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Abstract
The density of states and the AC conductivity of graphene under uniform strain are calculated
using a new Dirac Hamiltonian that takes into account the main three ingredients that change
the electronic properties of strained graphene: the real displacement of the Fermi energy, the
reciprocal lattice strain and the changes in the overlap of atomic orbitals. Our simple analytical
expressions for the density of states and the AC conductivity generalize previous expressions
for uniaxial strain. The results suggest a way to measure the Grüneisen parameter β that
appears in any calculation of strained graphene, as well as the emergence of a sort of Hall
effect due to shear strain.
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1. Introduction

Graphene [1], a two-dimensional form of carbon, has attracted
an enormous amount of attention from both experimental and
theoretical studies to understand and take advantage of its
remarkable properties [2, 3]. Among its most exotic properties,
one can cite a linear band dispersion of charge carriers at the
so-called Dirac points; hence in graphene the charge carriers
behave as massless Dirac fermions [4]. This has suggested
the possibility of studying phenomena originally predicted for
relativistic particle physics in such a unique condensed-matter
system.

The mechanical properties, strength and flexibility, of
graphene are also unique. Graphene is the strongest mate-
rial ever measured, with an effective Young’s modulus of
∼1 TPa, and can reversibly withstand elastic deformations up
to 25% [5]. This unusual interval of elastic response results in
a peculiar interplay between its electronic and morphological
properties, which has opened a new opportunity to explore the
strain modifications of the electronic properties of graphene:
strain engineering [6–8]. This concept has a successful history
in strained silicon technology.

In the literature, the most popular approach to study the
electronic implications of graphene lattice deformations is

based on a combination of a tight-binding (TB) model of the
electrons and linear elasticity theory [9–18].

Among the most investigated strain-induced implications,
one of the most relevant is the opening of a gap at the
Fermi level, due to its importance for the functionality of
graphene-based logic devices. For uniaxial strain, which is
the case usually considered, it has been shown that the
strain-induced opening of a band gap depends critically on
the direction of strain and requires values as large as 23% [9].
Nevertheless, it has been shown that a combination of shear
and uniaxial strain can be used to open a gap for more
easily accessible reversible deformations [10]. Needless to say,
another strain implication is the anisotropy in the electron
dynamics, which has been theoretical and experimentally
established [15–19].

Unfortunately, it has been found that the usual approach
to treat strain contains problems. The most important one
is that the Fermi energy falls far from the unstrained Dirac
point [16]. A new Dirac Hamiltonian has been proposed to
solve this and other problems by taking into account the
main three ingredients that change the electronic properties of
strained graphene: the real displacement of the Fermi energy,
the reciprocal lattice strain and the changes in the overlap of
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atomic orbitals [16]. In several previous studies of the subject,
the first ingredient was missing, while the second one has
only very recently been found. It was called lattice corrections
[12, 15], but later on it was explained as the image of strain
in the reciprocal space [16]. As a result, many theoretical
computations concerning experimental strain situations need
to be revised. Here we provide the first application of this new
Hamiltonian which enables us to generalize the alternating-
current (AC) conductivity expression for strained graphene
and, thereby, to propose possible applications.

In fact, numerous theoretical works and several exper-
iments have been devoted to investigating the optical con-
ductivity properties of graphene [20–35]. Gusynin et al [20]
presented analytical expressions for the AC conductivity in
unstrained graphene. Pellegrino et al [25] reported the uniaxial
strain effects on the AC conductivity within the tight-binding
approximation. Pereira et al [26] also studied the uniaxial
strain effects on the AC conductivity, but within the Dirac-
cone approximation. However, in the graphene literature an
AC conductivity expression under uniform strain which can
straightforwardly be used for comparison with experimental
data is not available.

This work has several purposes. The first is to provide an
accurate and general description of the AC conductivity using
the new Dirac Hamiltonian [16]. Then we provide simple
analytical expressions for the density of states and the AC
conductivity which generalize some previous expressions for
uniaxial strain [26].

As an example, we provide an experimental proposal to
measure the Grüneisen parameter β, which is a vital quantity
to perform calculations in strained graphene, as well as a kind
of Hall effect due to strain.

The layout of this paper is as follows. In section 2 we
present the Dirac-like model used for uniformly strained
graphene. In section 3 we study the density of states of
strained graphene, which is required in section 4 to study the
conductivity using the Kubo formula. Finally, in section 4 the
conclusions are given.

2. Strained graphene model

From a combination of a tight-binding description and linear
elasticity theory, recently it has been reported that the low-
energy Dirac Hamiltonian for electrons in graphene under
uniform strain is given by [16]

H ' h̄v0σ · ( Ī −β ε̄+ ε̄) · q, (1)

where v0 is the Fermi velocity for the undeformed lattice,
σ = (σx , σy) are the two Pauli matrices, Ī is the 2× 2 identity
matrix, ε̄ is the strain tensor, β is the Grüneisen parameter and
q is the momentum measured relative to the K D Dirac point
[9, 16, 19], which does not coincide with the K high-symmetry
points of the strained Brillouin zone, as detailed in figure 1.
To first order in strain the shift of the K D Dirac point can be
written as [16]

K D ' K + A' ( Ī + ε̄)−1
· K 0+ A, (2)

Figure 1. (a) K 0 (K ) is a high-symmetry point of the first Brillouin
zone, denoted by the dashed (solid) line, for unstrained (strained)
graphene. The strained Brillouin zone corresponds to graphene
stretched in the x direction. (b) Sketch of the strain-induced shift of
the K D Dirac point and the distorted Dirac cone. The displacement
of K D from K is given by the vector A.

where K 0 is a high-symmetry point of the unstrained Brillouin
zone and A is related to the strain tensor ε̄ by

Ax =
β

2a0
(ε̄xx − ε̄yy), Ay =−

β

2a0
(2ε̄xy), (3)

where a0 is the unstrained carbon–carbon distance. Note that
here the vector A is related to the Dirac-cone shift, whereas
in the theory of the strain-induced pseudomagnetic field it is
interpreted as a pseudovector potential [4]. The relevance of the
strain-induced shift of the Dirac points, to obtain an effective
Dirac-like Hamiltonian for strained graphene, has been noted
earlier [9, 19]. In [19], one can find a detailed discussion about
this shift and a closed expression of K D(tn) as a function of the
three nearest-neighbour hopping parameters t1,2,3. However,
the advantage of (2) lies in that K D is an explicit function of the
strain tensor and thus enables us to obtain the Hamiltonian (1).
The novelty of our model resides in its explicit dependence
on the strain tensor, which is essential in order to achieve
functionality for performing strain engineering.

Let us emphasize the three contributions appearing in (1):
h̄v0σ · q is the low-energy Dirac Hamiltonian for unstrained
graphene; the β-dependent term −h̄v0βσ · ε̄ · q is associated
with the strain-induced changes in hopping parameters; and
the β-independent term h̄v0σ · ε̄ · q is only a consequence of
the reciprocal space distortion due to lattice deformation.

From (1) one can recognize a direction-dependent Fermi
velocity, which can be written in tensorial notation as

v̄ = v0( Ī −β ε̄+ ε̄). (4)

To test (4), let us consider the seemingly trivial case of
an isotropic strain ε̄i = ε Ī . Under ε̄i , the new carbon–carbon
distance is a = a0(1+ ε). On the other hand, the new hopping
parameter to first order in strain is t = t0(1− βε). Therefore,
the new Fermi velocity is

v =
3ta
2h̄
'

3t0a0

2h̄
(1−βε+ ε)' v0(1−βε+ ε),

and in tensorial notation v̄ = v0( Ī − β ε̄i + ε̄i ), which can be
directly obtained from the generalized expression (4).
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Since the Fermi velocity, the most important parameter in
graphene physics, is changed by the strain, one would expect
changes in the conductivity.

3. Density of states

Another ingredient that influences the conductivity is the
density of states (DOS). Furthermore, the DOS is accessible
through scanning tunnelling microscopy experiments and thus
can serve to test the new Dirac Hamiltonian (1).

In general, the DOS can be computed from the Green’s
function defined as

G±(E)= lim
η→0

1
E ± iη− H

(5)

by taking the imaginary part of its trace,

D(E)=∓
1
π

Im{TrG±(E)}. (6)

However, using the previous formula and a representation
of G±(E) in momentum space, the local density of states
(LDOS) can be calculated as

ρ(E)=
∫∫

Tr[E − H(qx , qy)]
−1dqx dqy, (7)

where H(qx , qy) is the Hamiltonian (1). The DOS and the
LDOS are related by D(E)= Aρ(E), where A is the area of
the strained sample. The computation of (7) is straightforward
if one proposes the change of integration variables

q = ( Ī −β ε̄+ ε̄)−1
· q∗. (8)

This transformation yields

ρ(E)=
∫∫

JTr[E − H0(q∗x , q∗y )]
−1dq∗x dq∗y , (9)

where J is the Jacobian determinant of (8) and H0(q∗x , q∗y )=
h̄v0σ · q∗ is the unstrained Hamiltonian. It can be proved that
the Jacobian determinant is given as J = 1/ det(v̄/v0). Then,
for the LDOS it immediately follows that

ρ(E)= ρ0(E)/ det(v̄/v0), (10)

where ρ0(E) is the LDOS for unstrained graphene and reads
ρ0(E)= 2|E |/(π h̄2v2

0). Finally, up to first order in strain, the
LDOS gives

ρ(E)' ρ0(E)(1+βTrε̄−Trε̄), (11)

which is a generalized expression available for any uni-
form strain, and not only for uniaxial strain, as in previous
works [26]. Note that A can be written as A' A0(1+Trε̄), A0
being the area of the unstrained sample. Therefore, the DOS
is given by

D(E)= Aρ(E)' D0(E)(1+βTrε̄), (12)

where D0(E)= A0ρ0(E) is the DOS of the unstrained sample
of graphene.

Since β − 1 > 0, the strain effect in the LDOS (DOS)
depends on the sign of Trε̄, which can be written as Trε̄ =
A/A0− 1. Thus, for an expanded sample (A/A0 > 1) the strain
effect in the LDOS (DOS) is a slope enhancement, whereas for
(A/A0 < 1) the effect is a decrease of slope. It is also worth
mentioning that for the case of shear strain, i.e. ε̄xx = ε̄yy = 0
and ε̄xy = ε̄yx = ε, the LDOS (DOS) does not change.

4. AC conductivity of strained graphene

Let us now obtain the AC conductivity σ̄ (w) of graphene
under uniform strain by combining (1) and the Kubo formula,
assuming a linear response to an external electric field with
frequencyw. Following the representation used in [22, 23], the
frequency-dependent conductivity tensor σ̄ (w) can be written
as a double integral with respect to two energies E, E ′,

σ̄i j (w)=
i
h̄

∫∫
Tr{ jiδ(H − E ′) j jδ(H − E)}

×
1

E − E ′+w− iα
f (E)− f (E ′)

E − E ′
dEdE ′, (13)

where f (E)= (1+ exp[E/(kBT )])−1 is the Fermi function at
temperature T and jl =−ie[H, rl ] is the velocity operator in
the l-direction, with l = x, y.

To calculate (13) it is convenient once again to use the
change of integration variables (8). In the new variables
(q∗x , q∗y ), the Hamiltonian transforms as H = H0(q∗x , q∗y ) and
the velocity operator components are obtained using the chain
rule,

jx = − ie[H, rx ] = e
∂H
∂qx

,

= e

(
∂H
∂q∗x

∂q∗x
∂qx
+
∂H
∂q∗y

∂q∗y
∂qx

)
,

= (1− β̃εxx ) j∗x − β̃εxy j∗y , (14)

and

jy = (1− β̃εyy) j∗y − β̃εxy j∗x , (15)

where j∗x = e(∂H/∂q∗x ) and j∗y = e(∂H/∂q∗y ) are the current
operator components for unstrained graphene and β̃ = β − 1.
Plugging these expressions into (13) and calculating up to first
order in strain, we obtain

σ̄xx (w)' (1− 2β̃ε̄xx )σ0(w), (16)
σ̄yy(w)' (1− 2β̃ε̄yy)σ0(w), (17)

σ̄xy(w)= σ̄yx (w)'−2β̃ε̄xyσ0(w), (18)

with

σ0(w)=
i
h̄

∫∫
Tr{ j∗i δ(H0− E ′) j∗i δ(H0− E)}

×
1

E − E ′+w− iα
f (E)− f (E ′)

E − E ′
dEdE ′. (19)

Note that the frequency-dependent conductivity tensor of
unstrained graphene σ̄ 0(w) is given by σ̄ 0(w)= σ0(w) Ī , as
has been calculated in [20–23]. Finally, from (16)–(19) it
follows that the frequency-dependent conductivity tensor of
graphene under uniform strain can be written as

σ̄ (w)' σ0(w)( Ī − 2β ε̄+ 2ε̄). (20)

Our expression (20) generalizes the reported AC conduc-
tivity in [26] for the case of a uniaxial strain and allows us to
make a quick evaluation of the AC conductivity of graphene
under any uniform strain configuration. However, due to the
approximations considered one may wonder how dependable
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Figure 2. Sketch of the observation of Hall voltage in a rectangular
graphene sample under shear strain and an oscillating electric field
E(w) in the x direction (curved red lines). The black arrows at the
sample boundaries represent the force field that leads to the shear
deformation. The Hall voltage is measured in the y direction.

our linear corrections in (20) are. Pereira et al [26] showed
from ab initio calculation for uniaxially strained graphene that
σ̄ (w) linearly depends on strain up to at least 10%, which
is a broad range of stretching where the linear corrections are
quite dependable. Very recently, the transmittance of graphene
under uniaxial strain has been measured [36]. The observed
modulation of the transmittance with respect to the polariza-
tion direction of the incoming light was quantitatively ex-
plained using expressions for the anisotropic AC conductivity
of strained graphene obtained in [26]. Thus, as (20) reproduces
the results of [26], these experiments confirm the validity of
the predictions from our equation (20).

Unlike the DOS, the AC conductivity is modified for shear
strain. From (20), a sort of Hall effect is predicted due to shear
strain, as sketched in figure 2, since a component σxy(w)

appears whenever εxy 6= 0. This result is novel because a
strain-induced Hall effect in graphene has been only discussed
in nonuniform strain configurations.

Moreover, a possible application follows from (20). If
the conductivity can be measured with precision for different
strain configurations one can obtain by means of (20) an
experimental value of the Grüneisen parameterβ. For example,
if the conductivity σxx of a graphene sample is measured for
uniaxial strains in the x direction of 1%, 2%, 3%,. . . , the
scope of the lineal graph of σxx versus strain is −2(β − 1).
Knowledge of β is vital for the characterization of the
strain-induced effects on the electronic band structure.

5. Conclusions

In conclusion, using the Kubo formula and a new Dirac Hamil-
tonian that takes into account the real strain-induced displace-
ment of the Fermi energy, we have derived the AC conductivity
for graphene under uniform strain. As an example, the corre-
sponding expression gives a way to measure the Grüneisen pa-
rameter β that appears in any calculation of strained graphene.
Also, we have reported a generalized expression for the density
of states, which does not change for shear strain. However,
under shear strain we have reported a sort of Hall effect which
had not been discussed for uniform strain.
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[15] de Juan F, Mañes J L and Vozmediano M A H 2013 Gauge
fields from strain in graphene Phys. Rev. B 87 165131

[16] Oliva-Leyva M and Naumis G G 2013 Understanding electron
behavior in strained graphene as a reciprocal space
distortion Phys. Rev. B 88 085430

[17] Gomes K K, Mar W, Ko W, Guinea F and Manoharan H C
2012 Designer Dirac fermions and topological phases in
molecular graphene Nature 483 306

[18] Yan H et al 2013 Superlattice Dirac points and
space-dependent fermi velocity in a corrugated graphene
monolayer Phys. Rev. B 87 075405

[19] Yang H T 2011 Strain induced shift of Dirac points and the
pseudo-magnetic field in graphene J. Phys.: Condens.
Matter 23 505502

4

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1158877
http://dx.doi.org/10.1126/science.1158877
http://dx.doi.org/10.1103/RevModPhys.83.837
http://dx.doi.org/10.1103/RevModPhys.83.837
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1126/science.1157996
http://dx.doi.org/10.1126/science.1157996
http://dx.doi.org/10.1103/PhysRevLett.103.046801
http://dx.doi.org/10.1103/PhysRevLett.103.046801
http://dx.doi.org/10.1016/j.ssc.2012.04.019
http://dx.doi.org/10.1016/j.ssc.2012.04.019
http://dx.doi.org/10.1002/adma.201200011
http://dx.doi.org/10.1002/adma.201200011
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1103/PhysRevB.81.241412
http://dx.doi.org/10.1103/PhysRevB.81.241412
http://dx.doi.org/10.1103/PhysRevB.81.081407
http://dx.doi.org/10.1103/PhysRevB.81.081407
http://dx.doi.org/10.1103/PhysRevB.85.115432
http://dx.doi.org/10.1103/PhysRevB.85.115432
http://dx.doi.org/10.1103/PhysRevB.87.155436
http://dx.doi.org/10.1103/PhysRevB.87.155436
http://dx.doi.org/10.1016/j.ssc.2013.05.002
http://dx.doi.org/10.1016/j.ssc.2013.05.002
http://dx.doi.org/10.1103/PhysRevB.87.165131
http://dx.doi.org/10.1103/PhysRevB.87.165131
http://dx.doi.org/10.1103/PhysRevB.88.085430
http://dx.doi.org/10.1103/PhysRevB.88.085430
http://dx.doi.org/10.1038/nature10941
http://dx.doi.org/10.1038/nature10941
http://dx.doi.org/10.1103/PhysRevB.87.075405
http://dx.doi.org/10.1103/PhysRevB.87.075405
http://dx.doi.org/10.1088/0953-8984/23/50/505502
http://dx.doi.org/10.1088/0953-8984/23/50/505502


J. Phys.: Condens. Matter 26 (2014) 125302 M Oliva-Leyva and G G Naumis

[20] Gusynin V P and Sharapov S G 2006 Transport of Dirac
quasiparticles in graphene: Hall and optical conductivities
Phys. Rev. B 73 245411

[21] Gusynin V P, Sharapov S G and Carbotte J P 2007 AC
conductivity of graphene: from tight-binding model to
2 + 1-dimensional quantum electrodynamics Int. J. Mod.
Phys. B 21 4611–58

[22] Ziegler K 2006 Robust transport properties in graphene Phys.
Rev. Lett. 97 266802

[23] Ziegler K 2007 Minimal conductivity of graphene:
nonuniversal values from the kubo formula Phys. Rev. B
75 233407

[24] Stauber T, Peres N M R and Geim A K 2008 Optical
conductivity of graphene in the visible region of the
spectrum Phys. Rev. B 78 085432

[25] Pellegrino F M D, Angilella G G N and Pucci R 2010 Strain
effect on the optical conductivity of graphene Phys. Rev. B
81 035411

[26] Pereira V M, Ribeiro R M, Peres N M R and Castro Neto A H
2010 Optical properties of strained graphene Europhys.
Lett. 92 67001

[27] Barrios-Vargas J E and Naumis G G 2011 Electrical
conductivity and resonant states of doped graphene
considering next-nearest neighbor interaction Phil. Mag.
91 3844–57

[28] Horng J et al 2011 Drude conductivity of Dirac fermions in
graphene Phys. Rev. B 83 165113

[29] Gornyi I V, Kachorovskii V Yu and Mirlin A D 2012
Conductivity of suspended graphene at the Dirac point
Phys. Rev. B 86 165413

[30] Herbut I F and Mastropietro V 2013 Universal conductivity of
graphene in the ultrarelativistic regime Phys. Rev. B
87 205445

[31] Scharf B, Perebeinos V, Fabian J and Žutić I 2013
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