Copyright (2023) by the American Physical Society.

The consequences of strain in the interacting phase dia-
gram of TBG were investigated recently [312]: even for small
strain ε (within the range of values observed in experiments),
strain-induced topological phase transitions occur, supporting
the possibility of strain playing an important role in sample-
dependent observations. Along those lines, the role played by
strain in the fabrication of moiré materials has been recently
studied from a reproducibility perspective [281]. The pres-
ence of non-uniform strain in TBG might lead to variability
in transport results within different regions of a single TBG
sample. Models to determine twist angle and strain have been
developed [313–315].

Small strains at nonzero integer fillings have been predicted
to stabilise an ‘incommensurate Kekulé spiral’ order [316]
(section 3.2.7).

In a study using an atomistic description of TBG [317],
the role of a hBN substrate in the structural relaxation and
band structure of TBG was shown to be important, intro-
ducing large effective masses and large pseudo-magnetic
fields. Also, the long-range Coulomb electron–electron inter-
action affects the distribution of Berry curvature of the
bands near charge neutrality of a TBG closely aligned with
hBN. Due to the suppressed dispersion of the narrow bands,
the band structure is strongly renormalised [54]. Therefore,
the topological linear and nonlinear Hall conductivities in
TBG/hBN are substantially modified by electron–electron
interactions [54].

4.3.3. Real-space topology and strain on moiré bilayers.
Figures 39(a)-(i–iv) contain possible relative displacements
of the upper monolayer (in orange) with respect to the lower
(blue) one. Those displacements, when folded back onto the
unit cell, define an order parameter [315].

Figure 40. (a) The order parameter observed in figure 39(d) can be
redrawn (b) as a cut torus that avoids configuration AA, or (c) as
three lines joining two points AB and BA. (d) A loop round a
configuration AA, which is thus avoided. (e)–(h) Real-space
dislocations corresponding to clockwise paths in configuration
space, generating vortices ((e) and (f)) and antivortices ((g) and (h)).
Domain walls were coloured based on the R, G, or B move in
configuration space. The direction of the moves is shown by black
arrows. The structures were created from: (e) isotropic, (f) twist, (g)
uniaxial, and (h) shear displacements. Reprinted (figure) with
permission from [315]. Copyright (2023) by the American Physical
Society.

‘First order’ domain walls obtained by dark field trans-
mission electron microscopy are displayed in figure 39(b)-(i),
while ‘second order’ images (which focus on the domain
walls) can be seen in figures 39(b)-(ii–iv). The colors dis-
played on figures 39(b)-(ii–iii) are consistent with those dis-
played in figure 36. Figure 39(c) contains domain struc-
tures and domain walls. Note how the AA regions have col-
lapsed onto smaller areas; the AA configurations correspond
to the points in which two boundary lines in the unit cell in
figure 39(d), which are avoided due to their high energy cost
(see (red) maxima of the energy landscape at AA onfigurations
in figure 33).

The topology of the unit cell can be equivalently observed
in the unit cell (figures 39(a)(v), 39(d), and 40(a)) or in the
torus displayed as figure 40(b). The crucial point is that the AA
regions, being so energetically costly, collapse onto sections
with a negligible area, and are explicitly removed (‘cut out’) in
the topological description. Another equivalent description of
the topology is obtained by joining the three (green, blue, and
red) lines into points AB and BA, as it is done in figure 40(c)
[315].

To understand the topology of the relative displacements,
figure 40(d) depicts a hexagonal circuit, whose center is an
(avoided) AA configuration. The direction of a given displace-
ment can be further encoded by the addition of ‘inverse’ opera-
tions, which reverse direction. This way, one works with those
elements:

R, R−1, G, G−1, B, and B−1.
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Figure 41. (a) Dark-field TEM image of a WSe2/MoSe2
hetero-bilayer. The scale bar is 100 nm. The inset contains a
diffraction pattern and Burgers vectors. (b) Vortex density. (c)
Isotropic strain map. (d) Uniaxial strain map. (e) The shear strain has
magnitudes around 1% in highly elongated domains. (f) Twist is the
largest contributor to the moiré. Reprinted (figure) with permission
from [315]. Copyright (2023) by the American Physical Society.

An additional simplification calls for the following redefin-
ition of group elements:

a↔ RG−1, b↔ BR−1, and ba↔ BG−1; (66)

the definition of operations in terms of group generators a and
b permits defining a vortex operation:

[a,b] = RG−1BR−1GB−1, (67)

which, starting at a configuration BA, goes clockwise (from
left to right; figure 40(d)). An antivortex operation goes anti-
clockwise on figure 40 [315]:

[b,a] = BG−1RB−1GR−1. (68)

Figure 41 combines analyses of topology and geometry of
a WSe2/MoSe2 moiré hetero-bilayer.

4.3.4. Magic angle twisted bilayer graphene. A power-
ful method to describe the structure of twisted 2D materi-
als relies on the cut and projection method used to generate
quasicrystals [294, 318–320]. There, the projected structure
is interpreted as the set of points of best fit between the two
rotated structures [294].

A paradigmatic model for the electronic properties of TBG
is described by a 2× 2matrix operator. The starting point is the
Bistritzer–MacDonald Hamiltonian [289], obtained by rotat-
ing two graphene low-energy effectiveDiracHamiltonians [1],

and coupling the two graphene monolayers using the first har-
monics of the interlayer interaction potential only [289, 321].

Considering as a basis set the wave vectors Φ(r) =(
ψ1(r),ψ2(r),χ1(r),χ2(r)

)T
, where the index 1 or 2 labels a

graphene monolayer and ψj(r) and χj(r) are the two Wannier
orbitals on each inequivalent site (sublattice) of the graphene’s
unit cell [1], the chiral Hamiltonian is given by [309, 311]:

H=

(
0 D∗ (−r)

D(r) 0

)
. (69)

Zero-mode operators are defined as:

D(r) =
(

−i∂̄ αU(r)
αU(−r) −i∂̄

)
, (70)

and

D∗ (−r) =
(

−i∂ αU∗ (−r)
αU∗ (r) −i∂

)
, (71)

where ∂̄ = ∂x+ i∂y is the antiholonomic differential operator
and ∂ = ∂x− i∂y the holonomic one. The dimensionless coup-
ling (potential) is given by:

U(r) = e−iq1·r + eiϕe−iq2·r + e−iϕe−iq3·r (72)

where ϕ = 2π/3 and the moiré reciprocal lattice vectors are

given by q1 = kθ(0,−1), q2 = kθ(
√
3
2 ,

1
2 ), q3 = kθ(−

√
3
2 ,

1
2 )

(see figure 37(b)).
The moiré modulation vector is

kθ = 2kD sin
θ

2
, (73)

where θ is the twist angle between layers and kD = 4π
3a is the

Dirac wave vector norm. The angle and interlayer coupling
effects are both captured by the parameter α, defined as:

α=
w1

vFkθ
, (74)

with w1 = 110meV the interlayer coupling for AB stacking
and vF = 19.81eV

2kD
is the Fermi velocity.

The spectrum can be found by proposing a Bloch wave
function with momentum k in the moiré first Brillouin zone:(

ψk,1 (r)
ψk,2 (r)

)
=
∑
mn

(
amn

bmneiq1·r

)
ei(Kmn+k)·r, (75)

and (
χk,1 (r)
χk,2 (r)

)
=
∑
mn

(
cmn

dmneiq1·r

)
ei(Kmn+k)·r, (76)

and solving for the coefficients am,n, bm,n, cm,n, and dm,n in the
Hamiltonian (69).

Figure 42 presents the resulting squared energies E2 as
a function of α obtained at three k-points: Γ-, K, and k=
q1 + 0.14q2 + 0.23q3, the last one being a k-point of low sym-
metry.Working with E2 instead of E helps emphasise the mag-
nitude of the energy–given that the spectrum is electron–hole
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Figure 42. Numerically found lowest-band logarithm of the
squared energy of the twisted bilayer graphene versus the parameter
α (related to θ): The upper red dots corresponds to the Γ point;
black dots to the K−point, while purple dots correspond to another
generic k point, i.e. chosen no to be a high symmetry point, in this
case k= q1 + 0.14q2 + 0.23q3. At magic α’s, indicated by vertical
red lines, the bandwidth goes to zero, as indicated by a drop in the
band energy values. The K point is always a zero solution for any α.
Reprinted (figure) with permission from [297]. Copyright (2022) by
the American Physical Society.

symmetric. The band edge is located at the Γ−point and the
dips in figure 42 correspond to the magic angles α= α(θ),
because the band shrinks to zero width for those values of the
twist angle θ (see equations (73) and (74)).

Chiral symmetry induces an electron–hole symmetry [322–
325] that leads into an effective 2× 2 Hamiltonian. Squaring
H, it decouples into two identical 2× 2 matrices given by
[296]:

H2 =

(
−∇2 +α2|U(−r) |2 αF† (r)

αF(r) −∇2 +α2|U(r) |2
)
. (77)

The squared norm of U(r) can be understood as an effective
confinement potential in the moiré supercell:

|U(r) |2 = 3+ 2cos(b1 · r−ϕ)

+ 2cos(b2 · r+ϕ)+ 2cos(b3 · r+ 2ϕ) . (78)

As seen in figure 43(a), |U(r)|2 resembles a Kagome lattice.
The off-diagonal terms of the 2× 2 matrix are:

F(r) =−i
3∑

µ=1

eiqµ·r
(
2q̂⊥µ ·∇− 1

)
, (79)

and,

F† (r) =−i
3∑

µ=1

e−iqµ·r
(
2q̂⊥µ ·∇+ 1

)
, (80)

where ∇† =−∇ with ∇= (∂x,∂y) and µ= 1,2,3. This is
an essential point as eigenvalues must be real (notice that
−F†(−r) = F(r)). q̂⊥µ is a set of unitary vectors perpendicular
to the set qµ such that q̂µ · q̂⊥µ = 0.

The contributions from F†(r) and F(r) can be condensed
into a new operator

F̂(r) =
(

0 F† (r)
F(r) 0

)
(81)

proportional to an interlayer current between different bipart-
ite lattices [297] and, eventually, with the angular momentum
in the perpendicular direction to the two graphene monolay-
ers: for small twist angles, the squared TBG chiral model
Hamiltonian turns out to be akin to a Quantum Hall effect
Hamiltonian [310, 326].

The renormalisation simplifies the Hamiltonian consider-
ably and highlights the three main ingredients of charge car-
rier dynamics on twisted few-layers: (i) a kinetic energy con-
tribution via the∇2 term, (ii) a confinement, kind of quantum
dot, potential energy |U(r)|2, and (iii) the interaction operator
F̂(r), which is an interlayer current between bipartite lattices
that eventually results in a coupling of angular momentum and
an effective magnetic field [326].

The expectation values from those three energy terms are
presented as a function of the (twist-angle dependent) para-
meter α at the Γ point in figure 43(b). The kinetic and con-
finement potential contributions are always positive while the
angular contribution is always negative. The first magic angle
is different from others, but reachable through perturbation
theory [297]. As seen in figure 43(c), the flat band can be
understood as a very special condition in which the sum of kin-
etic and confinement energy is equal to the angular effective
confinement contribution achieved through destructive inter-
ference paths [310]. Another interesting feature can be seen
in figure 43(c): the magic angles follow a quantised rule
α(θm+1)−α(θm) = 3/2, where m is the order of the twist
angle θ [310]. The wave functions at magic angles are nearly
coherent Landau levels and thus have many important proper-
ties and applications [310].

The renormalisation produced by the squaring procedure
maps the flat band into a ground state separated by a gap from
the rest of the states. The ground state has an antibonding
nature in a triangular lattice and then has frustration, associ-
ated with a massive degeneration [98, 296, 322–324]. Also,
this renormalisation is equivalent to a supersymmetric trans-
formation from a fermion to a bosonic Hamiltonian, a subject
of intense research in solid state physics [327, 328].

An intriguing and yet unexplored feature is the equivalence
of the flat band with floppy modes on elastic Hamiltonians
[296] for mechanical systems with constraints, such as rods
or bars between hinges [329–331], or glasses [332, 333].

The chirality of TBG seems to induce spin textures around
the K point of the Brillouin zone with alternating vortex-like
textures [334]. The helicity of each vortex is inverted by chan-
ging the chirality. The spin texture changes as the twist angle
evolves.

A unified picture of the quantum phase diagram of TBG in
terms of incommensurate Kekulé spiral (IKS) order was pro-
posed recently [316, 335]: this is a time-reversal-symmetric
and spatially nonuniform order, which shifts the spatial
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Figure 43. (a) Dimensionless confinement potential |U(r)|2 for a twisted bilayer graphene model in which the tunnelling at AA regions is
set to zero. The degenerate minima of |U(r)|2 occurs at AA (green dot) and AB (red dots) stacking points. The maximum are located at BA
stacking points (yellow dots). The Wigner–Seitz cell of the moiré lattice is indicated (see figure 37(a)). (b) Expectation values of the
components of H2 at the Γ point, as a function of α near the first magic angle (vertical line). Numerical results are indicated with dashed
lines and points. −⟨∇2⟩ is shown in blue, α2⟨|U(r)|2⟩ is green. The off-diagonal contribution ⟨A⟩= α⟨Â(r)⟩ is seen in black and orange,
corresponding to the first and second terms in equation (79). The solid lines are analytical, perturbative solutions [297]. (c) Kinetic plus
confinement energy expectation value without the absolute value of the angular momentum contribution at the Γ point. Flat-bands arise at
magic angles (vertical lines) whenever the kinetic, confinement and angular momenta contributions add up to zero. The kinetic and
confinement potential contributions are positive, while the angular contribution is negative. Reprinted (figure) with permission from [297].
Copyright (2022) by the American Physical Society.

coordinates and rotates theU(1) angle characterising the spon-
taneous intervalley coherency simultaneously [316]. Also,
many different flavors of fermions can be obtained by mak-
ing heterostructures of Kekulé over another Kekulé-patterned
graphene [336].

Intercalating graphene layers with alkali atoms leads
to effects similar to strain [337]. Although those res-
ults seem to be relevant for the alkali-intercalated sys-
tems where Kekulé patterings have been reported [158,
176], the relation between intercalation and strain has
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Figure 44. (a) Small-angle twisted hexagonal boron nitride bilayer.
The red circled dot and red circled X represent up and down
polarisation, respectively. (b), (c) Vertical piezo-force microscopy
phase and amplitude images. From [300]. Reprinted with
permission from AAAS.

not been discussed in the literature to the best of our
knowledge.

Measurements of the second order transversal conductiv-
ity have been used to detect topological transitions in strained
moiré systems [338], as the latter are closely related to the
changes in sign of the Berry dipole. In strained TBG, it has
been observed that the nonlinear effects can be even more
important than the linear ones [339]. Similar nonlinear effects
have been seen in rotated bilayers of WSe2 [340], where a
change in the sign of the Berry dipole across the gap has been
identified. The effect is enhanced due to the large spin–orbit
gap typical of TMDCs [341]. Apart from charge transport,
thermal and thermoelectrical transport have also been invest-
igated in strained TBG [342].

4.3.5. Antiferroelectric moiré bilayers. At the 2D limit, the
electric field effect can penetrate a bilayer, and ferroelec-
tric metals exist in WTe2 bilayers [343]. Here, one contin-
ues the discussion started in section 4.1 concerning ferroelec-
tric insulating bilayers though. More specifically, figures 34(c)
and (d) indicate that the (insulating) hBN bilayer switches
its direction of polarisation P as it changes from the AB to
the BA configuration. This means that, when a a moiré struc-
ture is set with a small angle δ away from the configurations
drawn in figures 33(e), (g) and (h), a domain structure like
the one shown in figure 42(a) will set up. Additionally, if the
types of strain shown in figures 42(b) and (c) are also taking
place, those will also give rise to an antiferroelectric disposi-
tion that is experimentally depicted by piezo-force microscopy
in figure 44. The effect has been experimentally generalised
to moiré TMDC bilayers as well [283, 300–302]. That the
intrinsic polarisation P increases in discrete steps with addi-
tional layers has been demonstrated as well [280].

4.3.6. Flat bands, charge localisation, and electronic correla-
tions in non-graphene moiré homo-bilayers. Flat bands and
strong electronic correlations are not exclusive of magic-angle
moiré graphene bilayers. As seen in figure 45, charge localisa-
tion extends to multiple moiré homo-bilayers such as the hBN
one [291, 344–346]. Strong electron–electron correlations on
flat-band non-graphene bilayers are being vigorously studied
now [347].

Figure 45. (a) Hexagonal boron nitride bilayer with a small moire
away from configuration BN/BN-2 in figure 32(c). (b) Hexagonal
boron nitride bilayer with a small moire away from configuration
BN/BN-1 (lower in energy) in figure 32(b). (c) Flat band on a moiré
hexagonal boron nitride bilayer with a rotation angle of 2.64◦ away
from the BN/BN-2 configuration. Reproduced from [291].
CC BY 4.0.

4.4. An argument for charge localisation in graphene and
hexagonal boron nitride moiré homo-bilayers

The domain walls separating AB and BA regions develop a
limit length [292]. At that limit, electronic states belonging to
AB and BA domains happen to be orthogonal. This is proven
for a graphene bilayer, and it can be proven for a hBN bilayer
along similar lines.

To prove the orthogonality of electronic states belonging
to either and AB or a BA domains in bilayer graphene, the π-
electronHamiltonian in [275]will be employed. In the absence
of external out-of-plane electric field or dopants, it reads as:

HAB (kx,ky)

=


0 −γ0 f(k) γ4 f(k) −γ3 f∗ (k)

−γ0 f∗ (k) ∆ ′ γ1 γ4 f(k)
γ4 f∗ (k) γ1 ∆ ′ −γ0f(k)
−γ3 f(k) γ4 f∗ (k) −γ0 f∗ (k) 0


(82)

with f(k) the usual factor introduced in [1], γ0 = 3.16 eV, γ1 =
0.381 eV, γ3 = 0.38 eV, γ4 = 0.14 eV, and ∆ ′ = 0.022 eV
[275, 348].

The π-orbitals used to build the Hamiltonian in
equation (82) are ordered as A1, B1, A2, and B2, where the
letter A or B indicates the sublattice within a given layer, and
the subindex (1 or 2) indicates the layer to which a given
orbital belongs.

Starting from an AB bilayer, the Hamiltonian for a
BA bilayer requires an inversion along the z-direction (see
figures 34(a) and (b)), or a monolayer relabeling leading to:
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HBA (kx,ky)

=


∆ ′ −γ0 f(k) γ4 f∗ (k) γ1

−γ0 f∗ (k) 0 −γ3f(k) γ4 f∗ (k)
γ4 f(k) −γ3f∗ (k) 0 −γ0 f(k)
γ1 γ4 f(k) −γ0 f∗ (k) ∆ ′

 .
(83)

Focusing on the energy dispersion at the Dirac points, the
question is whether an electronic state at zero energy at a AB
domain at one K-point can be transmitted onto the BA domain
at the same K-point. This question is addressed by looking at
whether the relevant states are orthogonal: if they were, states
at the AB domain cannot be transmitted onto a BA domain.

For definiteness, the K-point oriented along the +x direc-
tion will be considered for this argument. Such K-point will
be labelled K+ = (K,0). f(k) = 0 at any of the K-points, so
equation (82) simplifies into:

HAB (K+) =


0 0 0 0
0 ∆ ′ γ1 0
0 γ1 ∆ ′ 0
0 0 0 0

 .
Permuting columns on equation (84) the following way:

PAB =

(
A1 B1 A2 B2

A1 B2 B1 A2

)
leads to the Hamiltonian

MT
PABHAB (K+)MPAB =


0 0 0 0
0 0 0 0
0 0 ∆ ′ γ1
0 0 γ1 ∆ ′

 ,
with eigenvalues −γ1 +∆ ′, 0 (double degenerate), and γ1 +
∆ ′. The associated eigenvectors, written in the original orbital
order (A1,B1,A2,B2) are:

|v0,1,AB (K+)⟩= (1,0,0,0)T ,

|v0,2,AB (K+)⟩= (0,0,0,1)T ,

|v−γ1+∆ ′,AB (K+)⟩=
1√
2
(0,−1,1,0)T , and

|vγ1+∆ ′,AB (K+)⟩=
1√
2
(0,1,1,0)T . (84)

On the other hand, equation (83) simplifies into

HBA (K+) =


∆ ′ 0 0 γ1
0 0 0 0
0 0 0 0
γ1 0 0 ∆ ′

 ,
which, under the following column permutation

PBA =

(
A1 B1 A2 B2

A2 B1 A1 B2

)

also leads to

MT
PBAHBA (K+)MPBA =


0 0 0 0
0 0 0 0
0 0 ∆ ′ γ1
0 0 γ1 ∆ ′

 (85)

with identical eigenvalues to those of HAB(K+): −γ1 +∆ ′,
0 (doubly degenerate), and γ1 +∆ ′, and associated eigen-
vectors, written in the original orbital order (A1,B1,A2,B2):

|v0,1,BA (K+)⟩= (0,0,1,0)T ,

|v0,2,BA (K+)⟩= (0,1,0,0)T ,

|v−γ1+∆ ′,BA (K+)⟩=
1√
2
(−1,0,0,1)T , and

|vγ1+∆ ′,BA (K+)⟩=
1√
2
(1,0,0,1)T . (86)

Then, all energy states turn out to be orthogonal at AB and
BA domains; this is especially true for the zero-energy states,
which belong in orthogonal subspaces:

⟨v0,1,AB (K+) |v0,1,BA (K+)⟩= 0,

⟨v0,1,AB (K+) |v0,2,BA (K+)⟩= 0,

⟨v0,2,AB (K+) |v0,2,BA (K+)⟩= 0, and

⟨v0,2,AB (K+) |v0,1,BA (K+)⟩= 0. (87)

The argument provided in this subsection can help explain
the gradual process toward velocity renormalisation in moiré
graphene and hBN homo-bilayers. The localisation of charge
due to orthogonality of charge carriers at AB and BA domains
then underpins the strong electron–electron interactions taking
place in those rotated bilayers.

4.5. Correlated physics in triple-layer graphene

More recently, triple layer twisted graphene has been found to
be the most strongly interacting correlated material [349, 350],
and quasi-crystalline electronic phases have been uncovered
on those systems [351]. Given that they share similar quantum
phase diagrams, such discoveries unveiled the possibility of
using 2D materials to understand unconventional supercon-
ductivity in cuprates and heavy fermion systems [290, 312,
349, 352, 353].

The search for superconductivity and other correlated
phases in graphene-based materials was extended to non-
twisted graphene multilayers. Remarkably, superconductiv-
ity was reported in ABC (or rhombohedral) trilayer graphene
[354] and Bernal-stacked blayer graphene.

For one of the superconducting phases found in ABC-
trilayer graphene, multiple studies have focused on a purely
electronic mechanism [355]. A proposal by Ghazaryan
et al [356] pointed out a general mechanism for supercon-
ductivity induced by an annular Fermi surface. Remarkably,
an annular Fermi surface has not only been observed in
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Figure 46. (a) Vertical heterostructure (top graphene/WSe2
monolayer/h-BN/bottom graphene on a polymer substrate). The
optical emission site is located below the AFM tip. (b) Band
bending of the strained heterostructure under an external bias. EB,
EV, ED, and EDefect are the excitonic bright band, valence band, dark
excitonic band, and defect state of the WSe2 monolayer. Solid and
dashed red lines in the right panel are spatial variations of the band
gap due to local strain. (c) Fabrication process: (i) A PMMA layer
was spin-coated on top of the TMDC on the SiO2/Si substrate, and
peeled off. (ii) The detached PMMA layer was turned upside down.
(iii) AFM indentation was performed afterwards. (d) Optical
microscope image of the heterostructure. Scale bar: 10µm. (e) AFM
image of the fabricated heterostructure. Seven indents were made to
the WSe2 monolayer. Scale bar: 5 µm. Reproduced with permission
from [357]. CC BY-NC 4.0.

ABC-trilayer graphene, but in other graphene superlattices
[154] as well.

4.6. Modified optical properties of transition metal
dichalcogenide monolayers by strain

Single-photon emitters from 2D materials provide unique
advantages over existing quantum light sources and may
have potential applications in quantum cryptography and
quantum computing. Recently, a van der Waals heterostruc-
ture consisting of a WSe2 monolayer, hBN, and few-layer
graphene (FLG) was fabricated to produce electric field-
tunable single photon emission [29] by optical excitation. As
seen in figure 46, demonstrations of electrical excitation of
photoemitters on strain-tunable van derWaals heterostructures
have been provided as well [357].

By applying an electric field, the electron and hole wave
functions become spatially separated, resulting in a change
in the total energy of the trapped exciton. Electric field-tuned
SPE can be observed at positions where strain is induced by
a nanopillar. These strain-induced emitters have higher emis-
sion energies (blueshifts) than previously reported quantum
emitters in WSe2 monolayers [29, 358].

Figure 47. Triangular domains in marginally-twisted tetralayer
graphene (2AB+2BA, 3ABA+1 and 3ABC+1). Domains with and
without ferroelectric behaviour are shown on the right and left sides
of the figure. Reproduced from [359]. CC BY 4.0.

4.7. Ferroelectric non-centrosymmetric few-layer elemental
stacks

In connectionwith section 3.6.8, elemental, non-centrosymmetric
four-layer graphite has been shown to turn ferroelectric
theoretically (figure 47) [359, 360] and experimentally [361].
Polar and non-polar configurations can be reached by the rel-
ative sliding of specific monolayers within the stack. Besides
it being yet another example of elemental ferroelectricity, this
recent finding of polar behaviour on few-layer graphite is quite
relevant from a historic perspective.

Indeed, there was a strong focus on ways to open a gap
in the early days of graphene research (this in order to create
transistors out of graphene). One way to do so involves pla-
cing a graphene bilayer under an external electric field [275,
362, 363]. The ability to create an intrinsic or internal electric
field in tetralayer graphene results in the creation of a (small)
band gap.

4.8. Tuning magnetism on few-layer magnets by tensile
uniaxial strain

Strain has been put forward as a way to control the mag-
netic properties of thin layered materials. To give an example,
a strain-induced antiferromagnetic-to-ferromagnetic phase
transition was realised on ∼20 nm thick CrSBr flakes; mag-
netoelastic couplings can give rise to skirmion patterns [364].

4.9. Engineered bilayer multiferroics by rotations and shear
strain

Creating intrinsic electric dipoles can also be combined with
magnetism, providing a novel method for magnetoelectric
multiferroics in rotated 2D materials.

Antiferromagnetically (AFM) oupled CrI3 bilayers are one
of the most studied magnetoelectric multiferroic 2D materials
[365–368]. Electric control of magnetism on AFM-coupled
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Figure 48. (a) Energy landscape of CrI3 bilayer with FM (uuuu) and AFM (uudd) magnetic configurations, and optimal vertical separation
between monolayers (D). Structure s1 sits at the point from which lattice vectors a1 and a2 join, and it is periodic upon lattice translations.
Structure s2,1 (s2,2) sits 0.6389a1 (0.6806a2) away from s1 locations. (b) One-dimensional cuts of the energy landscape along (i) a1 and (ii)
a2. (c) Structural stability of s1 bilayer, and vibrations at saddle point p, displaying imaginary modes. (d) Three-dimensional electric dipole
along the straight path joining structures s1 and s2,1. Inset: change in magnetisation at a nearly degenerate crossover AFM and FM
configurations at point p (see inset labeled àlong a1’ in subplot (b)). Reprinted (figure) with permission from [370]. Copyright (2023) by the
American Physical Society.

CrI3 bilayers was demonstrated through second harmonic
generation [369].

By rotating the upper monolayer by 60◦, the centre of
inversion of the CrI3 AB configuration is removed, result-
ing in an intrinsic electric dipole. A rotated bilayer (labelled
s1 in figure 48) belongs to the crystalline space group Cm.
The upper layer of the bilayer s1 can be further displaced by
approximately 2a1/3 (labelled s2,1) or 2a2/3 (labelled s2,2), res-
ulting degenerate structures (s2,1 and s2,2) that still belongs to
the same crystalline space group, Cm. As a result, it creates
an out-of-plane electric dipole moment and an even stronger
in-plane intrinsic electric dipole.

The coupling of electric and magnetic moments leads to a
novel magnetoelectric coupling, as follows [371]:

α=

 0.00 0.00 −9.30
0.00 0.00 2.01
−9.30 2.01 −1.29

× 10−2

in Gaussian units [370].

5. Conclusion

It may be fair to say that a natural state of atomistic membranes
is one of local strain. Here, experimental and theoretical aven-
ues to strain graphene and other metallic, insulating, ferroelec-
tric, ferroelastic, ferromagnetic and multiferroic 2D materials
were reviewed. A broad emphasis was placed on:

• valley and sublattice polarisation (P) in graphene
• time-dependent strain on graphene

• local and/or global strain and superconductivity and other
highly correlated and/or topological phases of graphene

• piezoelectric P hBN monolayers
• strain and the optoelectronic properties of TMDCs
• ferroic 2D materials with intrinsic elastic (σ), electric (P)
and magnetic (M) polarisation under strain, as well as incip-
ient 2D multiferroics

• moiré few-layers exhibiting flat electronic bands and exotic
quantum phase diagrams, and other bilayer or few-layer sys-
tems exhibiting ferroic orders tunable by rotations and shear
strain.

Realisations of a tunable two-dimensional Quantum Spin Hall
effect in germanene, of elemental 2D ferroelectric bismuth,
and 2D multiferroic NiI2 were highlighted as well.

The comprehensive discussion of effects of strain facilit-
ated within this Update can be seen as an integral and neces-
sary component for the holistic understanding of 2Dmaterials.
The authors hope that the breadth and the number of extremely
recent works reviewed help jumpstart research avenues for a
broad range of researchers on this burgeoning field.
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Condens. Matter 32 295301
[53] Flouris K, Jimenez M M and Herrmann H J 2022 Phys. Rev.

B 105 235122
[54] Pantaleón P A, Phong V T, Naumis G G and Guinea F 2022

Phys. Rev. B 106 L161101
[55] Betancur-Ocampo Y, Díaz-Bautista E and Stegmann T 2022

Phys. Rev. B 105 045401
[56] Mojarro M A, Carrillo-Bastos R and Maytorena J A 2021

Phys. Rev. B 103 165415
[57] Ortiz W, Szpak N and Stegmann T 2022 Phys. Rev. B

106 035416
[58] Fernández C D J and García-Munoz J D 2022 Eur. Phys. J.

Plus 137 1013
[59] Wagner G, de Juan F and Nguyen D X 2022 SciPost Phys.

Core 5 029

41

https://orcid.org/0000-0002-1338-1522
https://orcid.org/0000-0002-1338-1522
https://orcid.org/0000-0002-1338-1522
https://orcid.org/0000-0001-7404-9630
https://orcid.org/0000-0001-7404-9630
https://orcid.org/0000-0002-2490-7606
https://orcid.org/0000-0002-2490-7606
https://orcid.org/0000-0002-5789-1954
https://orcid.org/0000-0002-5789-1954
https://orcid.org/0000-0002-4301-3317
https://orcid.org/0000-0002-4301-3317
https://orcid.org/0000-0002-4301-3317
https://doi.org/10.1088/1361-6633/aa74ef
https://doi.org/10.1088/1361-6633/aa74ef
https://doi.org/10.1038/s41586-019-1013-x
https://doi.org/10.1038/s41586-019-1013-x
https://doi.org/10.1038/s41467-022-29042-9
https://doi.org/10.1038/s41467-022-29042-9
https://doi.org/10.1103/PhysRevLett.128.256601
https://doi.org/10.1103/PhysRevLett.128.256601
https://doi.org/10.1038/s41467-020-17014-w
https://doi.org/10.1038/s41467-020-17014-w
https://doi.org/10.1088/2053-1583/3/2/025035
https://doi.org/10.1088/2053-1583/3/2/025035
https://doi.org/10.1103/PhysRevLett.118.227401
https://doi.org/10.1103/PhysRevLett.118.227401
https://doi.org/10.1021/acs.nanolett.2c05048
https://doi.org/10.1021/acs.nanolett.2c05048
https://doi.org/10.1038/s41598-023-29128-4
https://doi.org/10.1038/s41598-023-29128-4
https://doi.org/10.1021/acs.nanolett.6b00238
https://doi.org/10.1021/acs.nanolett.6b00238
https://doi.org/10.1021/nn800457s
https://doi.org/10.1021/nn800457s
https://arxiv.org/abs/1812.09501
https://doi.org/10.1038/nature14588
https://doi.org/10.1038/nature14588
https://doi.org/10.1073/pnas.1712889115
https://doi.org/10.1073/pnas.1712889115
https://doi.org/10.1038/s41467-020-15023-3
https://doi.org/10.1038/s41467-020-15023-3
https://doi.org/10.1038/s41699-023-00393-1
https://doi.org/10.1038/s41699-023-00393-1
https://doi.org/10.1038/s41563-019-0346-z
https://doi.org/10.1038/s41563-019-0346-z
https://doi.org/10.1038/s41586-019-1460-4
https://doi.org/10.1038/s41586-019-1460-4
https://doi.org/10.1103/PhysRevResearch.2.043127
https://doi.org/10.1103/PhysRevResearch.2.043127
https://doi.org/10.1021/acs.chemmater.6b03639
https://doi.org/10.1021/acs.chemmater.6b03639
https://doi.org/10.1038/s41565-017-0022-x
https://doi.org/10.1038/s41565-017-0022-x
https://doi.org/10.1126/science.aao5360
https://doi.org/10.1126/science.aao5360
https://doi.org/10.1021/acsaelm.8b00051
https://doi.org/10.1021/acsaelm.8b00051
https://doi.org/10.1021/acs.nanolett.0c04204
https://doi.org/10.1021/acs.nanolett.0c04204
https://doi.org/10.1002/adma.202102267
https://doi.org/10.1002/adma.202102267
https://doi.org/10.1103/PhysRevB.105.214105
https://doi.org/10.1103/PhysRevB.105.214105
https://doi.org/10.1002/adma.201605785
https://doi.org/10.1002/adma.201605785
https://doi.org/10.1021/acs.nanolett.6b05228
https://doi.org/10.1021/acs.nanolett.6b05228
https://doi.org/10.1063/5.0010395
https://doi.org/10.1063/5.0010395
https://doi.org/10.1038/s41467-021-27425-y
https://doi.org/10.1038/s41467-021-27425-y
https://doi.org/10.1021/acsami.8b12701
https://doi.org/10.1021/acsami.8b12701
https://doi.org/10.1103/PhysRevB.101.165103
https://doi.org/10.1103/PhysRevB.101.165103
https://doi.org/10.1002/adma.202110568
https://doi.org/10.1002/adma.202110568
https://doi.org/10.1038/s41467-019-11038-7
https://doi.org/10.1038/s41467-019-11038-7
https://doi.org/10.1002/adma.201905504
https://doi.org/10.1002/adma.201905504
https://doi.org/10.1088/2053-1583/aa629d
https://doi.org/10.1088/2053-1583/aa629d
https://doi.org/10.1038/s41565-020-0730-5
https://doi.org/10.1038/s41565-020-0730-5
https://doi.org/10.1021/acs.nanolett.2c03959
https://doi.org/10.1021/acs.nanolett.2c03959
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1021/acs.jpcc.8b04502
https://doi.org/10.1021/acs.jpcc.8b04502
https://doi.org/10.1103/PhysRevB.74.033413
https://doi.org/10.1103/PhysRevB.74.033413
https://doi.org/10.1103/PhysRevB.86.245411
https://doi.org/10.1103/PhysRevB.86.245411
https://doi.org/10.1103/PhysRevB.74.155426
https://doi.org/10.1103/PhysRevB.74.155426
https://doi.org/10.1103/PhysRevLett.97.196804
https://doi.org/10.1103/PhysRevLett.97.196804
https://doi.org/10.1016/j.ssc.2012.04.019
https://doi.org/10.1016/j.ssc.2012.04.019
https://doi.org/10.1016/j.physrep.2010.07.003
https://doi.org/10.1016/j.physrep.2010.07.003
https://doi.org/10.1103/PhysRevB.83.165403
https://doi.org/10.1103/PhysRevB.83.165403
https://doi.org/10.1016/j.physrep.2015.12.006
https://doi.org/10.1016/j.physrep.2015.12.006
https://doi.org/10.1103/PhysRevLett.121.036403
https://doi.org/10.1103/PhysRevLett.121.036403
https://doi.org/10.1103/PhysRevB.107.075432
https://doi.org/10.1103/PhysRevB.107.075432
https://doi.org/10.1103/PhysRevB.98.195430
https://doi.org/10.1103/PhysRevB.98.195430
https://doi.org/10.1088/1361-648x/ab7e5b
https://doi.org/10.1088/1361-648x/ab7e5b
https://doi.org/10.1103/PhysRevB.105.235122
https://doi.org/10.1103/PhysRevB.105.235122
https://doi.org/10.1103/PhysRevB.106.L161101
https://doi.org/10.1103/PhysRevB.106.L161101
https://doi.org/10.1103/PhysRevB.105.045401
https://doi.org/10.1103/PhysRevB.105.045401
https://doi.org/10.1103/PhysRevB.103.165415
https://doi.org/10.1103/PhysRevB.103.165415
https://doi.org/10.1103/PhysRevB.106.035416
https://doi.org/10.1103/PhysRevB.106.035416
https://doi.org/10.1140/epjp/s13360-022-03221-5
https://doi.org/10.1140/epjp/s13360-022-03221-5
https://doi.org/10.21468/SciPostPhysCore.5.2.029
https://doi.org/10.21468/SciPostPhysCore.5.2.029


Rep. Prog. Phys. 87 (2024) 016502 Review

[60] Carrillo-Bastos R and Naumis G G 2018 Phys. Status Solidi
12 1800072

[61] Mannaï M and Haddad S 2021 Phys. Rev. B 103 L201112
[62] Sloan J V, Sanjuan A A P, Wang Z, Horvath C and

Barraza-Lopez S 2013 Phys. Rev. B 87 155436
[63] Iorio A and Pais P 2022 Phys. Rev. B 106 157401
[64] Roberts M M and Wiseman T 2022 Phys. Rev. B 105 195412
[65] Roberts M M and Wiseman T 2023 Analog gravity and the

continuum effective theory of the graphene tight binding
lattice model (arXiv:2305.08897)

[66] Volovik G E and Zubkov M A 2014 Ann. Phys., NY
340 352–68

[67] Oliva-Leyva M and Naumis G G 2015 Phys. Lett. A
379 2645–51

[68] Suzuura H and Ando T 2002 Phys. Rev. B 65 235412
[69] Katsnelson M I 2020 The Physics of Graphene 2nd edn

(Cambridge University Press)
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