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Abstract
An analysis of the electron localization properties in doped graphene is per-
formed by carrying out a numerical multifractal analysis for finite systems of a
size smaller than the possible localization length. By obtaining the singularity
spectrum of a tight-binding model, it is found that the electron wave functions
present a multifractal behavior for systems up to 20 nm. Such multifractality is
preserved even for next-to-nearest neighbor hopping interaction, which needs to
be taken into account if a comparison with experimental results is desired. States
close to the Dirac point have a wider multifractal character than those far from
this point as the impurity concentration is increased. The analysis of the results
allows one to conclude that in the split-band limit, where impurities act as
vacancies, the system can be described well by a chiral orthogonal symmetry
class.

Keywords: graphene, electron mobility, localized states

Ever since its discovery [1, 2], graphene has been considered an ideal candidate to replace
silicon in electronics [3], since this first truly two-dimensional crystal has the highest known
electrical and thermal conductivity [4]. However, graphene per se is not a semiconductor.
Several proposals have been made to solve this issue [5]. Experimentally, it has been found that
doped graphene presents a metal-to-insulator transition [6] when doped with H, producing a
kind of narrow band gap semiconductor. The increase in localization around the Dirac point
was roughly predicted from an electron wavefunction frustration analysis in the grapheneʼs
underlying triangular lattice [7–9]. Such theoretical results were made under the supposition
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that hydrogen bonds to the p2
z
carbon orbital, and thus impurities act as vacancies [10, 11]. This

case corresponds to the split-band limit. This approach has been useful for predicting a pseudo
localization transition and the pseudogap size, i.e., the region in which the inverse participation
ratio increases by one order of magnitude [7] in very good agreement with experiments [6],
although vacancies and impurities are indeed different [12–14]. However, there is a theoretical
nuance to the idea of having a metal-insulator transition in two dimensions (2D). According to
the well known Abraham et al scaling analysis, in 1D and 2D all states are localized for any
amount of disorder, excluding the possibility of a mobility edge [15]. In spite of this, for 2D the
situation is not completly clear yet since the community seems to be split into two groups [16],
one denies the existence of non-exponential localized states [17, 18], while the other reports
such states [16, 19, 20]. For example, a highly efficient expansion technique coupled with a
huge finite-size scaling analysis showed non-localized states [16] with a multifractal behavior
[21] in a square lattice with sustitutional disorder, akin to the one considered in this letter. Such
theoretical debate has heated-up by the discovery of graphene, since some experimental and
numerical results show that not all states are localized [6, 22–24], and there exists a kind of
mobility edge associated with a pseudogap around the Fermi energy [7, 9, 25–27]. Other groups
claim that all states are localized for disorder with intervalley mixing [28].

Thus, there is a debate that has not yet been settled. It is worth mentioning here that part of
the problem is that general conclusions are made without taking care of the different kinds of
disorder. For example, the Anderson type of disorder is not the same as the binary sustitutional
one. However, there are three possibilities concerning delocalization in graphene: (i) either
electron–electron interaction produces delocalization [29], (ii) the analysis by Abraham et al
does not completely apply to some cases or (iii) the computations made are always smaller than
the localization length of some states. In graphene, electron–electron interaction is very weak
[30], so in principle, the first option can be ruled out, leaving (ii) and (iii) as the source of the
discrepancies. This subject has been explored partially in previous publications, where critical
states, i.e. states decaying as a power law, have been observed in finite lattices [26, 31, 32]. In
addition, such a possibility has been considered in previous studies concerning quantum
percolation in 2D [33–35], since the model presented in this letter is in the limit of very different
self-energy impurities reduces the problem to site percolation (see below).

Notice that the scenario posed by (iii) does not rule out the observation of critical states for
lattices with a size smaller than the localization length. As is well known, in this situation the
exponent spectrum looks multifractal [29]. For graphene, this can be predicted by a symmetry
breaking analysis [29], since the extra symmetries of the grapheneʼs lattice makes the problem
different from a generic 2D Fermi gas [26]. The idea behind this is to make a random matrix
analysis of broken symmetries in the Dirac Hamiltonian when disorder is introduced [29]. In
this analysis, a classification of the symmetries leads to different universality classes in the
transition. Although all these points have been around for a while, few numerical results are
available that analyze such questions [36, 37]. Here we provide such an analysis, showing that
multifractal states are present in doped graphene for finite systems, in which the size is smaller
than the possible localization length. Our results imply that the conductance of doped graphene
will have an anomalous dependence upon the system length and applied electric field. In
particular, experiments in graphene doped with adatoms from group I are ideal for measuring
such effects [6].
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Let us consider doped graphene as a honeycomb lattice with substitutional impurities
placed at random with a uniform distribution. The corresponding π orbital one electron tight-
binding Hamiltonian is [38],

 ∑ ∑ ∑ε= − − ′ + ℓ ℓ
ℓ

i j i jt t . (1)
i j i j, ,

The first sum is over nearest neighbors, with =t 2.79 eV the hopping energy [39]. The
second sum is carried over next-to-nearest neighbors. Here we will consider two cases,
′ =t 0 eV which is the most studied Hamiltonian, and ′ =t 0.68 eV, which gives a much better
approximation to real graphene [39], although other parametrizations with a lower value of ′t
are available [40]. Here we analyze the worst case scenario, i.e., a large value for ′t . As we will
see, our results are robust for such a large value. The idea is to study the effects of including
next-to-nearest neighbor hopping interaction in the problem of localization. The third sum is
over impurity sites with self-energy ε. The number of impurities sites, Nimp, is determined by the

concentration =C N Nimp T, where NT is the total number of sites on the honeycomb lattice.

Close to the Dirac energy = =E E 0D , the model described by equation (1) presents
exponentially localized wavefunctions, as has been documented in a previous publication by
our group [26], and can even support strictly confined states [27] at =E ED. Such
wavefunctions are in agreement with the Abrahams et al theorem [15]. Here, we will
concentrate on wavefunctions that are above the pseudomobility edge, which has been proven

to have a size given by Δ ≈ t C6 [7, 26].
In figure 1 we present a sample of the observed wavefunctions ψ ( )r which solve the

Schrödinger equation ψ ψ=( ) ( )r rH E for an energy close to the Dirac energy, ED, but outside
the region where the participation ratio begins to decrease [7]. As can be seen, there is a
progressive change of the localization as C or ε increases. However, although disorder increases
up to a concentration of C = 0.1, no evident localization center appears. This suggests that one
should perform a multifractal analysis to confirm this hypothesis. To do this, we will select
some representative states, as shown in figure 2 on top of the density of states (DOS) for pure
and doped graphene, considering ′ =t 0 and ′ ≠t 0.

The multifractal analysis can be performed as follows [41]. The system with area
= ×A N N , where N is a number of primitive cells per side2, is divided into =B N L2 2 boxes

of linear size L. On a given box b, the probability of finding the electron is given by

∑μ ψ ψ=
∈

( ) ( )rL, . (2)
r

b
bbox

2

A measure is built by normalizing the moments of this probability,

⎡⎣ ⎤⎦
μ ψ

μ ψ

ψ
=( )

( )
( )

q L
L

P q L
, ,

,

, ,
, (3)

b

b

q
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2 Then, the number of total sites in the sample is =N N2T
2.



where ψ( )P q L, , is,

⎡⎣ ⎤⎦∑ψ μ ψ=
=

( ) ( )P q L q L, , , , . (4)
b

B

b

q

1

The mass exponent of the wave function can be obtained using

τ ψ
ψ
δ

=
δ→

( ) ( )P q L
lim

, ,

ln
, (5)q

0

where δ is the ratio L N . The fractal dimensions Dq is introduced via [29] τ= −( )D q 1q q . In an

insulator =D 0q while for a metal =D dq . In multifractal cases, Dq is a function of q.
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Figure 1. Electron wavefunction amplitude close to the Dirac point, but outside the
region where the participation ratio begins to decrease, corresponding to

= −E E t0.6D , for different concentrations of disorder (C = 0.001, C = 0.01 and
C = 0.1) and different impurity self-energ (ε = − t2 , ε = − t6 and ε = − t12 ), using a
lattice of =N 18 432T sites.



Using the previous equation (3), it is possible to find the singularity spectrum α( )f q ,

which is basically the fractal dimension of the set of points where the wavefunction behaves as

ψ ∼ α−( )r L2 q [42]. For a finite system, the number of such points scales as α( )L f q . This

singularity spectrum α( )f q is obtained by observing that,

α ψ
ψ
δ

=
δ→

( ) ( )A q L
lim

, ,

ln
, (6)q

0

where ψ( )A q L, , is,

∑ψ μ ψ μ ψ=
=

( ) ( ) ( )A q L q L L, , , , ln 1, , . (7)
b

B

b b
1

Here … denotes the arithmetic average over many realizations of disorder. In figure 3,

the typical behavior of ψ( )A q L, , is plotted as a function of δ for several q. For each q, a
straight line can be fitted in order to obtain the slope and from there obtain αq. The singularity

spectrum α( )f q is obtained as,

α
ψ
δ

=
δ→

( ) ( )
f

F q L
lim

, ,

ln
, (8)q

0

where ψ( )F q L, , is a kind of entropy information,

∑ψ μ ψ μ ψ=
=

( ) ( ) ( )F q L q L q L, , , , ln , , , (9)
b

B

b b
1

where ψ( )F q L, , can be calculated as done with ψ( )A q L, , , since all points fall in a straight
line as a function of δ (figure 3).
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Figure 2. Density of states (DOS) for pure and doped graphene. The color bands
indicate the energies used to study α( )f . The left panel corresponds to the case ′ =t 0
while the other to ′ ≠t 0. In both graphs, the parameters are =N 28 800T , C = 0.05 and
ε = − t6 .



As a control of the involved analysis, we have verified that for pure graphene ε = 0, the
singularity spectrum converges to the point =( )f 2 2, which is exactly the expected value for
Bloch states in 2 dimensions. In figure 4 we present the singularity spectrum for three states at

= − − −E E t E t E t0.2 , 0.6 , 0.8D D D , chosen to represent states near and far from the Dirac
energy. The criterion used to define such energies was in proximity with the energy for the

appereance of frustration, determined from a variational procedure [7] and given by Δ = t C6 .
For example, for values around C = 0.01, Δ ≈ t0.25 . At Δ, the inverse participation ratio
presents a well documented increase [7]. Notice that it is possible to analyze states closer to zero
than the one studied here and even at E = 0, however, such states are localized and strictly
localized [27].

Figure 4 was made considering ε = − t6 for an average of 30 lattices of =N 28 000T sites,

which correponds to a size 20 nm. The behavior with the system size of α( )f is presented in

figure 6. It will be discussed after analyzing some properties of α( )f .
First of all, a convex parabola is observed in figure 4, showing a typical weak multifractal

behavior. This proves that multifractal states are present, which was the main hypothesis of this
work. We have verified that the multifractal behavior is observed for many other states, as well
as for a different set of disorder parameters C and ε (see below). Also, the figure shows the
tendency for states near the Dirac point to have a wider multifractal distribution, while states far
from ED tend to have a more pronounced mono-fractal character, as expected from a frustration
analysis of the underlying triangular symmetry of the lattice [9]. In fact, it is interesting to
compare with the 2D limit of a strongly disordered system, in which exponentially localized
states are observed with a spectrum that converges to the points =( )f 0 0 and ∞ =( )f 2. This
tendency for states near the Dirac point was also confirmed in this work as disorder was
increased, since the parabola α( )f tends to reach the origin, and at the same time spreads over
bigger values of α, indicating a tendency for localization. Such spreading can be quantified
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Figure 3. Left panel: typical behavior of ψ( )A q L, , . Right panel: typical behavior of

ψ( )F q L, , . In both graphs, the parameters are = −E E t0.2D , ε = − t6 and
C = 0.0001.
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Figure 4. Singularity spectrum for three representative states. A state near the Dirac
energy −E t0.2D (red squares), −E t0.4D (gold circles), and far from ED at −E t0.8D

(blue triangles). Here ε = − t6 . The first row corresponds to the nearest-neighbor
interaction ′ =t 0, while the second corresponds to the next-to-nearest neighbor hopping
interaction ′ ≠t 0. The solid lines were obtained by fitting the data with a parabola.
Notice how the state far from the Dirac point always has a more pure fractal behavior
than its counterparts. The plot was made using an average over 30 lattices of

=N 18 432T sites.

Figure 5. Evolution of the roots of α( )f (α− open symbols and α+ filled symbols)
as a function of the impurity concentration for the states at = − −E E t E t0.2 , 0.6 ,D D

−E t0.8D , using different values of ε for nearest-neighbor hopping.



by looking at the roots of α( )f , denoted by α− and α+ with α α<− +; as shown in figure 5.
In this figure, one can observe how for small disorder, the roots tend to merge, as expected for
states which are closer to a Bloch behavior. The spreading becomes bigger for high C and ε.
Another important feature is the value α0 for which α =( )f 20 , corresponding to the maximal

value of α( )f . Due to this property, in the limit → ∞N , for almost all points the amplitudes

scale as ψ ∼ α−( )r L2 0, where α > 20 . This confirms that eigenfunctions follow a power law

decay, a point that was already discussed in great detail in a previous publication [26].
For real graphene, the next-to-nearest neighbor hopping interaction is important. In

figure 4 we present α( )f for the same three states and parameters including ′t . Notice how
states close to the Dirac point are more localized, while the state far from the Dirac point is
nearly equal to its counterpart in figure 4. The appearance of this more pronounced behavior is
still an open question since ′ ≠t 0 breaks the bipartite nature of the network.

Taking into account the debate on metal-insulator transitions in 2D [16], an important issue
concerning our observations is how the results are scaled with the system size. Although such
detailed analysis has been done before for the generalized inverse participation ratio [26], in
figure 6 we present the scaling of α( )f as a function of the system size. It is possible to see how
multifractal states far from the Dirac energy show a good convergence. Excluding the state
close to the Fermi energy at = −E E t0.2D , all others show a tendency to display an extended
nature in this scale. This can be seen in figure 6 by observing that bigger sizes tend to sharpen
the distribution and collapse the points close to the value for extended states. Localized states
show the opposite behavior as has been explained previously, i.e., the spectrum converges to
the points =( )f 0 0 and ∞ =( )f 2. Thus, the scaling of α( )f shows no evidence for
localization for the system sizes considered here.

In figure 7, the evolution of Dq is presented for the same three states using ε = − t6 at

different C. The reduced dispersion of Dq for = −E E t0.8D again indicates a less dispersed

mono-fractal character of states far from ED. An interesting quantity to look for is the
anomalous dimension Δq defined as,

Δ τ≡ − −( )q2 1 , (10)q q

which separates the normal part in such a way that distinguishs the metallic phase from the
critical point and determines the scale dependence of the wave function correlations. In figure 8
we present the corresponding result for Δq using the same set of parameters used in previous

equations. The most important feature to remark in the plot is the absence of symmetry around
q = 0. As we will see below, this allows one to discuss the type of the broken symmetries when
disorder is included. It is worth mentioning that the value Δ2 gives the decaying exponent of the
wave function amplitude correlations [43], i.e.,

⎜ ⎟⎛
⎝

⎞
⎠ψ ψ ′ ∼ − ′ η−

( ) ( )r r
r r

N
N

, (11)4 2 2

with Δ η= −2 . This confirms again that wave functions close to the Dirac point decay faster,

since from figure 8, Δ2 is bigger than the corresponding values for states far from ED.
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Figure 6. Singularity spectrum for three representative system sizes. A =N 9800T

sample (blue triangles), =N 18 432T sample (gold circles), and =N 28 800T sample
(red squares). In this panel ε = − t6 and C = 0.01. The top left panel corresponds to a
state near the Dirac energy −E t0.2D , the top right panel to the energy −E t0.4D , the
bottom left panel to a energy far from the Dirac energy −E t0.6D and the bottom right
panel to a energy near to the Van Hove singularity. The figure illustrates the slight
dependence of the singularity spectrum as the sample size is increased, except for the
energy near the ED.

Figure 7. Dq as a function of q for three representative states using ε = − t6 , obtained by
averaging over 30 lattices of =N 18 432T sites.



One can extract more information on the nature of the singularity spectrum when disorder
is included by calculating the behavior of α →( )f 0 as a function of the impurity concentration.

Three kinds of behaviors are known [29], (a) no singularity when α = −∞α→ ( )flim 0 , (b)

termination when α =α→ ( )flim constant0 and (c) freezing when α =α→ ( )flim 00 . In figure 9
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Figure 8. Δq for three different states using the same set of parameters of the previous
plot. Notice the asymmetry with respect to q = 0. The top panel corresponds to the
nearest-neighbor hopping interaction ′ =t 0 and bottom panel corresponds to the next-
to-nearest neighbor hopping interaction ′ ≠t 0.

Figure 9. Values of α( )f at α = 0 for different states as a function of C for ε = − t12 .



we present the results obtained from our simulation, where ( )f 0 was obtained by looking at

each α( )f fitting. From figure 9, the results indicate that all plots correspond to case b), with a
tendency to reach freezing as the disorder increases.

According to the random matrix ensemble symmetry analysis in the context of graphene
[44], multifractality arises due to a breaking of the Dirac Hamiltonian symmetries. Such a
Hamiltonian contains a bipartite symmetry which is inherited from the fact that two atoms are
present in the grapheneʼs unitary cell. Each kind of perturbation leads to different broken
symmetries. In the case of vacancies, which is akin to our split band limit case ε → ∞t , the
chiral, temporal and isospin symmetries are preserved but are active only at the band center. The
resulting Hamiltonian belongs to the chiral ortogonal symmetry (BDI class), resulting in a
Gade–Wegner-type theory, characterized by lines of fixed points for the renormalization group
and non-universal conductivity [29]. In this class, the localization transition corresponds to the
case of termination for weak disorder and freezing for strong disorder, a tendency that seems to
be confirmed by our plots of Δq (figure 8) and α =( )f 0 (figure 9). However, the absence of

symmetry in Δq with respect to q in figure 8 for finite ε t seems to suggest that the results do not

belong to the Wigner–Dyson class.
In fact, note that for finite ε t, the disorder introduced by us does not correspond to the

BDI class, since chirality is not preserved, basically because there are elements in the diagonal
of the Hamiltonian matrix which leads to a non symmetric spectrum around the Dirac point, as
shown in figure 2. Theoretically, the corresponding class is AI, which is inside the
Wigner–Dyson class, for any finite value of the on-site energy. However, in the limit ε ≫ t, the
symmetry is reestablished in the carbon band [7, 45], leading to a chiral BDI symmetry. In other
words, impurities with ε ≫ t can be also treated by setting all bonds connected to an impurity
with a hopping parameter t = 0. Thus, our model reduces to the analysis made by Ostrovsky
et al [44] in the case ε ≫ t, where the orthogonal symmetry class implies strong localization.

Thus, since the theoretical model for finite ε t implies a Wigner–Dyson class with a
symmetrical Δq, while our numerical results suggest a non-symmetrical one, several scenarios

are possible. Either the observed universality class is not embedded in the class of the
Hamiltonian, leading to a very slow renormalization group flow not seen by the small sizes
treated here, or statistical fluctuations are too strong. In future work we will discuss this issue,
which is beyond the scope of this letter.

Finally, it is worth mentioning that the model given by equation (1) for a binary
distribution of self-energies in the split-band limit ε ≫ t reduces to the problem of quantum site
percolation in a hexagonal lattice. Thus, our results can be extended in a natural way to the same
problem.

In conclusion, we have given numerical evidence of the multifractal nature of wave
functions in doped graphene for system sizes smaller than the possible localization length. This
is important to understand the conductance of small system sizes, since according to our results,
it will depend on the system length. Such an effect can appear in graphene with H adatoms [6]
or doped nanoribbons. Also, this effect can be tested in doped polycrystalline graphene [46]
with sizes lower than 20 nm.

2D Mater. 1 (2014) 011009 J E Barrios-Vargas and G G Naumis

11



Acknowledgments

This work was supported by DGAPA-UNAM project under grant IN-102513. Computations
were done at supercomputer NES of DGTIC-UNAM.

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A
2004 Science 306 666–9

[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc.
Natl Acad. Sci. USA 102 10451–3

[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183–91
[4] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902–7
[5] Geim A K 2009 Science 324 1530–4
[6] Bostwick A, McChesney J L, Emtsev K V, Seyller T, Horn K, Kevan S D and Rotenberg E 2009 Phys. Rev.

Lett. 103 056404
[7] Naumis G G 2007 Phys. Rev. B 76 153403
[8] Martinazzo R, Casolo S and Tantardini G F 2010 Phys. Rev. B 81 245420
[9] Barrios-Vargas J E and Naumis G G 2011 J. Phys.: Condens. Matter 23 375501

[10] Katoch J, Chen J H, Tsuchikawa R, Smith C W, Mucciolo E R and Ishigami M 2010 Phys. Rev. B 82 081417
[11] Peres N M R 2010 Rev. Mod. Phys. 82 2673–700
[12] Robinson J P, Schomerus H, Oroszlány L and Fal’ko V I 2008 Phys. Rev. Lett. 101 196803
[13] la Magna A, Deretzis I, Forte G and Pucci R 2009 Phys. Rev. B 80 195413
[14] Deretzis I, Fiori G, Iannaccone G and la Magna A 2010 Phys. Rev. B 81 085427
[15] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673–6
[16] Schubert G and Fehske H 2008 Phys. Rev. B 77 245130
[17] Bunde A, Kantelhardt J W and Schweitzer L 1998 Ann. Phys., Lpz. 7 372–82
[18] Haldas G, Kolek A and Stadler A 2002 Phys. Status Solidi b 230 249–52
[19] Eilmes A, Römer R A and Schreiber M 2001 Physica B Condens. Matter 296 46–51
[20] Nazareno H N, de Brito P E and Rodrigues E S 2002 Phys. Rev. B 66 012205
[21] Schreiber M and Grussbach H 1992 Phil. Mag. B 65 707–14
[22] Bardarson J H, Tworzydło J, Brouwer P W and Beenakker C W J 2007 Phys. Rev. Lett. 99 106801
[23] Nomura K, Koshino M and Ryu S 2007 Phys. Rev. Lett. 99 146806
[24] Pereira V M, Lopes dos Santos J M B and Castro Neto A H 2008 Phys. Rev. B 77 115109
[25] Song Y, Song H and Feng S 2011 J. Phys.: Condens. Matter 23 205501
[26] Barrios-Vargas J E and Naumis G G 2012 J. Phys.: Condens. Matter 24 255305
[27] Barrios-Vargas J E and Naumis G G 2013 Solid State Commun. 162 23–27
[28] Lee K L, Grémaud B, Miniatura C and Delande D 2013 Phys. Rev. B 87 144202
[29] Evers F and Mirlin A D 2008 Rev. Mod. Phys. 80 1355–417
[30] González J, Guinea F and Vozmediano M A H 2001 Phys. Rev. B 63 134421
[31] Amanatidis I and Evangelou S N 2009 Phys. Rev. B 79 205420
[32] Amanatidis E, Kleftogiannis I, Katsanos D E and Evangelou S N 2014 J. Phys.: Condens. Matter 26 155601
[33] Srivastava V and Weaire D 1978 Phys. Rev. B 18 6635–8
[34] Meir Y, Aharony A and Harris A B 1989 Europhys. Lett. 10 275
[35] Soukoulis C M and Grest G S 1991 Phys. Rev. B 44 4685–8
[36] Schweitzer L and Markos P 2008 Phys. Rev. B 78 205419
[37] Markoš P and Schweitzer L 2012 Physica: B Condens. Matter 407 4016–22

2D Mater. 1 (2014) 011009 J E Barrios-Vargas and G G Naumis

12

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1073/pnas.0502848102
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1021/nl0731872
http://dx.doi.org/10.1126/science.1158877
http://dx.doi.org/10.1103/PhysRevLett.103.056404
http://dx.doi.org/10.1103/PhysRevB.76.153403
http://dx.doi.org/10.1103/PhysRevB.81.245420
http://dx.doi.org/10.1088/0953-8984/23/37/375501
http://dx.doi.org/10.1103/PhysRevB.82.081417
http://dx.doi.org/10.1103/RevModPhys.82.2673
http://dx.doi.org/10.1103/PhysRevLett.101.196803
http://dx.doi.org/10.1103/PhysRevB.80.195413
http://dx.doi.org/10.1103/PhysRevB.81.085427
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevB.77.245130
http://dx.doi.org/10.1002/(ISSN)1521-3889
http://dx.doi.org/10.1002/(ISSN)1521-3951
http://dx.doi.org/10.1016/S0921-4526(00)00777-8
http://dx.doi.org/10.1103/PhysRevB.66.012205
http://dx.doi.org/10.1080/13642819208204907
http://dx.doi.org/10.1103/PhysRevLett.99.106801
http://dx.doi.org/10.1103/PhysRevLett.99.146806
http://dx.doi.org/10.1103/PhysRevB.77.024402
http://dx.doi.org/10.1088/0953-8984/23/20/205501
http://dx.doi.org/10.1088/0953-8984/24/25/255305
http://dx.doi.org/10.1016/j.ssc.2013.03.006
http://dx.doi.org/10.1103/PhysRevB.87.144202
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/PhysRevB.63.134421
http://dx.doi.org/10.1103/PhysRevB.79.205420
http://dx.doi.org/10.1088/0953-8984/26/15/155601
http://dx.doi.org/10.1103/PhysRevB.18.6635
http://dx.doi.org/10.1209/0295-5075/10/3/015
http://dx.doi.org/10.1103/PhysRevB.44.4685
http://dx.doi.org/10.1103/PhysRevB.78.205419
http://dx.doi.org/10.1016/j.physb.2012.01.087


[38] Wallace P R 1947 Phys. Rev. 71 622–34
[39] Reich S, Maultzsch J, Thomsen C and Ordejón P 2002 Phys. Rev. B 66 035412
[40] Nanda B R K and Satpathy S 2009 Phys. Rev. B 80 165430
[41] Thiem S and Schreiber M 2013 Eur. Phys. J. B 86 1–10
[42] Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Shraiman B I 1986 Phys. Rev. A 33 1141–51
[43] Abrahams E 2010 50 Years of Anderson Localization (Singapore: World Scientific)
[44] Ostrovsky P M, Gornyi I V and Mirlin A D 2007 Eur. Phys. J. Spec. Top. 148 63–72
[45] Barrios-Vargas J E and Naumis G G 2011 Phil. Mag. 91 3844–57
[46] van Tuan D, Kotakoski J, Louvet T, Ortmann F, Meyer J C and Roche S 2013 Nano Lett. 13 1730–5

2D Mater. 1 (2014) 011009 J E Barrios-Vargas and G G Naumis

13

http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRevB.66.035412
http://dx.doi.org/10.1103/PhysRevB.80.165430
http://dx.doi.org/10.1140/epjb/e2012-30410-x
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1140/epjst/e2007-00226-4
http://dx.doi.org/10.1080/14786435.2011.594457
http://dx.doi.org/10.1021/nl400321r

	Acknowledgments
	References



