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Abstract
The effects of an electric field on the electronic spectrum and localization properties of
quasiperiodic chains are studied. As quasiperiodic systems, we use the Harper and the
Fibonacci potentials since we prove that both are closely interrelated. In the limit of a strong
field, a ladder spectrum with localized states is observed. The ladder structure can be
understood by using perturbation theory. Then each local isomorphism class of the
quasiperiodic potential reproduces its structure in the ladder. In the case of a weak field, we
observed that the singular spectrum of the quasiperiodic potential tends to be smoothed, and the
gaps decrease linearly with the field. Such an effect can be understood using a variational
approach, perturbation theory and a series of approximants. When the electric field and the
quasiperiodic potential have the same order of magnitude, it is possible to observe a
delocalization effect due to local resonances.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

After the first quasicrystalline alloy was discovered in 1984 [1],
quasiperiodic potentials have been studied intensively. Such
kinds of alloys present a structure which is neither
periodic nor disordered, with diffraction patterns that present
Bragg peaks with non-crystallographic symmetries [2]. In
order to understand the quasicrystal properties such as
transport, localization or diffusion, different one-dimensional
quasiperiodic potentials have been studied, particularly the
Harper model and the Fibonacci chain [3–7]. For the
Fibonacci chain, the spectrum is singularly continuous [2, 8].
The corresponding eigenfunctions are critical, and show
self-similarity and multifractality [2, 9]. In some sense,
real quasicrystals are disappointing because they do not
exhibit such kinds of exotic features. Instead their transport
properties are similar to those observed in amorphous
semiconductors [10]. Although there is a lot of work
concerning the nature of conductivity in quasiperiodic
potentials [11, 12], it is surprising that the problem of
explaining why there is a disagreement between experimental
and theoretical work has not received much attention.
In a series of previous works, we showed that the
spectrum of quasiperiodic systems is very unstable against
disorder [13–18]. In fact, the transport properties for two and
three dimensions for quasiperiodic potentials have not been
completely understood [19–21].

A second source of disagreement is a problem that,
although it has been explored by some groups [22–24],

its importance for conductivity has not been thoroughly
recognized by the scientific community. In the presence of
an external uniform electric field (F), the energy spectrum
changes. For periodic potentials and when interband
transitions are not considered, the electron wavefunctions have
time-periodic oscillations called Bloch oscillations. In the case
of the single-orbital tight-binding model, the electric field can
localize all eigenstates [25], and the energy spectrum is a ladder
of discrete and equally spaced levels known as a Wannier–
Stark ladder (WSL) [26, 27]. If phonons are not considered,
the band is tilted and, due to Bragg reflection at the band edges,
the electron is confined with a localization length given by
lB = B/eF , where B is the bandwidth and e is the electron
charge. There are two regimes of interest as a function of
the localization length and electric field: (i) material effects
dominate when l < lB and (ii) the electric field dominates
when l > lB. For non-periodic potentials under strong
fields, described by the single-orbital tight-binding model, all
eigenstates are factorially localized and their spectra are Stark
ladders with non-uniform spacing [25]. The structure of the
ladder for the Harper and Fibonacci potentials has been studied
by Niizeki et al [28]. They concluded that the structure of
the Fibonacci ladder presents many discontinuities while the
Harper ladder presents a periodic behavior when the phase
of the quasiperiodic potential is changed (corresponding to
different local isomorphism classes). Under weak electric
fields, there are several numerical studies which present
a paramount fact: the fractal spectrum of a quasiperiodic
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system tends to be smoothed since the spectral gaps tend
to disappear, changing the spatial behavior of the electronic
wavefunction [23, 24, 29]. This behavior has been studied
numerically, although there is no clear explanation for this
fact. In this paper, we present a complete study of the behavior
of the Fibonacci and Harper potentials under an electric field
in the limits of strong and weak fields. To achieve such a
goal, we use perturbation theory and periodic approximants
of the quasiperiodic potentials. Furthermore, using a previous
result by our group [30], we can understand in a simple way
the differences in the Fibonacci and Harper ladders that were
obtained by Niizeki et al [28]

It is worthwhile mentioning that semiconductor super-
lattices have been used to study WSL experimentally, since
the electric field needed to observe these phenomena are
easily accessible due to the large effective lattice spacing. In
particular, for GaAs–AlAs superlattices, an effective blueshift
of the optical absorption edge accompanied by an electron-
optical oscillation of the absorption coefficient has been
observed [31, 32]. Recently, an optical analog of the electronic
Bloch oscillations has been reported with light transport
through periodic dielectric systems [33].

The layout of this paper is the following, in section 2 we
present the models, in sections 3 and 4 we study the cases
of strong and weak electric fields. In section 5 we study the
localization properties when the field is applied, and finally the
conclusions are given in section 6.

2. The model

We start by setting the main features of the model. Here
we will consider a chain with lattice parameter a = 1 and
periodic boundary conditions. The Hamiltonian in the Wannier
representation has the form

HC =
∑

j

V ( j)| j〉〈 j |−
∑

j

(t| j〉〈 j + 1| + t| j + 1〉〈 j |), (1)

where t is the hopping between nearest-neighbor atoms j and
j + 1, and V ( j) is the self-energy for the site j . When a
uniform electric field (F) is applied in the parallel direction
to the system, there is an extra term in the potential:

HF = F
∑

j

| j〉 j〈 j |. (2)

The complete Hamiltonian is written as

H = HC + HF . (3)

Through the paper, two choices for HC are used: the Harper
and Fibonacci potentials. The Harper potential was derived
to describe one electron on a two-dimensional square lattice
under a perpendicular uniform magnetic field. The Harper
potential in the Wannier representation is [30]

V ( j) = 2λ cos(2πωj + ϕ)| j〉〈 j |, (4)

where | j〉 is the Wannier state localized on site j and ϕ is
a phase factor that produces different isomorphisms of the

lattice. For rational ω, this potential can be solved using
Bloch’s theorem [34]. For irrational ω, the spectrum depends
on the localization–delocalization parameter λ. All eigenstates
are extended and the energy spectrum is continuous when
λ < 1. If λ > 1, all eigenstates are localized and the spectrum
is made from pure points, while for λ = 1, the wavefunctions
are critical and the spectrum is singular continuous.

The Fibonacci chain is one of the most studied
quasiperiodic systems in one dimension. In the on-site
problem (diagonal model), the diagonal elements V ( j) of the
Hamiltonian take two values: εA or εB following a Fibonacci
sequence. This sequence can be built considering two letters
A and B , and the substitution rules, A → AB and B → A.
If one defines the first generation sequence as F1 = A, the
subsequent chains are generated using the substitution rules.
For instance, F2 = AB , F3 = AB A and F4 = AB AAB .
Each generation is labeled with an index l, and the number of
letters in each generation l is given by the Fibonacci numbers
F(l), which can be obtained from the relation F(l) = F(l −
1)+ F(1−2), with the initial conditions F(0) = 1, F(1) = 1.
In [30], we proved that a generalized potential which contains
the Fibonacci sequence can be written as

V ( j) = 〈V 〉 + δV ({ jω+ ϕ} − {( j + 1)ω + ϕ}), (5)

where {x} is the decimal part function, δV = εA − εB

and 〈V 〉 = εAω + εB(1 − ω). It is worth mentioning
how ω determines the kind of sequence. For rational ω,
the sequence is periodic while for irrational ω the sequence
is quasiperiodic. In fact, for ω equal to the golden mean
τ = (

√
5 − 1)/2, a Fibonacci potential is obtained. For the

rational approximants of τ , the formula produces a sequence of
approximant crystals. For example, when ω = 1 the sequence
potential is εAεAεAεA · · ·, which corresponds to the linear
chain, when ω = 1/2 the sequence is εAεBεAεBεAεB · · ·,
which corresponds to a diatomic chain, and so on. With
the aid of equation (5), it is possible to study the Fibonacci
approximants and understand the electron behavior in the
transition from a periodic to a quasiperiodic potential.

Now let us compare the effects of applying an electric
field to a periodic and a quasiperiodic system. To do this,
we diagonalized the Hamiltonian given by equation (1) for a
periodic and a Fibonacci chain with 1300 sites using periodic
boundary conditions. Figure 1(a) shows the energy spectrum
for a periodic chain with self-energy ε = 1 and hopping t = 1.
The open black circles correspond to F = 0 and the open
gray circles to F = 1. Notice how the bandwidth changes
drastically as well as the overall shape of the spectrum. The
inset figure 1(a′) shows an amplification of the spectrum for
F = 0 (black open circles). Two states for each energy
level are clearly observed as a consequence of the periodic
boundary conditions (double degeneration). However, there
are two energy levels without degeneration localized in the
edge of the bandwidth. When F = 1, the energy levels are
equally spaced and the electric field breaks the degeneration
as shown in figure 1(a′′) (gray open circles). Such a kind of
spectrum is called a Stark ladder [26].

In figure 1(b), the case of the Fibonacci on-site chain is
presented with εA = 1, εB = 0 and t = 1. The open black
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Figure 1. Energy spectrum for a chain with 1300 sites. In (a) linear
chain with F = 0 (black circles) and F = 1 (gray circles). In the
inset we show an amplification for F = 0 (a′) (open black circles)
and for F = 1 (a′′) (open gray circles). In (b) a Fibonacci chain with
F = 0 (black circles) and F = 1 (gray circles). In the insets (b′) and
(b′′) we present an amplification of the spectrum.

circles correspond to F = 0. As is well known, a fractal set of
minibands is obtained. Figure 1(b′) shows the energy levels
with non-equal spacing (open black circles). The gray line
corresponds to F = 1. Notice how the gaps tend to be closed.
Furthermore, the spectrum is similar to the ladder obtained in
the periodic case.

In conclusion, figure 1 presents the two limits that we are
going to consider. In the case of a strong field, determined
by the criterion l > lB, HF is dominant and the quasiperiodic
potential HC is basically a perturbation to the solution of the
pure electric case. The other limit, l < lB, is the case of a weak
field, where HC is dominant and the electric field term HF

is basically a perturbation. In the following two sections, we
show in detail how perturbation theory allows us to understand
the effects of the field in these two limits.

3. Strong electric field

In this section we will consider the case of a strong field,
i.e. l > lB. For this limit, the non-perturbed Hamiltonian
is HF . The j th eigenvalue of HF is E (0)

j = F j , and the
eigenfunctions are localized on site j , i.e. the amplitude of the
eigenfunction j at site l is given by ψ j (l) = δ( j − l). With
these conditions in mind, we will explore in general the effects
of adding a perturbing potential V ( j) such that HC = V ( j).
According to the time-independent perturbation theory, the

energy correction to E (0)
j is given by [35]

E (1)
j ≈ 〈
 j |HC |
 j〉, (6)

where |
 j〉 is an eigenstate of HF such that HF |
 j〉 =
E (0)

j |
 j〉. However, |
 j〉 = ∑N
l=1 ψ j (l)|l〉, from where it

follows that

E (1)
j ≈

∑

l,l′ ,n
ψ∗

j (l)ψ j (l)V (n)〈l ′|n〉〈n|l〉

=
∑

l

|ψ j (l)|2V ( j) = V ( j),

where we used that the wavefunction is localized. This general
result is valid for any potential and indicates that the correction
to the eigenvalue j is the potential evaluated precisely at the
site j . Now we look to the particular case of a quasiperiodic
potential. In the case of Harper, the energy levels are given by

E(ϕ) ≡ E (0)
j + V ( j) = F j + 2λ cos(2πωj + ϕ). (7)

Such a simple result explains the dispersion relation between E
versus ϕ (that we will denote as E(ϕ)) that was reported some
time ago by Niizeki et al [28] from numerical simulations.
In [28], periodic oscillations were observed in the energy levels
as a function of the phase (ϕ). The oscillations are just given
by the second term in equation (7). According to Niizeki et al
[28], the situation is quite different for a Fibonacci potential,
since a discontinuous dispersion relation is observed. Using
the perturbation approach developed here, we can understand
the difference between the Harper and Fibonacci potentials
as follows. Let us consider equation (5). The decimal part
function has period 1, and it can be developed as a Fourier
series [30]:

{xω+ ϕ} = 1

2
− 1

π

∞∑

s=1

1

s
sin[2πs(xω + ϕ)]. (8)

By using equation (8) in (5)

V ( j) = 〈V 〉 + δV

(
− 1

π

∞∑

s=1

1

s
sin[2πs(( j + 1)ω + ϕ)]

+ 1

π

∞∑

s=1

1

s
sin[2πs( jω+ ϕ)]

)
,

and the identity sin A−sin B = 2 cos[ 1
2 (A+B)] sin[ 1

2 (A−B)]
the potential is written as

V ( j) = 〈V 〉 + δV

(
2

π

∞∑

s=1

Ṽ (s) cos[πs((2 j + 1)ω + 2ϕ)]
)

(9)
where

Ṽ (s) ≡ sin(πsω)

πs
. (10)

Ṽ (s) will be referred to as the sth Fibonacci harmonic. Notice
that each term of the series contains a cos[πs((2 j +1)ω+2ϕ)]
which corresponds to a Harper potential. Thus the Fibonacci
potential can be obtained as a sum of Harper potentials.
Each Harper potential has a weight given by the Fibonacci
harmonics [30]. We can follow the change from a Harper to a
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Figure 2. Dispersion relation E(ϕ) for the eigenvalue 300 in a chain with 377 sites and different electric fields (a) F = 2.0, (b) F = 3.0,
(c) F = 4.0 and (d) F = 10. The Fibonacci potential (open circles) is obtained as a sum of Harper potentials with a weight given by the
Fibonacci harmonics. The first (open squares) and fourth (gray circles) Fibonacci harmonics show the transition process. When a strong
electric field is applied, the dispersion relation is a square well that corresponds to the Fibonacci potential (d).

Fibonacci spectrum just by adding harmonics, since the energy
levels in the presence of the electric field are given by

E(ϕ) = F j + 〈V 〉 + δV
(

2

π

∞∑

s=1

1

s
sin(πsω)

× cos[πs((2 j + 1)ω + 2ϕ)]
)
. (11)

Such a result can be confirmed by obtaining the spectrum
by a direct diagonalization of the Hamiltonian given by
equation (1), and using equation (9) to fill V ( j). Figure 2
shows the evolution of the dispersion relation E j(ϕ) for the
eigenvalue 300 (E300) using different electric fields. All chains
have 377 sites, and the parameters used in this figure are
ω = (

√
5 − 1)/2, εA = 1 − ω, εB = −ω and λ = 1. The

transition from the Harper to the Fibonacci dispersion relation
is presented in figures 2(a)–(d) for different electric fields.
The pure Harper potential, corresponding to the first Fibonacci
harmonic, is shown in figure 2 with open squares. The fourth
is shown with gray circles, while the full Fibonacci potential
corresponds to open circles. The panels correspond to the fields
(a) F = 2.0, (b) F = 3.0, (c) F = 4.0 and (d) F = 10. Notice
how the increase of harmonics makes the dispersion relation
closer to the Fibonacci chain (open circles). In particular,
figure 2 shows how the dispersion relation takes the form
of a square wavefunction, which is exactly the shape of the
Fibonacci potential, while the harmonics are just the first terms
of the series that approximate the square wavefunction. Such a
result is in perfect agreement with the theoretical prediction.

4. Weak electric field

In this section, we consider the limiting case of a quasiperiodic
chain with a weak field such that l < lB (F/λ � 1). As

shown in figure 1, the weak electric field has a tendency to
close the energy gaps. To understand the problem, we study
the transition process from F = 0 to some given field F �= 0.
Figure 3 shows the energy levels for a chain with 1300 sites
for different Fibonacci approximants (a) ω = 1/2, (b) ω =
3/5 and (c) ω = 8/13. All gaps can be appreciated when
F = 0 (open black circles) for all of the three cases. In
order to see the transition process, we show the eigenvalues
for different electric fields, as shown in the figure. One can
see the closing of the energy gaps with an increasing field. In
order to determinate how the gaps disappear as a function of
the electric field, we define

�Eg(F) ≡ (En(F)− En−1(F))/(E0
n − E0

n−1), (12)

where En(F)− En−1(F) is the difference between two energy
eigenvalues at the edges of a gap for some F and E0

n − E0
n−1

is the same energy eigenvalue difference for F = 0. The ratio
�Eg is presented in the inset of each figure. In figure 3(a′),
only one gap is present and its size decreases linearly with the
field. In figures 3(b′) and (c′), the first gaps labeled with the
letter A are presented by black circles. The second gap, labeled
with B, is plotted with open black circles. The secondary gaps
C and D are also plotted with open gray circles and open gray
squares, respectively. Notice that in all cases the path follows
a linear behavior. The ratio for the gaps in the approximant
ω = 8/13 also follows a linear behavior too.

Now we will use perturbation theory to understand why
the gaps are reduced in this regime. For weak fields, we
can consider HC as the unperturbed Hamiltonian and HF as
a perturbation. We present how this transition is achieved
for the first rational approximants. The energy spectrum for
a monatomic chain (V ( j) = ε) with N atoms and periodic
boundary conditions is

E (0)(k) = ε + 2t cos k, (13)

4
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Figure 3. Energy levels for different Fibonacci approximants
(a) ω = 1/2, (b) ω = 3/5 and (c) ω = 8/13. In each figure, three
different electric fields are shown. The first one corresponds to
F = 0 (open black circles), where all gaps can be appreciated,
another one corresponds to one electric field that closes all energy
gaps (black circles) and the last one (open gray circles) is a field that
shows the transition process, where its magnitude is indicated in each
figure. In (b) and (c), the gaps are labeled with the letters A, B (main
gaps), C and D (minor gaps). The ratio �Eg(F) defined in the text is
shown in the inset of each figure. For all three cases, a linear
behavior can be observed. In (b′) and (c′) the gaps A, B, C and D are
presented by black circles, open black circles, open gray circles and
open gray squares, respectively. The size of the system in all three
cases corresponds to 1300 sites. In particular, in (a′) the relation can
be considered as �Eg(F) = 1 − αN F , where α = 0.7666.

where k = 2nπ/N and n = 0, 1, . . . , N − 1. To
apply perturbation theory, we need to make two important
remarks. The first is that each energy has double degeneration,
corresponding to the eigenstates labeled by k and −k. The
second is that, near the band edges, the degeneracy is
increased since the distance between levels goes to zero,
and thus leads to some problems that we will discuss later
on. Having such problems in mind, we leave aside such
problems for the moment. The energy correction is obtained
by using degenerate perturbation theory [35]. This requires the
eigenvalues of the reduced matrix HF to be evaluated on the
basis of the eigenstates |kn〉 and | − kn〉:

HF =
( 〈kn|HF |kn〉 〈−kn|HF |kn〉

〈kn|HF | − kn〉 〈−kn|HF | − kn〉
)

where |kn〉 = exp(i2πnj/N)/
√

N and |kn〉 = exp(−i2πnj/
N)/

√
N . The energy correction for a periodic chain is

E (1)
± (k) = F(N + 1)

2
± F{{N cos[2k(N + 1)]

+ (N + 1)(2 − N) cos(2k)− (N + 1) cos(2Nk) − N}
× {2N2 (1 − cos(2ka))2}−1}1/2. (14)

If N 
 1, the energy correction to E (0)(k) can be
approximated by

E (1)
± (k) ≈ F

(
N

2
± 1√

2(1 − cos 2k)

)
. (15)

The previous formula shows that the effect of the field is to
shift all energy levels by F N/2, while each degenerate level
is split into two levels. Such an effect can be corroborated
when we look at the energy corrections obtained directly from
diagonalization. In figure 4(a), we plot the corrections obtained
by diagonalization and using equation (15). One can see an
excellent agreement at the center of the bands. However, at the
band edges equation (15) predicts huge oscillations between
the two solutions. In fact, when k → 0, we have that

E (1)
± (k) ≈ F

(
N

2
± 1

k

)
= F N

2

(
1 ± 1

πn

)
. (16)

Such oscillations between the + and − solutions are not
observed at the band edges. In spite of this, equation (15)
seems to be a good approximation if the minus sign is chosen
for k → 0. For n = 1 this leads to the lowest energy level:

E ≈ E (0)
± (0)+ F N

2

(
1 ± 1

π

)
≈ E (0)

± (0)+ F N

3
. (17)

A similar situation holds for k → π/2, where the plus sign is
a good approximation. In figure 4 we used this trick for the
signs of equation (15), and it is clear that the results are good
compared with the exact results from diagonalization.

The explanation for the sign rule is not so easy, for
example, when k → 0, and requires a careful examination
of the behavior at the edges, since the level spacings go like
dE (0)(k)/dk = 2t sin(k) ≈ 0 and the states are almost
degenerate. As a consequence, the matrix HF will involve all
eigenvectors n and m which satisfy 〈n|HF |m〉 
 En − Em .
Although these matrix elements are easy to calculate, the size
of the matrix does not allow us to visualize in a simple fashion
the result. Thus, to gain insight about the problem, it is better to
understand the nature of the solutions for k → 0 and k → π/2.
In fact, the limiting cases of k = 0 and π/2 are easy to
obtain using a variational procedure. For the lowest energy
state k = 0, the effect of the field is to increase the self-energy
as we move along the lattice. As a consequence, the ground
state ‘avoids’ regions of high field to decrease its energy. At
the same time, the ground state needs to have the minimum
number of nodes and mix nearly degenerate eigenstates. This
leads us to propose the following variational trial wavefunction
for the ground state:

|
〉 = |k0〉 + α(|k1〉 − |k2〉). (18)

5
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Figure 4. Energy correction (δE) versus the number of eigenvalues for a chain with 1300 sites and F = 10−4 for four different Fibonacci
approximants: (a) ω = 1, (b) ω = 1/2, (c) ω = 3/5 and (d) ω = 8/13. A good agreement is shown along all bands for each approximant
between the diagonalization process (open light circles, red online) and perturbation theory (open dark circles, blue online). Equations (14)
and (23) correspond to the analytic solution for the monatomic and the binary chains, respectively, and are shown with black circles in (a)
and (b). The energy states in the band edges are the more drastically changed because HF grows linearly with the size system. However, it can
be obtained by a variational process (see the text).

In terms of the site representation

ψ(l) = 1√
N

[
1 + μ sin

(
2π

N
l

)]
, (19)

where μ is the variational parameter. The ground state energy
is given by the minimal value of 〈E〉 = 〈
|H |
〉/〈
|
〉,
which leads to

〈E〉 � 1

1 + α2

[
E (0)(0)+ F N

2
− μF

sin
(

2π
N

)

1 − cos
(

2π
N

)

+ μ2

(
E (0)

(
2π

N

)
+ F N

4

)]
.

After a minimization procedure, we obtain

〈E〉 � E (0)(0)+ F N

3
. (20)

Such a result is close to the observed numerical value obtained
from diagonalization. Furthermore, it is equal to the value
obtained from perturbation theory (see equation (17)) using
the solution with the minus sign. The reason is the following.
According to Anderson [36], under an electric field the
wavefunctions must be as localized as possible to avoid
regions of high field strength. As was shown by Blount [37],
when wavefunctions are mixed due to the field, the phase of
the wavefunctions become important. The mixing has the
form [36]

|
〉 =
∑

n

c(n) eiφn |kn〉, (21)

where c(n) is an amplitude and φn a phase. This change of
phase is very similar to a gauge transformation [37], and the
phases are specified by the requirement that the |
〉 must be
as localized as possible [36]. Thus, the ground state which has
the form ψ(l) = sin(2πl/N) is preferred, for example, to the
linear combination that produces ψ(l) = cos(2πl/N), since
the cosine has a maximum at the end of the chain where the
field is also a maximum. A similar phenomena occurs for the
highest eigenvalue but in the opposite direction, i.e. the phases
are chosen to avoid regions of weak field. This explains why
perturbation theory works provided that only one sign is chosen
at the appropriate limit, because the phase is already fixed to
minimize or maximize the energy.

Now let us consider the second approximant to the
Fibonacci chain, which is given by N/2 atoms A and
N/2 atoms B following the sequence AB AB AB AB · · · and
periodic boundary conditions. If Bloch wavefunctions are
proposed as solutions, the energy spectrum is

En = 1
2 (εA + εB)± 1

2

√
(εA − εB)2 + 16t2 cos2(k), (22)

where kn = 2πn/N and n = 0, 1, . . . , N/2. The energy
correction using degenerate perturbation theory can be written
as

E (1)
± = F

[
N

2
+ 1 − 1

1 + η

]
± C2 F

√
(1 + η2 + 2η cos 2k)

2(1 − cos 4k)2

× {2N(cos[2k(N + 2)] − 1)

− (N + 2)(N cos 4k + 2 cos 2Nk − N − 2)}1/2, (23)
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where

η = 4t2 cos2(k)

(E − εB)2
, (24)

and

C2 = 2

N

1

1 + η
. (25)

The energy gap in the binary chain appears at k =
π/2 (n = N/4), with a gap width denoted by �Eg(F).
Considering that N 
 1 we can calculate �Eg(F) from
equations (23) and (22):

�Eg(F) = 1 − 4F

|εA − εB |

√
1

2(1 − cos 4k)
, (26)

where we considered that η = 0 when k → π/2. Using the
identity cos 4k = cos2 2k − sin2 2k in the limit k → π/2, and
expanding in k using that k = 2nπ/N , the equation is reduced
to

�Eg(F) ≈ 1 − F

|εA − εB |k = 1 − F N

2π |εA − εB | . (27)

The general expression for the gap can be written as

�Eg(F) ≈ 1 − αN F, (28)

where the α parameter is 1/(2π |εA − εB |). This proves that
�Eg(F) goes linearly with the field F and N , as observed in
the simulations shown in figure 3. A better approximation for
α can be obtained by using a variational procedure as we made
for the linear periodic chain.

The perturbation approach can be made for all other
approximants. However, the basic mechanism for the spectral
changes is already encoded in the study of the linear and
diatomic chains. To understand this, first we define the
energy correction δE = EF − E0, where EF (E0) is
the energy with (without) the electric field. The numerical
results were obtained using diagonalization and perturbation
theory. In figure 4, δE is plotted versus the number of
eigenvalues for a chain with 1300 sites and F = 10−4

for four different Fibonacci approximants: (a) ω = 1,
(b) ω = 1/2, (c) ω = 3/5 and (d) ω = 8/13. Notice
that perturbation theory (open dark circles, blue online) is in
good agreement with the diagonalization process (open light
circles, red online) along all bands for each approximant.
Equations (14) and (23) obtained from perturbation theory
correspond to the monatomic and binary chain, respectively,
and are shown by dark circles in figures 4(a) and (b). The
process shown in figures 4(a)–(d) reveals how the energy
correction is modified in the transition from the periodic to
the quasiperiodic potentials. The energy states in the band
edges are the more drastically changed because HF grows
linearly with the (size system) site number, as is easily seen
in equation (14). Thus, in the quasiperiodic case, the evolution
of each miniband is just a scaled version of what happens in
the linear chain. Basically, the highest eigenvalue is raised,
but at the same time, the lowest energy of each miniband is
not changed in the same proportion. As a result, the gaps
are closed. From a different perspective, such an idea is in
agreement with an adiabatic approach applied to electric fields
in periodic potentials. In that case, small energy gaps are easily
jumped due to a high probability of tunneling [36].

5. Localization and participation ratio

In order to understand the effects of localization when a weak
electric field is applied, we studied the participation ratio. This
localization parameter is defined as

PR ≡ 1∑
l |ψ j (l)|4 , (29)

where ψ j (l) is the amplitude of eigenstate j at site l and the
sum runs over all sites. Extended states have a PR that goes like
N , while for localized states it has the order of the localization
length. In the present work, we calculated the participation
ratio by diagonalization of the same approximants considered
in the previous section. In figure 5 we compare the PR for
chains with zero electric field and a small field F = 10−3.
Figure 5(a) shows a monatomic chain (ω = 1). The states
tend to be more localized at the band edges when the electric
field is applied. A similar behavior is observed for the binary
chain (ω = 1/2), as is depicted in figure 5(b), but in this
case two bands are present. The same tendency is observed
for the approximants ω = 3/5 (figure 5(c)) and ω = 8/13
(figure 5(d)). Following this sequence, it is possible to deduce
that, for a Fibonacci chain, all the states tend to be more
localized since many band edges appear.

Such an observation is in agreement with the fact
that, in the limit of a strong field, all states are localized.
However, due to the quantum tunneling effect, it is possible
to have delocalization in some states when the electric field
is increased. In fact, several delocalization effects have
been reported in quasi-one-dimensional metals and for the
Harper potential [23, 38, 39]. To look for such effects in
the transition from the Harper to the Fibonacci potential,
let us study one particular eigenstate as a function of the
electric field. In this analysis, we choose a chain with
100 sites and the eigenstate 50, with ω = (

√
5 − 1)/2,

t = 1 and λ = 1. In figure 6(a), the Harper potential is
shown and the first, fourth and hundredth Fibonacci harmonics
are presented in figures 6(b)–(d), respectively. The general
behavior is a tendency for localization when the electric field
is increased, in good agreement with our previous results from
sections 1 (see figure 1) and 2 (strong electric field). However,
along the electric field axis there are some peaks indicating
delocalization of the wavefunction. This behavior is easily
corroborated by looking at the wavefunction. In the inset of
figure 6(a), the wavefunction (
50) is shown for F = 0.66
(gray circles) in comparison with the same wavefunction with
an electric field F = 10 (black circles). Notice how the strong
localization is around site 50 for the second case (F = 10)
and a light delocalization can be observed for the first one
(F = 0.66). A similar behavior is observed for the Fibonacci
harmonics where F = 0.52, 0.42 and 0.45, and for the first,
fourth and hundredth harmonics, respectively.

The peaks are resonances in the chain. In order to
understand such a process, let us analyze the Schrödinger
equation:

[F j + 2λ cos(2πωj + ϕ)]ψn( j)+ t[ψn( j − 1)

+ ψn( j + 1)] = Enψn( j).

7
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Figure 5. PR for different Fibonacci approximants using 1300 sites for zero field (dots) and F = 10−3 (open circles). (a) ω = 1
corresponding to a monatomic chain. The field tends to localize states at the band edge of the band. A similar phenomena is observed for
(b) ω = 1/2, (c) ω = 3/5 and (d) ω = 8/13.

Figure 6. Participation ratio (PR) as a function of the electric field
(F) for the eigenfunction number 50 (
50) in a chain with 100 sites.
(a) Harper potential, (b) second, (c) fourth and (d) hundredth
Fibonacci harmonics, respectively. Along the electric field axis, one
can observe some resonances where the wavefunction is delocalized.
In the inset of each figure, the wavefunction around site 50 is
presented (gray circles) for different electrical fields: (a) F = 0.66,
(b) F = 0.52, (c) F = 0.42 and (d) F = 0.45, in comparison with
the same wave with a strong electric field F = 10 (black circles).
Notice the strong localization around site 50 for the F = 10 case,
while a slight delocalization can be observed at the other fields.

Localized states appear as a consequence of the term F j +
2λ cos(2πωj + ϕ), while extended states are driven by the
kinetic term proportional to t . In the limit when the on-site

potential has the same order of magnitude of the electric field,
i.e. F j ≈ 2λ, locally it is possible to reduce the localization
effect when cos(2πωj + ϕ) ≈ −1, since F j − 2λ ≈ 0.
This analysis is corroborated in the inset of figure 6, since
for eigenvalue 50, a slight delocalization is observed. It is
worth mentioning that, although a delocalization effect can be
appreciated for different electric fields, this delocalization is
not enough to imply an important effect over the system.

6. Conclusions

In this paper, we explored the effects of an electric field on the
electronic spectrum of quasiperiodic potentials. Our results
indicate that, in the limit of a strong field, the spectrum is a
ladder with a structure that has the shape of the quasiperiodic
potential. In the limit of weak fields, the states tend to be
localized in order to avoid regions of strong or weak fields,
and a smoothening effect of the original spectrum is observed.
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