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The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap 
represents a quantum Hall state whose quantized conductivity is characterized by topological invariants 
known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales 
in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method 
used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set 
of critical points that separates orderly patterns of both positive and negative Cherns that appear as a 
fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection 
subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that 
the critical points are identified with the Van Hove singularities that exist at every band center in the 
butterfly landscape.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Discovered by Belgian physicist Leon Van Hove in 1953, Van 
Hove singularities are singularities in the density of states (DOS) 
crystalline solid [1]. These singularities are known to be respon-
sible for various anomalies provided the Fermi level lies close to 
such a singularity. Electronic instabilities at the crossing of the 
Fermi energy with a Van Hove singularity in the DOS often lead 
to new phases of matter such as superconductivity, magnetism, or 
density waves [2].

A two-dimensional electron gas (2DEG) in a square lattice pro-
vides a simple example of Van Hove singularities in the energy 
dispersion of a crystal. For a tight binding model of a square lat-
tice the energy dispersion is given by,

E = −2 J [cos kxa + cos kya] (1)

Here �k = (kx, ky) is the wave vector in the first Brillouin zone, 
a is the lattice spacing of the square lattice and J is the nearest-
neighbor hopping parameter which defines the effective mass me
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of the electron on the lattice by the relation J = h̄2

2mea2 . This sin-
gle band Hamiltonian has band edges at E = ±4 J . It can be shown 
that the DOS at the band edges approaches a constant equal to 

1
4πa2h̄2 . However, it diverges at the band center as DOS ≈ ln J

E . Such 
a divergence is an example of a Van Hove singularity. Fig. 1(a) 
shows the energy contours in (kx, ky) plane, where the almost 
free-electron concentric circles are transformed into a diamond 
shape structure that corresponds to saddle points in the energy 
surface. We note that the lattice structure is essential for the exis-
tence of Van Hove singularities. Van Hove singularities have been 
given a topological interpretation in terms of a switching of elec-
tron orbits from electron like to hole like [3]. It is worthwhile 
mentioning that the topological properties of Van Hove singular-
ities in lattices without magnetic fields have been known since 
long time ago using a theory developed by Morse [4] and applied 
to solid state physics by J.C. Phillips [5].

In this paper we investigate the Van Hove anomalies of a 2DEG 
in transverse magnetic fields. Such a system describes all phases 
of non-interacting electrons as one varies the chemical potential 
and magnetic field. The phase diagram, known as the Hofstadter 
butterfly [19] represents various quantum Hall states, each char-
acterized by a quantum number, the Chern number, that has its 
roots in the nontrivial topology of the underlying Hilbert space [9]. 
Several aspects of this quantum Hall effect are well understood 
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Fig. 1. (a) Contour plot of the energy E in the (kx, ky) plane, illustrating the saddle character of the band center for a 2DEG on a square lattice. (b) Shows the corresponding 
band as a function of kx . (c) Shows the spectrum for small magnetic flux φ = 0.1. Landau levels correspond to the horizontal flat bands. In (d) we show a blow up of (c) 
near the band center, illustrating the deviation from the Landau level picture near the band center that hosts a Van Hove singularity. In (b), (c) and (d), the colors represent 

different values of ky .
[2] and recently there has been a reemergence of the field due to 
the first experimental observation of the Hofstadter butterfly [10], 
leading to perform band-structure engineering [11]. Many of these 
properties have been measured in graphene over a substrate, since 
strain in graphene acts as a pseudo magnetic field [12–14]. Also, 
there is an interest in artificial systems which share the same phe-
nomenology, like ultra cold bosonic atoms [15].

The key result of this paper is the characterization of Van Hove 
singularities that are nested in the topological hierarchical pattern 
of the butterfly spectrum. We show that in the two-dimensional 
energy-flux space, every vicinity of a Van Hove consists of inter-
lacing sequences of Chern numbers. In other words, the Van Hove 
singularities separate different topological sequences. To achieve 
this goal, we calculate Chern numbers in the neighborhood of Van 
Hove singularities, facilitated by simple rules that are derived for 
determining the entire topological map of the butterfly fractal at 
all scales.

Notice that there are other previous classic works that stud-
ied in detail the layout of the Hofstadter butterfly [16,17] and its 
relationship with the density of states, however, the fine structure 
around Van Hove singularities has not been tackled previously. Fur-
thermore, our analysis begins with a simple geometrical approach, 
based on a method to treat the structure of quasicrystals, that sets 
the stage for determining the Chern numbers of all the gaps and its 
associated fine structure. Although this functional relationship is 
known [18], our geometrical approach allows to find it in a simple 
way. It also provides a powerful, intuitive and simple geometrical 
interpretation for the more complicated number theory approach 
[17]. In fact, we will show that the fine structure of the Hofstadter 
butterfly can be explained in terms of a simple tilting of the pro-
jection subspace used in the cut and projection method.

It is the orderly patterns of topological integers that character-
ize the fine structure that gets linked to the Van Hove anomalies of 
a two dimensional crystalline lattice in a magnetic field. Moreover, 
a very recent study of the 2DEG when subjected to a weak mag-
netic field, revealed the importance of Van Hove singularities in 
inducing changes in localization characteristics of the system [6]. 
In a continuum system, that is, in the absence of any lattice struc-

ture, the magnetic field B introduces a magnetic length lB =
√

�0
2π B

(where �0 is the magnetic flux), reincarnation of the cyclotron 
radius of the corresponding classical problem. In this limit, the en-
ergy spectrum consists of equally spaced harmonic oscillator levels 
known as the Landau-levels. Interestingly, in a lattice with weak 
magnetic flux, the Landau level picture breaks down near the band 
center as illustrated in the Fig. 1. As we will discuss, this is due to 
the saddle points of the energy dispersion surface. This is in sharp 
contrast to the parabolic dependence of the energy near the band 
edges that leads to the Landau levels.

The model system that we study here consists of (spinless) 
fermions in a square lattice. Each site is labeled by a vector r =
lx̂ +mŷ, where l, m are integers, and x̂ ( ŷ) is the unit vector in the 
x (y) direction. The tight binding Hamiltonian has the form

H = − J x

∑
r

|r + x̂〉〈r| − J y

∑
r

|r + ŷ〉ei2π lφ〈r| + h.c. (2)

Here, |r〉 is the Wannier state localized at site r. J x ( J y) is the 
nearest neighbor hopping along the x (y) direction. With a uniform 
magnetic field B along the z direction, the flux per plaquette, in 
units of the flux quantum �0, is φ = −Ba2/�0. The field B gives 
rise to the Peierls phase factor ei2π lφ in the hopping.

Within the Landau gauge, the above Hamiltonian has been en-
gineered in cold atom experiments [7]. Using this gauge, the vector 
potential is given by Ax = 0 and A y = −φx resulting in a Hamil-
tonian that is cyclic in y. Therefore, the eigenstates of the system 
can be written as �l,m = eikymψn where ψl satisfies the Harper 
equation [19]

ψl+1 + ψl−1 + 2λ cos(2π lφ + ky)ψl = Eψl. (3)

Here l (m) is the site index along the x (y) direction and λ =
J y/ J x . For a rational φ = p/q, where p and q are relatively 
prime integers, the solutions are periodic resulting in the condi-
tion ψl+q = exp(kxqa)ψl .

At the rational flux φ = p/q, the energy spectrum has q − 1
gaps, although for even q the central gap is closed. These spectral 
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gaps are labeled by two quantum numbers which we denote as σ
and τ . The integer σ is the Chern number, the quantum number 
associated with Hall conductivity [9] and τ is an integer. For a 
Fermi level inside each energy gap, the system is in an integer 
quantum Hall state [8] characterized by its Chern number σ which 
gives transverse conductivity Cxy = σ e2

h [9].
The quantum number (σ , τ ) satisfy a Diophantine equation 

(DE) [23], that applies to all 2DEG systems that exhibit magnetic 
translational symmetry,

ρ = φσ + τ (4)

where ρ is the particle density when the Fermi level is in the gap 
in such a way that ρ = r/q. For a given ρ and φ, there are infinity 
of possible solutions for where [σ , τ ] are integers, given by,

[σ ,τ ] = [σ0 − nq, τ0 + np] (5)

Here σ0, τ0 are any two integers that satisfy the Eq. (4) and n is 
an integer. The quantum number σ that determines the quantized 
Hall conductivity corresponds to the change in the DOS when the 
magnetic flux quanta in the system is increased by one, whereas 
the quantum number τ is the change in the DOS when the period 
of the potential is changed so that there is one more unit cell in 
the system [24].

For any rational value of the magnetic flux, the system de-
scribed by the Hamiltonian (2), supports only the n = 0 solution 
of Eq. (5) for the quantum numbers σ and τ . This is due to the 
absence of any gap closing that is essential for a topological phase 
transition to states with higher values of σ and τ . However, the DE 
which relates continuously varying quantities ρ and φ with inte-
gers σ and τ , has some important consequences about topological 
changes in close vicinity of rational values of φ, as we will discuss 
in the following sections.

2. Chern numbers and Hull function: a cut and projection 
quasicrystalline approach

We begin by solving the Diophantine equation, using a geomet-
rical approach well known in the quasicrystal literature – com-
monly referred as the Cut and Projection Method [20,21]. Note that 
although the explicit solution has been known [18], our approach 
however illustrates the simplicity underlying the number theoret-
ical approach to solve this equation. The basic idea is to obtain 
solutions by going to higher dimensions and the required solutions 
are the projections from two to one dimension.

We start by defining two vectors: a flux vector F and a topol-
ogy vector T r as,

F = (p,q), T r = (σr, τr) (6)

The DE is then rewritten as,

r = F · T r (7)

This implies that the gap index r is a projection of the topology 
vector onto the flux vector. However, this projection is an inte-
ger. This suggests the following scheme to obtain the components 
of T r , namely σr , τr in terms of r as follows.

As shown in Fig. 2, we consider a two dimensional space with 
coordinates (x, y). A square lattice is defined in this space by con-
sidering x and y at integer values.

A vector F is drawn which points to the square lattice point 
(p, q). Then all possible solutions of the Diophantine lay in the 2D 
square lattice, and are contained in a family of parallel lines given 
by,

r = (p,q) · (x, y) (8)
Fig. 2. Geometry associated with the cut and projection method to obtain the solu-
tions of the Diophantine equation. In this example, the flux is chosen to be φ = 2/3. 
The set of parallel lines gives the solutions for each gap r. Two solutions are shown 
here, T 1 = (−1, 1) and T 2 = (1, 0).

as indicated in Fig. 2. To find integer solutions, we look at the fam-
ily of parallel lines. These lines are all parallel to the vector,

F ⊥ = (−q, p) (9)

which defines the line y = −φx, with slope φ = tanα where α is 
the angle between the x axis and F ⊥ . If x is chosen to be an inte-
ger, that we associate with a Chern number σr , this will produce a 
y coordinate,

y = −φσr (10)

However, although y is in the family of parallel lines that con-
tains all solutions, only integer values of y are required by the 
Diophantine equation. To find such integers, we just take the floor 
function of the previous equation,

�y	 = −�φσr	 (11)

so for each σr , the corresponding τr is given by,

τr = −�φσr	 (12)

Thus, gaps are labeled by the coordinates of a two dimensional 
lattice,

(σr, τr) = (σr,−�φσr	) (13)

Furthermore, by using the identity x = �x	 + {x} to express τr
and inserting the solution into Eq. (7), we obtain a relationship 
between the filling fraction r/q and the Chern numbers,

r

q
= {φσr} (14)

Notice that care must be taken for negative Chern numbers, 
since {−x} = 1 − {x} for x > 0. To be more specific, now we define 
the Hull function f as,

f (φ,σ ) = {φσr} (15)

which is the filling factor for a Chern number at a given φ.
This formula can be inverted using the same methodology giv-

ing the Chern numbers as a function of the gap index,

σr = q

{
φr + 1

2

}
− q

2
(16)

As an example of how to use Eq. (16), consider the case φ =
4/5. For the first gap (r = 1) we have,

σ1 = 5

{
4

5
+ 1

2

}
− 5

2
− = 5

(
3

10

)
− 5

2
− = −1 (17)

It is easy to verify that using τ1 = 1, the obtained solution satisfies 
the Diophantine for r = 1, e.g., ρ = 1/5 = −4/5 + 1. Following a 
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Fig. 3. The skeleton (panel (a)) and the butterfly graph with the gaps labeled with its 
Chern numbers (panel (b)). The skeleton shows the function f (σ , φ) as a function 
of φ for the Chern numbers σ = ±1 (red), σ = ±2 (blue) and σ = ±3 (yellow). Pos-
itive Cherns correspond to solid lines and negative Cherns are broken lines. Chern 
number intersections are marked with circles and boxes, and some of the intersec-
tion values are labeled at the top of the panel. The pattern and meetings of Chern 
numbers in the skeleton have a correspondence in the butterfly plot, as indicated in 
some cases by vertical lines from panel (a) to panel (b). The circles indicate butter-
fly centers in which the Chern numbers meet their negative counterparts, while the 
boxes are meetings that do not have this property. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

similar procedure, we find the other Cherns numbers, σ2 = −2, 
σ3 = 2, σ4 = 1 and its corresponding partners τ2 = 2, τ3 = −1 and 
τ4 = 0.

Notice that the ordering of the gaps coincides with the ordering 
in energy since the filling fraction ρ , which gives the position of 
the Fermi energy, is proportional to r.

3. Butterfly topological map: Chern meeting formula and fine 
structure

The hull function [22] can be viewed as a kind of “skeleton but-
terfly” plot that encodes the topological structure of the Hofstadter 
spectrum as we explain below. Earlier studies have discussed this 
skeleton in terms of the integrated density of states, and not in 
terms of its topological properties [16]. In this paper, we use this 
Hull function along with the numerically obtained butterfly to lay 
out the topological patching of the entire butterfly. Upper and 
lower graphs in Fig. 3 illustrate the relationship between the topol-
ogy of the butterfly graph and its skeleton version obtained from 
the Hull function. We emphasize that although the quantitative 
analysis of the actual energies requires a numerical exploration, 
many features can be obtained using the Hull function. As we dis-
cuss below, this includes not only the dominant gaps but the fine 
Fig. 4. The skeleton (panel (a)) and the butterfly graphs (panel (b)), showing ex-
plicitly the Cherns ±1 (red) and ±2 (blue) as a function of φ. Positive Cherns are 
solid lines and negative Cherns are broken lines. In addition to the entire butterfly, 
we identify three butterflies in the graph, whose centers are shown with black dots 
and are marked in the bottom graph with a trapezoid or a rectangle. The lines in 
panel (b) are guides to the eye going along the butterflies wings. The bottom but-
terfly graph in panel (b) shows these butterflies enclosed inside the trapezoids: one 
with meeting Chern numbers 2 and −2 centered at φ = 1/4, the other with Chern 
numbers 1 and −2 centered at 2/3. In addition, there is another butterfly enclosed 
in a rectangle, centered at 1/2. The corresponding flux values for these three dif-
ferent butterflies are also shown with double arrowed lines that are labeled by the 
flux and the two values of the meeting Cherns. Notice that the upper left wing of 
the butterfly centered at φ = 2/3 coincides with one of the wings of the butter-
fly centered at φ = 1/2. The butterfly centered at φ = 1/2 has two wings in the 
low-energy region and the other two in the high-energy region. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

structure associated with them. Fig. 3 shows the filling fractions 
r/q = f (φ, σ) as a function of flux φ for Chern numbers ±1, ±2
and ±3. Notice that for a fixed σ , f (φ, σ) is just a saw-tooth func-
tion with |σ | distinct branches when considering for φ between 0
and 1. The intersection of two branches are points where distinct 
Cherns meet as indicated in Fig. 3(a). In the butterfly spectrum, 
the meetings of branches is reflected in meeting of gaps, as seen 
in Fig. 3(b).

We now identify a “central butterfly” and its fine structure as 
follows. As shown in Fig. 4, consider again f (φ, σ) as a function 
of φ for some different values of σ . In the plot we present as an 
example f (φ, 1), f (φ, −1), f (φ, 2) and f (φ, −2). The intersections 
of f (φ, σ) for different σ will occur for some fluxes. Each intersec-
tion defines the center of a butterfly. However, at each intersection 
there are also many other Cherns that meet. Then we associate a 
central butterfly with the meeting of the two smallest Cherns (in 
magnitude) which meet at a certain φ. The other Cherns that con-
verge at the same point will be identified with the fine structure of 
this central butterfly, as we will explain later. As an example, con-
sider the lowest Cherns σ = 1 and σ = −1. In Fig. 4 they produce 
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Fig. 5. An example of the butterfly fine structure, showing the topological sequences around a singularity. In panel (b) we present a zoom of the boxed region of the butterfly 
shown in panel (a). The zoom shows the sequences of Chern numbers around the flux φ = 1/2. Four sequences are observed, given by odd and even Chern numbers and its 
negative counterparts. The sequences “collide” as the arrows indicate. The collision point is indicated by a circle and corresponds to a Van Hove singularity.
two functions corresponding to f (φ, 1) and f (φ, −1). These two 
functions intersect at φ = 1/2. This turns out the be the center 
of the biggest butterfly in the spectrum, where the size is ad-
scribed by looking at the length of the wings. At the same time, 
for φ = 1/2 there are other Chern meetings, as for example the 
intersections of f (φ, 3) and f (φ, −3) as indicated in Fig. 3. These 
and other higher Chern meetings at φ = 1/2, as well as the discon-
tinuities of f (φ, σ) at f = 0 and f = 1, are responsible of the fine 
structure, leading to a collapse of Cherns and its associated Van 
Hove singularity. As seen in the bottom panel of Fig. 4, the main 
structure of the spectrum can be easily understood by studying the 
structure of the Chern meetings.

Cherns meetings are not arbitrary. To see this point, let us con-
sider two gaps in the butterfly landscape, one with gap index r = a
and Chern number σa , and another with gap index r = b and Chern 
σb , both emanating from the left of the graph and meeting at a 
certain φ = p/q. These two gaps will exchange their corresponding 
value of r at the meeting point. Thus, in the vicinity of the meeting 
point we get from the Hull function that,

lim
δφ→0− {(φ − δφ)σa} = lim

δφ→0+ {(φ − δφ)σb} (18)

This equation can only be satisfied provided,

q = σa − σb (19)

since the fractional part function has period 1 and {x} = x for 0 ≤
x < 1, i.e., when applied to this particular case, {φσ } = {(p/q)σ } =
(p/q)σ and the period is q. In principle, the arguments of the frac-
tional parts in Eq. (18) can differ up to any multiple of the period, 
however, Chern numbers are between −q/2 and q/2 leaving only 
one possibility in Eq. (19).

This equation, which we will refer as the Chern meeting formula, 
relates the topological quantum numbers of two swaths of the but-
terfly that meet at a point. The most simple example is the follow-
ing one. Chern numbers σa = −1 and σb = 1 will have q = 2 from 
where the meeting is at φ = 1/2. Chern numbers σa = −2 and 
σb = 2 will have q = 4 from where the meetings are at φ = 1/4, 
φ = 1/2 and φ = 3/4. From this example, we learn something im-
portant. Meetings at φ = 1/4 and φ = 3/4 correspond to the center 
of butterflies, while the meeting for φ = 1/2 corresponds to a kind 
of fountain seen at the center, as shown in Fig. 5. As we will see 
Fig. 6. Tilting around a given flux, in this case φ = 2/5. The corresponding flux vec-
tor is indicated with an arrow, and the projection space is shown with doted lines. 
The shaded region contains the solutions of the Diophantine equation for φ = 2/5, 
indicated by red circles. Notice that in principle, other solutions exists due to the 
periodicity of the Diophantine equation solutions, however, they are equivalent to 
those inside the shaded region, determined by Cherns between −q/2 and q/2. By 
tilting by a small angle, new solutions appear as indicated by indigo circles inside 
the solid lines. These new solutions produce topological sequences identified with 
“fountain” structures. For x > 0, the sequence is made from positive Cherns num-
bers, while for x < 0 is made with negative Chern numbers. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

below, this particular meeting is part of the fine structure of the 
butterfly which contains several topological sequences. In other 
words, for φ = 1/2, we have that q = 2 and any Cherns that sat-
isfy σa − σb = 2 will appear, as seen in Fig. 5. Therein, we see four 
cascades of meeting gaps, characterized by upper and lower sets of 
Cherns, forming a kind of fountains with fountainheads located at 
E = 0 and Emax. For fluxes φ > 1/2, one sequence is 1, 3, 5, 7, . . .
and the other −2, −4, −6, . . . . Both sequences seem to “collide” in 
the circle indicated in Fig. 5, which eventually we will associate 
with a Van Hove singularity.

These topological sequences, that we call the fine structure, are 
easy to understand from the quasicrystalline approach. If for a 
given flux φ we perform a small tilting δα of the angle α lead-
ing to a new flux φ + δφ, then a cascade of new solutions to 
the Diophantine arise, as shown in Fig. 6 for the particular case 
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Fig. 7. Labeling of some gaps with the Chern number sequences obtained by using 
Eq. (21) and Eq. (24) for fluxes around the indicated values at the top of the plot. 
These topological sequences in the butterfly spectrum are what we call the fine 
structure. Notice that Landau levels near φ = 0 and φ = 1 also form a sequence. 
The sequence of negative and positive Landau levels is separated by the Van Hove 
singularity of the square lattice without an applied magnetic field.

φ = 2/5. Clearly, for any rational flux we can tilt to obtain these 
sequences.

The tilting argument can be made rigorous as follows. Suppose 
that we tilt a φ0 = p0/q0 to φ = φ0 + δφ. Then the Chern numbers 
must change to σ = σ0 + δσ , and the Hull function goes to

r

q
=

{
(

p0

q0
+ δφ)(σ0 + δσ )

}
(20)

However, δσ must be an integer even when δφ → 0. The only gen-
eral way to satisfy this condition is to have that δσ = ±nq0 where 
n is a positive integer. Thus, the new Cherns are,

σ = σ0 ± nq0 (21)

These are precisely the “fountain” sequences observed around ra-
tional fluxes. The above condition determines the entire topological 
map of the butterfly as described in Fig. 7. This plot illustrates the 
fine structure in the entire butterfly landscape by showing the se-
quences of Cherns numbers.

However, one must be careful in applying Eq. (21) since the 
chosen value of δφ puts a limit on the maximal allowed value of n. 
Geometrically, the reason is evident since for the new rational flux 
p/q = φ0 + δφ there is a new periodicity in the solutions deter-
mined by q, as can be observed in Fig. 6 when the red solid lines 
hit a point of the mesh. From the point of view of the Hull func-
tion, this is also easy to see by calculating the period. In fact, at 
the end of the next section we will provide an expression for the 
maximal n. When n is lower than this limit, we can use that for 
two numbers a and b, we have that {a + b} = {a} + {b} as long 
as {a} + {b} < 1. Thus, from Eq. (20) we have that for δφ > 0 the 
filling fraction is,

f (φ,σ ) = f (φ,σ0) ± nq0δφ (22)

where careful has to be taken in this demonstration when σ =
σ0 − nq0 as well as for negative δφ, due to the definition of the 
fractional part for negative numbers. When δφ → 0, Eq. (22) can 
be further simplified by observing that,

lim f (φ,σ0) = f (φ0,σ0) + lim {σ0δφ} = f (φ0,σ0) (23)

δφ→0 δφ→0
Using this previous result in Eq. (22) we obtain the filling ratio for 
the topological sequence,

f (φ,σ ) ≈ f (φ0,σ0) ± nq0δφ (24)

According to Eq. (24), the filling fraction increases linearly with n
if n > 0 and δφ > 0. For example, if φ0 = 1/2 and σ0 = 1, this 
leads to a sequence 3, 5, 7, . . . which grows in energy for φ > 1/2
as seen in Fig. 5. In the same Fig. 5, the sequence −2, −4, −6, . . .
decreases in energy as expected. To the left of φ = 1/2, i.e., δφ < 0, 
we see that the sequence −1, −3, −5 increases in energy as pre-
dicted from Eq. (22). In Fig. 7 we present other topological se-
quences around different values of φ in which this rule is ob-
served for other topological sequences of the fine structure. It 
is worthwhile to observe that Landau levels are obtained from 
the sequence for q = 1, leading to the sequence 2, 3, 4, 5, . . . and 
−2, −3, −4, . . . . The first of these sequences grows in energy while 
the other decreases near φ = 0, while the order is inverted near 
φ = 1. This interchange is due to the tilting with a negative or 
positive δα around α = 0.

4. Van-Hove singularities as limits for the topological sequences

Having determined the topological structure of the butterfly 
landscape where the gaps have been the focus of our discussion, 
we now turn our attention to some interesting characteristics of 
the bands. We show that the fine structure of the gaps discussed 
earlier are rooted in Van Hove singularities that reside at the band 
center. In the presence of a magnetic flux p/q, a single band is 
split into q-bands. The center of each of this sub-band exhibits a 
Van Hove singularity. Therefore, accompanying the hierarchical set 
of bands in the butterfly landscape are also a set of Van Hove sin-
gularities, seen just with an eye blink, as dark spots – that is, high 
density points. In fact, the low magnetic flux limit discussed in the 
beginning applies to the neighborhood of every rational flux.

Fig. 8 illustrates the Van Hove singularities in the fragmented 
DOS in the presence of a magnetic field. This clearly shows that 
Van Hove are integral part of every band center, irrespective of its 
location in energy. In other words, no matter how fragmented a 
band is, its center is always a critical point that hosts a Van Hove 
singularity. In the case of incommensurate flux where bands have 
zero measure as the width of every band approaches zero, the 
surviving Cantor set or “dust” encodes a fractal set of Van Hove 
singularities, as it has been seen in a multifractal analysis of the 
spectrum [25]. The Fig. 8 shows versions of the butterfly DOS be-
tween fluxes 1/3 and 2/5. The zoom for φ = 11/30 in Fig. 8(d) 
shows that the central band is a scaled version of the case φ = 1/2, 
as shown in Fig. 8(a).

We next address the question of how the topology of the but-
terfly is influenced by the Van Hove singularities. Fig. 9 shows the 
topological landscape in the vicinity of some Van Hove singulari-
ties, illustrating panel (b) what happens to the zero-field Van Hove 
as the system is subjected to a small magnetic flux φ. The mag-
netic field that fragments the band and the resulting cascade of 
channels or gaps are characterized by positive and negative Cherns 
interlaced as illustrated in the figure. Again, this type of behavior 
is present at all band centers. For example, Fig. 9(c) shows the Van 
Hove singularity indicated by B on 9 panel (a) and the topological 
landscape in its neighborhood at φ = 1/2. Van Hove singularities 
marked as B and C in Fig. 9(a) at φ = 1/2 are replicas of singular-
ity A for φ = 0, were by replicas we mean that the shape of the 
singularity is the same, but a scaled width and height.

Note that the sequence of Cherns near the Van Hove are the 
higher order solutions of the Diophantine equation, described in 
Eq. (21). This brings us to an interesting point about the impor-
tance of these topological states that are accumulated around the 
Van Hove. To gain further understanding on this accumulation, 
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Fig. 8. (Color online.) DOS as a function of the energy for several fluxes. Panel (a) 
corresponds to flux φ = 1/2, (b) to φ = 3/8, (c) to φ = 11/30, (e) to φ = 1/3 and (f) 
to φ = 2/5. Panel (d) is a zoom for φ = 11/30 in the region indicated by the box in 
panel (c). This plot illustrates how Van-Hove singularities exist at every band, irre-
spective of its location in flux value and energy. Furthermore, they form self-similar 
patterns. For odd q, the central band is a scaled version of the square lattice, as 
shown here for φ = 1/3 and φ = 2/5

consider the case φ = 0. As seen in Fig. 9(d), there is a Van Hove 
singularity at the center, as is well known for a square lattice with-
out a magnetic field. Now we add a small tilting of the flux to 
φ = 1/50. In Fig. 10(a) we present the resulting DOS calculated us-
ing bins in energy which are small enough to resolve all the bands 
(an alternative procedure is to modify the small imaginary part 
added at the poles of the Green’s function). At the band edges, 
one can see equally spaced levels while at the center there is an 
accumulation of states. The equally spaced states are the Landau 
levels. If the resolution in energy is decreased as seen in 10(b), 
the states near the center merge in a peak leading to a kind of 
Van Hove singularity, while Landau levels remains at the edges. 
Physically, states near the Van Hove singularity are different from 
Landau level states. Near the Van Hove singularity, the level spac-
ing is reduced, as pointed out by Hsu and Falicov [26], for all 
practical purposes the subbands merge in an almost continuous 
band near the saddle points, as seen in Fig. 10. When the flux is 
slightly perturbed, there is a mixing between these states, which 
is not the case for the Landau levels. As a result, the bands as a 
function of kx are not flat as it happens with the Landau levels, as 
seen in Fig. 1(c) and (d) by tilting from φ = 0 to φ = 1/10. Clearly, 
the localization properties of Landau states are very different from 
the ones near the Van Hove singularity due to the curved charac-
ter of the band, i.e., the effective mass is not infinity as it is for the 
Landau levels.

Now that the numerical connection between the Van Hove sin-
gularity and the fine structure of the butterfly has been estab-
lished, is time to derive it from the Hamiltonian. We start by using 
Fig. 9. (Color online.) Illustrating the topological collapse near a Van-Hove singular-
ity. In panel (a), the circles (red) show three Van Hove singularities in the butterfly, 
labeled by A, B and C. In panels (b) and (c), a sequence of cascades of gaps with 
both positive and negative Cherns annihilate around the points A and B respectively. 
Finally, in (d) we present the DOS for φ = 0. The peak at the Van Hove singularity 
at E = 0 corresponds to point A. In (e), we present the DOS for φ = 1/2. The peaks 
at E = 2 and E = −2 correspond to the Van Hove singularities identified with the 
points B and C of the butterfly shown in panel (a).

the observation made by Thouless [27] that due to the duality of 
the resulting Harper equation for the Hamiltonian given by Eq. (2), 
the wave vectors will enter in the energy dispersion in the form 
E(kx, ky) = E(ξ(kx, ky)) where ξ(kx, ky) is given by [27],

ξ(kx,ky) = −2 cos(kxqa) − 2 cos(kyqa) (25)

From this, Thouless [27] showed that the band edges are the ex-
tremal values of ξ(kx, ky), which are given by the center of the 
magnetic lattice Brillouin zone � = (0, 0) and the points X =
(π/qa, π/qa) and X′ = (π/qa, −π/qa). The energies associated 
with the � point are the lower band edges while the points X and 
X′ give the upper band edges. Since we have two extremal values 
in a periodic function, this automatically implies the existence of 
a third singularity [4]. This singularity occurs when the derivative 
of E(kx, ky) changes sign [4]. In the present case, since the energy 
dispersion depends on ξ(kx, ky), a singularity in this function will 
produce a singularity on E(kx, ky) due to the chain rule for the 
derivative. Thus, since we have that

∇kξ(kx,ky) = 2qa(sin(kxqa), sin(kyqa)) (26)

E(kx, ky) has saddles at two inequivalent points in the magnetic 
Brillouin zone, given by M = (0, π/qa), M′ = (π/qa, 0). In such 
points, the energy dispersion will look as [4],

E(kx,ky) = ±Ak2
x ∓ Bk2

y (27)
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Fig. 10. (Color online.) The DOS as a function of the energy for φ = 1/50, i.e., near 
the flux φ = 0. In panel (a) we show the DOS with a resolution grid in E of 600
bins, able to resolve all the 50 bands. Notice how the distance between levels de-
creases near E = 0. In panel (b), the resolution is changed to 90 bins in E . With this 
resolution, the spectrum seems to be made from a Van Hove singularity with Lan-
dau levels at the edges. A comparison with Fig. 9(d) for the case φ = 0, shows how 
the Van Hove singularity arises.

where A and B are constants. This energy dispersion can be inte-
grated to get a DOS which diverges in a logarithm form [4] for any 
band s,

ρ(E) = C log(E − EVH
s (φ)) (28)

with C a constant and EVH
s (φ) = Es(kx, ±kx ±π/qa), corresponding 

to the energy associated with states along the edges of a nested 
square in the magnetic Brillouin zone. This nested square has the 
points M and M′ as its corners. This shows that there is a Van 
Hove logarithm divergence at each band of the spectrum.

Let us connect this result with the topological sequences. Along 
the edges of the nested square ξ(kx, ky) has a separatrix. States 
inside the nested square will have energies E < EVH

s while states 
outside have E > EVH

s . Since the area of the nested square is equal 
to the sum of the areas that are outside the square, is clear that 
we have as many states for E > EVH

s as for E < EVH
s . From this, it 

follows that the Van Hove singularities arise at half filling of each 
band, i.e., we can write that,

f VH = r

q
+ 1

2q
(29)

where f VH is defined as the filling fraction at the Van Hove singu-
larity. Notice that the structure described for the Brillouin zone is 
basically the same that appears in the particular case φ = 0 shown 
in Fig. 1(a), where negative energies are obtained for states inside 
the square with corners (0, ±π) and (±π, 0), while positive values 
correspond to states outside the square.

Now we observe that Eq. (24) provides the filling fraction for 
the limit of the topological sequences. Consider a band limited by 
gaps r and r + 1 for a flux φ = p/q. Consider also the topological 
sequences starting from the bottom and top of the band by tilting 
by a small δφ. Using Eq. (24), the filling fractions for the sequence 
that starts at the bottom are given by,

f (φ + δφ,σr+n) ≈ r

q
+ nqδφ (30)

while the sequence that starts from the top is,

f (φ + δφ,σr+1−n) ≈ r + 1 − nqδφ (31)

q

The difference in filling fraction between both sequences is,

f (φ + δφ,σr+1−n) − f (φ + δφ,σr+n) ≈ 1

q
− 2nqδφ (32)

However, the sequences cannot cross one over the other, this re-
quires that the previous quantity must be bigger or equal to zero,

1

q
− 2nqδφ ≥ 0 (33)

From the previous equation we found the relationship between n
and δφ,

nδφ ≤ 1/2q2 (34)

which provides a limiting n, denoted by nMax , for a given δφ,

nMaxδφ = 1/2q2 (35)

This value can be used in Eq. (30) to obtain,

lim
δφ→0

f (φ + δφ,σr+nMax) = r

q
+ 1

2q
(36)

Comparing Eqs. (29) and (36), is clear that,

f VH = lim
δφ→0

f (φ + δφ,σr+nMax) (37)

and thus the Van Hove singularity is at the limit for the topological 
sequences. This result explains the numerically observed topologi-
cal collisions at the Van Hove singularities.

5. Conclusions

In summary, the topological characterization of the butterfly 
landscape can be described by a topological map of the butterfly 
built from a method taken from quasicrystals, the cut and pro-
jection method. This map provide rules for the spectrum, i) the 
butterflies are determined by a Chern meeting formula, ii) around 
any rational flux, there is a fine structure made from sequences 
of Chern numbers, iii) the topological sequences are separated by 
Van Hove singularities. In fact, such singularities carry a lot of the 
spectral weight and thus are the most visible features when small 
disorder is added to the problem [19].

Finally, the present work points in the direction of finding a 
common ground for the description of quasicrystals and the quan-
tum Hall effect [28]. For example, the fine structure of the quan-
tum Hall spectrum is similar to the one obtained by phason satel-
lites that appear in electron diffraction for quasicrystals [29–32].
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