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Abstract

In this article we discuss some recent trends in the research of electron and phonon localization, specially in the field of

quasiperiodic potentials. Then, a new scheme to detect and classify localization is developed by studying the band scaling

of a related supercrystal made from replicas of the system. For one dimension, this leads to the use of dynamical systems

theory to obtain the localization length and the scaling exponents of the wave functions.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Right after the initial development of quantum mechanics, it was not clear how an electron is able to travel
inside a crystal. The answer was provided by Bloch [1]. He showed that the eigenfunctions ðckðrÞÞ of the
Schröedinger equation for an electron in a periodic potential ðV ðrÞÞ, where r is the position vector, are given by
the product of a function ukðrÞ that has the same periodicity of the lattice [1], and a plane wave eik�r, and k is
the corresponding wave-vector. Such states are called extended since the probability of finding an electron
does not decay with the distance. When Bloch’s theorem was combined with the Fermi–Dirac statistics, the
result was a very successful model for the electronic properties of solids. However, many materials do not have
a periodic potential [2], as happens for example with glasses, disordered alloys, etc. This situation was
considered unsatisfactory, and a lot of research has been done since 1950 [2]. An important step was made by
Anderson [3]. He showed that for a simple random potential model, it is possible to have exponentially
localized solutions of the type [3] cðrÞ ’ e�jrj=x, where x is a characteristic localization length. The main feature
of a localized state is that the probability of observing the electron decays with the distance. There is no
equivalent for the Bloch’s theorem in disordered solids, instead a collection of models is available to provide
clues and answers for different situations [2]. For example, the Anderson model was fundamental to
understand the role of dimensionality. The renormalization group has been used as a powerful tool in order to
study such effects [4], where the Anderson transition from extended to localized states was recognized by
finding the fixed point of a renormalization procedure [4]. The common knowledge about localization in terms
of the dimensionality is the following [2]: in one dimension (1D), all states are localized, even for an
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infinitesimal degree of disorder. In 3D, localized states are separated from extended ones. The energy where
this occurs is known as a mobility edge, and is usually at the band edges [2]. In 2D the scaling theory of
Abrahams et al. [4] predicts weak localization, and thus metallic conductivity and quantum percolation is not
observed for disordered systems. We remark that still there is a discussion about this subject [5]. The
electron–electron interaction is a different source of localization [6]. This field is very active at the moment, like
for example the research in the Hubbard Hamiltonian for disordered systems [7], due to the importance of the
problem for high temperature superconductors. Another field related to many body effects, is the investigation
of non-linear Hamiltonians for phonon localization. In this case, even for periodic potentials few things are
known [8]. Fermi, Pasta and Ulam were among the firsts to tackle the problem [9]. They tried to understand
how non-linearity leads to energy equipartition [9]. Recently, it has been proved that for periodic potentials
with non-linear terms, some states are localized [8]. This kind of localization is known as intrinsic [8]. Another
active field is the study of quasiperiodic potentials, which are systems that are neither disordered, nor periodic
[10]. In this paper, we present the main features of such systems, and then we will show how some ideas taken
from dynamical systems are useful for the study of localization.

2. Quasiperiodic potentials

In the last years, there has been a progressive recognition that not all ordered systems are periodic.
Mathematicians already knew that; a function f ðxÞ is periodic if there is a T such that f ðxÞ ¼ f ðxþ TÞ; and as
a consequence, f ðxÞ can be developed using a Fourier series. However, there are non-periodic functions which
have a Fourier expansion, as for example f ðxÞ ¼ cosðxÞ þ cosðaxÞ when a is an irrational number. Such
functions are called quasiperiodic (QP). The first example of a QP potential in physics was given by the
Frenkel–Kontorova model, which is a system of coupled oscillators inside an external periodic field [10]. If the
ratio between the period of the system and the modulation is not a rational number, the resulting potential is
not periodic [10]. A second important example was the Harper equation [11], that describes an electron that
travels in a 2D crystal under a uniform magnetic field [12]. It can be reduced to the solution of the following
1D tight-binding equation [12],

tcn�1 þ tcnþ1 þ Vncn ¼ Ecn, (1)

where V n ¼ 2 cosð2psnÞ is the on-site potential at site n in the lattice, t the hopping integral between
contiguous sites, cn is the wavefunction at site n, and s is the ratio between lattice and quantum magnetic flux
in a unitary cell [12]. If s is an irrational number, the period of V n is not commensurate with the lattice. The
resulting spectrum is called singular continue and is a fractal set [12]. The corresponding wave functions show
a fractal behavior, with a power law envelope decay of the type cðrÞ ’ rb. This behavior is known as critical.
There are many interesting open questions for this model, like the nature of the quantum phase diagram [13],
or the effects of an applied electric field [14].

Quasicrystals (QC), which are solids that were discovered in 1984 [15], also display quasiperiodicity and thus
they have a non-periodic long range order. As a consequence, their diffraction patterns present Bragg peaks
with forbidden rotational symmetries for a crystal [10]. The most simple model of a QC is the Fibonacci chain
[10] (FC), in which two kinds of atoms, A and B, are arranged following a Fibonacci sequence (FS) [10], i.e., if
one defines the first generation sequence as F1 ¼ A and the second one F2 ¼ BA, the subsequent generations
are given by joining two previous generations Fn ¼Fn�1 �Fn�2. For instance, F3 ¼ ABA. A tight-binding
model like Eq. (1) can be defined to model the FC, where Vn takes two possible values: V A and V B following a
FS. In fact, using a Fourier expansion, we can show that the Fibonacci potential is a sum of Harper potentials,

V ðnÞ ¼ V þ 2dV
X1
s¼1

eV ðsÞ cosðpssð2nþ 1ÞÞ, (2)

where now s is the golden mean s ¼ ð
ffiffiffi
5
p
þ 1Þ=2, V ¼ ðV A=sÞ þ ðVA=s2Þ; dV ¼ VA � V B; and eV ðsÞ is the s

harmonic of the Fourier series, eV ðsÞ ¼ sinðpssÞ=ss.The corresponding spectrum is singular continuous [16],
i.e., almost full of gaps. This result follows from the reciprocal space structure of a QC, which is dense filled
with diffraction spots since the number of reciprocal basis vectors is higher than the dimensionality of the
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system [10], as can be obtained from Eq. (2). To understand the relationship between this fact with the gap
opening mechanism, let us approximate the irrational number s with a sequence of rational approximants
F ðlÞ=F ðl � 1Þ, where F ðlÞ is the l-esim Fibonacci number (defined through the recursive relation
F ðlÞ ¼ F ðl � 1Þ þ F ðl � 2Þ, with F ð0Þ ¼ 1; and F ð1Þ ¼ 1). Under this approximation, V ðnÞ has period T ¼

F ðl � 1Þ and F ðl � 1Þ bands. There is a general relationship between the density of states rnðEÞ; and the
structure of the reciprocal space [1],

rlðEÞ ¼

Z
Sl ðEÞ

dS

4p3
1

jrkEðkÞj
,

where SlðEÞ is an isoenergetic surface of the l-band in the reciprocal space and EðkÞ is the dispersion relation.
A singularity occurs whenever the group velocity is zero, rkEðkÞ ¼ 0; i.e., when k has a value that corresponds
to a lattice characteristic length, since travelling waves with such a wave length do not propagate, instead they
are diffracted. There are as many singularities in the spectrum as bands [1], but since F ðl � 1Þ ! 1 as l !1,
in the limit of irrational s the spectrum is full of singularities. In one dimension, the singularities are not
integrable, and a spectral gap of size DEk ’ 2j eV ðkÞj is open for each Fourier component eV ðkÞ of the potential
[1]. In the present case, almost for all values of k it is obtained that eV ðkÞa0 and thus the spectrum is almost
full of gaps. The corresponding wave-functions of the FC are also critical [16]. As a consequence, the
dispersion of an electron wave-packet is anomalous, as shown in Fig. 1, where the evolution of the quadratic
mean displacement, defined as hR2ðtÞi �

PN
n¼1 kcnðtÞk

2ðn� n0Þ
2; is plotted as a function of the time (t) for a

packet that has a delta shape centered at site n0 at t ¼ 0. From Fig.1, for long times we observe a power law
behavior of the type: sðtÞ ¼ Dtn. As expected, the periodic case (u ¼ 1) is recovered for dV ¼ 0.

The corresponding most simple quasiperiodic structures for 2D and 3D are the well known Penrose tilings
[10]. However, the nature of their spectrum and localization properties are still open questions, although it has
been shown [17] that the topological disorder and the associated frustration of the wave-function makes the
problem very different from the 1D case. For the Penrose, there is numerical evidence that points to the
existence of extended, critical and localized states [17]. The critical nature of some wave functions in
quasiperiodic potential leads to the question of how to calculate the critical exponents and their relation with
the spectrum. As we will see in the next section, some answers are related with an associated dynamical system.

3. Dynamical systems and localization

Although many things are known about QP potentials, even in 1D it has not been possible to find the
scaling properties for all the wave-functions. Here we present an approach that uses the band scaling of a
related supercrystal, and in 1D this turns out to be closely connected with the stability of a map.

ARTICLE IN PRESS

Fig. 1. Dispersion of a wave packet as a function of time for a FC with N ¼ 10 000 sites, obtained by solving Eq. (1) with t ¼ 1, VA ¼ 0

and for different values of dV ¼ VA � VB.

G.G. Naumis / Physica A 372 (2006) 243–248 245



Aut
ho

r's
   

pe
rs

on
al

   
co

py

The usual procedure to investigate localization in 1D is as follows: Eq. (1) can be rewritten in terms of a
transfer matrix Mðn;EÞ and a vector Wn with components ðcn;cn�1Þ, that satisfies,

Wnþ1 �
cnþ1

cn

 !
¼

E � Vn

tn

�1

1 0

0@ 1A cn

cn�1

 !
�Mðn;EÞWn. (3)

The wave-function at site n, is given by a successive application of Eq. (3), Wn ¼Mðn;EÞMðn� 1;EÞ . . .
Mð1;EÞC1 � Tðn;EÞW1, and the spectrum is the set for which the trace norm jtnðEÞj � jtrTðn;EÞjp2 [16].
This comes from the following line of thought. The Lyapunov exponent (gðEÞÞ, that measures the growth of
Wn is [18], gðEÞ ¼ limn!1 ln kTðn;EÞk=n ¼ limn!1 ln jlmaxj=n, where lmax is the greatest eigenvalue of
Tðn;EÞ. The two eigenvalues of TðnÞ are,

l�ðEÞ ¼
tnðEÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2nðEÞ � 4

p
2

. (4)

In an energy that belongs to the spectrum, lþðEÞ and l�ðEÞ are complex numbers [19], and thus E must
satisfy jtnðEÞjp2. The points where jtnðEÞj ¼ 2 and dtðEÞ=dEa0 are the band edges (energies that we denote
by Es). Since from Eq. (4) kTðn;EÞk is always 1, when n!1 the condition jtnðEÞjp2 imply that gðEÞ ¼ 0, no
matter what is the localization present in the system. Thus, the question is how to use the trace to detect a
localized or a critical state. This issue can be related with the scaling of bands of an associated supercrystal,
using as unitary cell a piece of the chain of length n; this cell can be amorphous, quasiperiodic or crystalline.
The resultant supercrystal has Bloch solutions and a spectrum within principle n bands. Each bandwidth W n

depends on the overlap and localization of the wave-functions at contiguous cells. Then we can analyze how
W n scales with n to obtain the localization properties. To show how the idea works, let us write the trace of the
supercrystal in terms of the roots of tnðEÞ � 2 ¼ 0,

tnðEÞ � 2 ¼ Cn

Y
i¼1

ðE � EiÞ. (5)

In fact, the Ei’s are band edges, and Cn is a constant. From this we get,

ln
dtnðEÞ

dE

� �
E¼Es

¼
X
ias

lnðEs � EiÞ. (6)

Since the Ei’s are the points where tnðEÞ ¼ 2, from Eq. (3) it is easy to show that these values satisfy a cyclic
boundary condition for the same finite cell of size n. Taking into account this observation and that each state
has a weight 1=n in the density of states, the sum in Eq. (6) can be performed by using the density of states
(rnðEÞ) of the cyclic problem,

1

n
ln

dtnðEÞ

dE

� �
E¼Es

¼

Z 1
�1

rnðE
0Þ lnðEs � E0ÞdE0. (7)

Using the Thouless formula [19] for the localization length xðEsÞ, we get an expression that now depends on
the trace,

1

xðEsÞ
¼ lim

n!1

1

n
ln

dtnðEÞ

dE

� �
E¼Es

. (8)

The relation with the stability of the trace map is evident, since now the localization length corresponds to a
Lyapunov exponent, used in the sense of dynamical systems [20], i.e., it tells how much two trajectories diverge
under the action of tnðEÞ. For a localized state, the band shrinks in an exponential way as the system grows
due to a decreasing overlap between neighboring cells.

For quasiperiodic systems, the wave-function decays as nbðEÞ [16]. To obtain bðEÞ, instead of dividing by n in
Eq. (7), we divide by ln n, since the wave-function overlap is of order W n � n2bðEÞ. Then we get the scaling
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exponent of the wave-function that is appropriate for quasiperiodic systems,

bnðEÞ �
1

2 ln n
ln

dtnðEÞ

dE

� �
¼

n

2 ln n

Z 1
�1

rnðE
0Þ lnðE � E0ÞdE0. (9)

This expression is very useful for quasiperiodic systems, since there are recurrence relations of the trace of a
certain size of the chain as a function of the trace of m smaller chains [21], tnðEÞ ¼ f ðtl1 ðEÞ; tl2 ðEÞ; . . . ; tlm

ðEÞÞ.
These types of relations are called trace maps. Using the approach presented here, the localization properties
are determined by the stability of the trace map around the points tn ¼ �2, since in a localized state the bands
shrink as the cell size grows; this corresponds to a repulsive fixed point of the trace map. For extended states,
the band edges do not change with the system size because the overlap is size-independent, and tnðEsÞ ¼ �2
for any n and fixed Es. tnðEsÞ ¼ �2 is a fixed point of the trace map, and must satisfy �2 ¼ f ð�2;�2;�2; . . .Þ.
The point tnðEsÞ ¼ �2 is hyperbolic in nature, since as the system is scaled, the iterations of the map for
energies inside the band remain bounded, while for the other energies go to infinity.

As an example of the use of the technique proposed, we will obtain the analytic scaling exponents of the
wave-function for the FC. For this system, it has been proved that the spectrum is singular continue, with
critical wave-functions [16]. However, the problem of determining the scaling exponents of the wave-function
has been approached from numerical calculations and only for a certain state, the exact scaling exponent is
known [22]. Here we will apply the technique proposed in the last section to show how it works for the case of
the Fibonacci potential. In this case, it has been proved that the trace of a chain with length F ðlÞ is given by a
map [21],

xlðEÞ ¼ xl�1ðEÞxl�2ðEÞ � xl�3ðEÞ, (10)

where xl ¼ tlðEÞ=2. The map has as initial conditions [21], x�1ðEÞ ¼ 1, x0ðEÞ ¼ ðE þ lÞ=2 and x1ðEÞ ¼

ðE þ lÞ=2, where l ¼ jðVA � VBÞj=2. The nature of the states is easily obtained from the approach presented.
First one needs to obtain the fixed points of the map. If we denote the fixed point as x�, from Eq.(10),
x� ¼ 2ðx�Þ2 � x�, two solutions are found, x� ¼ 0 and x� ¼ 1. However, 0 is not consistent with the initial
conditions, since the map has an invariant [21]

x2
lþ1ðEÞ þ x2

l ðEÞ þ x2
l�1ðEÞ � 2xlþ1ðEÞxlðEÞxl�1ðEÞ ¼ l2 þ 1.

From the invariant, it is easy to show that x� ¼ 1 occurs only when l ¼ 0 and V ðnÞ ¼ V A ¼ V B. To
investigate the nature of localization, we study the stability of the map around x�ðEÞ ¼ 1. Thus we make a
linear stability analysis, using that the map can be seen as a trajectory in 3D [21], where the coordinates of a
point p ¼ ðxnþ1;xn;xn�1Þ are iterated to form a 3D map,

xnþ2 ¼ xnþ1xl � xl�1; xnþ1 ¼ xl ; xn ¼ xl�1.

By making a Taylor expansion around the fixed point, and since the map is a vectorial function, the derivative
is a 3� 3 matrix. The three eigenvalues of the derivative matrix [20] at the point p ¼ ð1; 1; 1Þ are
r1 ¼ �1; r2 ¼ s2; r3 ¼ 1=s2. Thus, x� ¼ 1 is classified as an hyperbolic fixed point. The hyperbolic nature of
the flux means that the states are extended for l ¼ 0, as expected. Localized states are not observed since there
are no repulsive fixed points. The only remaining possibility is to have critical states for la0, as is revealed
from the fact that the map contains two cycles: one with period two and the other with period six [22].
A similar linear stability analysis can be made for the cycles, except that the derivative is obtained by
multiplying the matrices in each point of the cycle. For the period six cycle, which corresponds to energies at
the center of the spectrum, the eigenvalues of the resulting matrix are

r1 ¼ �1; r2;3 ¼ ½ð1þ 4ð1þ l2Þ2Þ1=2 � 2ð1þ l2Þ	2.

From this, one can show that the trace scales as tlþ6ðEÞ ¼ ðtlðEÞÞ
a, where

a ¼ ln s6= lnðr2Þ ¼ ln s3= lnðð1þ 4ð1þ l2Þ2Þ1=2 þ 2ð1þ l2ÞÞ.

Using Eq. (9), the stability of the map predicts that the scaling exponent of the wave-function is b ¼ a=2. This
result is similar to that obtained using a direct multiplication of transfer matrices [22] at the special energy
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E ¼ 0, which is a special energy that follows the six cycle. However, the method presented here can be applied
to the other energies as well.

4. Conclusions

In conclusion, this work shows that still there are many unanswered questions in localization theory.
Nowadays, correlations, non-linearity and quasiperiodic systems are among the most studied subjects. The
tools of dynamical systems are very useful for studying localization, and give a natural classification for the
types of localization in terms of fixed points and stability around them.
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