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Spectral butterfly and electronic localization in rippled-graphene nanoribbons:
Mapping onto effective one-dimensional chains
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We report an exact map into one-dimensional effective chains of the tight-binding Hamiltonian for electrons in
armchair and zigzag graphene nanoribbons with any uniaxial ripple. This mapping is used for studying the effect
of uniaxial periodic ripples, taking into account the relative orientation changes between π orbitals. Such effects
are important for short-wavelength ripples, while for long-wave ones, the system behaves nearly as strained
graphene. The spectrum has a complex nature, akin to the Hofstadter butterfly with a rich localization behavior.
Gaps at the Fermi level and dispersionless bands were observed, as well. The complex features of the spectrum
arise as a consequence of the quasiperiodic or periodic nature of the effective one-dimensional system. Some
features of these systems can be understood by considering weakly coupled dimers. The eigenenergies of such
dimers are highly degenerate, and the net effect of the ripple can be seen as a perturbation potential that splits
the energy spectrum. Several particular cases were analytically solved to understand this feature.
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I. INTRODUCTION

Graphene, which is a two-dimensional (2D) crystal made
from carbon, has incredible electronic, optical, and mechan-
ical properties [1,2]. However, it is very difficult to grow
perfectly flat graphene [3–6]. Instead, graphene presents
corrugations and ripples that can improve or diminish its
electronic conductivity [7–10]. Hence, the understanding of
how corrugations and ripples modify the electronic properties
of graphene is a very important issue. Furthermore, such
knowledge can provide a way to tailor the electronic properties
of graphene via mechanical deformation [11–13]. Even though
the uniform and homogeneous strain has reached a level
of good understanding [7,14,15], out-of-plane deformation
effects are not well understood. Moreover, most of the available
theories are limited to the case of low energies or long
wavelengths, in which it is possible to write an effective Dirac
equation with effective pseudomagnetic fields [16–18].

In a recent set of papers, we have shown that this picture
can be modified for shorter wavelengths since a quasiperiodic
fractal behavior, nontreatable under perturbation theory, can
appear [19,20]. At the same time, an experimental observation
of the effect has recently been made [21]. This behavior is not
new in graphene; actually, this fractality has been extensively
studied in graphene under magnetic fields within the Dirac
approach [22–25]. However, a study of this behavior as a
consequence of strain or corrugation using a tight-binding
approach does not appear to have been made. The aim of
this work is to understand how ripples modify the electronic
properties of armchair (AGNs) and zigzag (ZGNs) graphene
nanoribbons. To get such understanding, here we propose the
study of uniaxial ripples using a tight-binding Hamiltonian.
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Uniaxial ripples already show the expected effects in more
general cases, and at the same time, it is possible to map the
system into one-dimensional (1D) chains. This procedure is
similar to that used for studying electrons in lattices under
magnetic fields, in which it is possible to obtain the spectrum
by studying the one-dimensional Harper equation [26,27].
Once this connection is established, we propose the study of
the physical effects using uniaxial periodic ripples. As we
will see, the energy spectrum has a fractal structure with
gaps at the Fermi level. This highlights the importance of
the rational or irrational nature of the ripple’s wavelength.
Furthermore, we are able to solve several cases analytically,
leading to expressions for the bands as a function of the ripple’s
parameters: wavelength and amplitude.

The layout of this work is the following: In Sec. II, we
discuss the details of mapping AGNs and ZGNs under any
uniaxial ripple into effective 1D chains. In Sec. III, we study a
particular case, a uniaxial periodic ripple, using the previous
maps. The properties of the energy spectrum as a function of
the frequency of the ripple, the band structure, and the density
of states (DOS) are discussed, as well. Finally, in Sec. IV, our
conclusions are presented.

II. MAPPING OF UNIAXIAL RIPPLED GRAPHENE INTO
AN EFFECTIVE ONE-DIMENSIONAL SYSTEM

In this section, we will show how to reduce the study of
uniaxial ripples in graphene to an effective one-dimensional
system. We start with a graphene nanoribbon, as shown in
Figs. 1 and 2, with a uniaxial deformation in the y direction
due to a ripple in the graphene sheet. The new positions of
carbon atoms in the rippled graphene are

r ′ = (r,z(r)), (1)

where r = (x,y,0) are the unrippled coordinates of carbon
atoms, and z(r) is the height variable in terms of the position r .
To obtain the electronic properties, we use a one-orbital next-
nearest-neighbor tight-binding Hamiltonian in a honeycomb
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FIG. 1. (Color online) Primitive cell for AGNs (on the left
between the red dotted lines) which is made for 2N atoms,
i.e., N atoms of type A (blue solid circles) and N atoms
of type B (green solid circles), we order the basis as
A1,B2, . . . ,BN−1,AN,B1,A2, . . . ,BN−1,BN . We vary the height of
each atom along the y direction. For this case the hopping parameter
just depends upon the y component of the in-plane atom positions.
The system is equivalent to the one-dimensional effective ladder
shown at the right, where the label j corresponds to each ladder
step in the y direction, tj is the hopping integral for hopping from
the atom Aj (Bj ) to the atom Bj+1 (Aj+1), and d is a coefficient that
depends upon the momentum kx .

lattice, given by [28]

H = −
∑
r ′,n

tr ′,r ′+δ′
n
c
†
r ′cr ′+δ′

n
+ H.c., (2)

where the sum over r ′ is taken for all sites of the deformed
lattice. The vectors δ′

n point to the three next-nearest neighbors
of r ′. For unstrained graphene δ′

n = δn where

δ1 = a

2
(1, −

√
3,0), δ2 = a

2
(1,

√
3,0), δ3 = a(−1,0,0),

(3)
and c

†
r ′ and cr ′ are the creation and annihilation operators of

an electron at the lattice position r ′. In this model, the hopping
integral tr ′,r ′+δ′

n
depends upon the strain, since the overlap

between graphene orbitals is modified as the interatomic
distances change. When corrugation is present, the π orbitals
are no longer parallel. Let us denote by θr ′ the angle which
determines the relative orientation of a carbon atom in the

FIG. 2. (Color online) Primitive cell for ZGNs (to the left, de-
limited by two red dotted lines) made of N atoms (N/2 atoms
of type A and N/2 atoms of type B). The basis is ordered as
A1,B2, . . . ,AN−1,BN . The height z of every atom is modified only in
the y direction. Then the hopping parameter is no longer constant but
depends upon the y component of the atom’s positions. This system
can be mapped into a one-dimensional effective chain (on the left)
where j labels the site along the zigzag direction, tj is the hopping
parameter for hopping from the j th atom to the (j + 1)th atom, and
c is a coefficient that depends on the momentum in the x direction.

position r ′ in the graphene nanoribbon. This angle depends
on the local curvature of the layer. The effect of the relative
orientation change of the π orbitals and the interatomic
distance changes are described by [29–31]

tr ′,r ′+δ′
n

= t0
[
1 + α

(
1 − N r ′ · N r ′+δ′

n

)]
× exp

[−β(lr ′,r ′+δ′
n
/a − 1)

]
, (4)

where N r ′ is the unit vector normal to the surface at the site
r ′, given by

N r ′ = ẑ − ∇z√
1 + (∇z)2

, (5)

and ∇ = (∂x,∂y) is the 2D gradient operator while ẑ is the
unit vector in the direction perpendicular to the plane. lr ′,r ′+δ′

n

is the interatomic distance between two neighbor sites after a
ripple is applied, and α ≈ 0.4 is a constant that accounts for
the change of the relative orientation of the π orbitals. Here
β ≈ 3.37, and t0 ≈ 2.7 eV corresponds to graphene without
strain. The unrippled bond length is denoted by a. For the
purpose of this paper, it is natural to measure the distances in
units of a, which is equivalent to setting a = 1. In other words,
all the distances and lengths will be measured in units of a. It is
important to remark that contributions from terms containing
β are due to distance changes, while terms dependent on α

account for angular changes of the orbital overlap. As we will
see, β-dependent terms tend to shrink the energy spectrum
whereas α-dependent terms tend to stretch it.

Now, for a uniaxial ripple the interatomic distances between
carbon atoms can be written as

lr ′,r ′+δ′
n
= ∣∣∣∣δn + [

z
(
y + δ(y)

n

) − z(y)
]

ẑ
∣∣∣∣

=
√

1 + [
z
(
y + δ

(y)
n

) − z(y)
]2

. (6)

Recently, we have shown that is possible to map armchair and
zigzag graphene nanoribbons under uniaxial strain onto an
effective one-dimensional system [19,20]. In the next section,
we extend these results for AGNs and ZGNs under uniaxial
ripples.

Before entering the details of the maps and for comparison
purposes with other works, it is important to remark that
for small-amplitude and long-wavelength ripples, we have
(1 − N r ′ · N r ′+δ′

n
) ≈ θ2

r ′,r ′+δ′
n
/2, where θr ′,r ′+δ′

n
is the angle

between π orbitals at the sites r ′ and r ′ + δ′
n. In such a case,

since α < β and the angle correction is quadratic, it follows
that

tr ′,r ′+δ′
n

≈ t0

[
1 + α

2
θ2

r ′,r ′+δ′
n

]
exp

[−β(lr ′,r ′+δ′
n
− 1)

]
≈ t0

[
1 − β

(
lr ′,r ′+δ′

n
− 1

)]
. (7)

In this limit, the model resembles graphene nanoribbons under
planar strain. As we will show, our general computations are
consistent with this limit, providing a test for the method
presented here.

A. Armchair graphene nanoribbon

When a uniaxial ripple in the y direction is applied, it is
possible to describe the electronic properties of the AGN by an
effective one-dimensional Hamiltonian. We start by labeling
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the atom’s positions as shown in Fig. 1, i.e., we order the ba-
sis as A1,B2,A3, . . . ,AN−1,BN and B1,A2,B3, . . . ,AN−1,BN .
Thus, the effective one-dimensional Hamiltonian can be
written as [20]

HAGN(kx) =
∑

j

t0[d(kx) a
†
2j b2j + a

†
2j+1b2j+1]

+
∑

j

tAGN
j a

†
j bj+1 + H.c.,

(8)

where d(kx) = exp (ikx), aj ,a
†
j , and bj ,b

†
j are the annihilation

and creation operators in the sublattices A and B in graphene,
respectively. This effective Hamiltonian describes two mod-
ulated chains, as is shown in Fig. 1. tAGN

j is the hopping
parameter between the j + 1 and j atoms in the y direction,
given by

tAGN
j = t0

[
1 + α

(
1 − NAGN

j+1 · NAGN
j

)]
× exp

[−β
(
lAGN
j+1,j − 1

)]
, (9)

where

lAGN
j+1,j =

√
1 +

[
z
(
yAGN

j+1

) − z
(
yAGN

j

)]2
(10)

is the interatomic distance between the atoms in sites j + 1
and j ,

yAGN
j = yAGN

A (j ) = yAGN
B (j ) =

√
3(j − 1)/2 (11)

are the positions for atoms A and B, and j = 1,2, . . . ,N labels
the sites along the y direction for pristine graphene. Finally
the unitary normal vector is NAGN

j = N(yAGN
j ) defined as in

Eq. (5).

B. Zigzag graphene nanoribbon

Similarly, when we apply a uniaxial ripple to a zigzag
graphene nanoribbon, it is possible to map the system into
a one-dimensional effective chain. If we label the basis
as A1,B2, . . . ,AN−1,BN , as shown in Fig. 2, the resulting
Hamiltonian is [19]

HZGN(kx) =
∑

j

[
c(kx)tZGN

2j+1a
†
2j+1b2j+2 + tZGN

2j+2b2j+2a
†
2j+3

]
+ H.c., (12)

where c(kx) = 2 cos
√

3kx/2,

tZGN
j = t0

[
1 + α

(
1 − NZGN

j+1 · NZGN
j

)]
× exp

[−β
(
lZGN
j+1,j − 1

)]
(13)

is the hopping parameter between the sites j + 1 and j in the
y direction, NZGN

j = N(yZGN
j ) defined as in Eq. (5), and

lZGN
j+1,j =

√
1 + [

z
(
yZGN

j+1

) − z
(
yZGN

j

)]2
, (14)

where

yZGN
j = yZGN(j ) = 1

4

{
3j + 1

2 [1 − (−1)j ]
}

(15)

are the positions of carbon atoms in unrippled graphene and
j = 1,2, . . . ,N labels the sites as is displayed in Fig. 2.

III. UNIAXIAL PERIODIC RIPPLE

Let us now study in this section the particular case of a
periodic uniaxial ripple. This kind of corrugation is commonly
observed when graphene is grown on a substrate [6]. In
particular, we will consider that the periodic uniaxial ripple
has the following form:

z(y) = λ cos (2πσy + φ). (16)

This particular oscillation contains three parameters: wave-
length (controlled by the parameter σ ), amplitude (controlled
by λ), and phase (controlled by φ). Thus, σ is translated into
a ripple with a spatial wavelength � such that � = 2πa/σ .
Small σ ’s compared with the lattice parameter a are translated
into long-wavelength ripples. The amplitude λ is the maximal
height reached by the ripples, usually given in nanometers or
in percentages of a.

Now we wil discuss briefly the feasibility of such a specific
ripple. Since graphene exhibits a high asymmetry in tensile
versus compressive strain, i.e., while the C-C bond length
can be tensile up to 25% [2] of the lattice parameter, it is
almost incompressible because this would induce out-of-plane
deformations. Thus, in general, to produce this ripple it is
enough to apply uniaxial strain. Also, it has been observed
that, growing graphene on a substrate, 1D periodic graphene
ripples can be built by using thermal strain engineering and the
anisotropic stress due to the substrate [32]. On the other hand,
as we will see later, we will use a big ripple’s amplitude (λ =
80% of the lattice parameter) in all of our plots for illustrative
proposes. Even though this value is high, the most important
of our results depend only upon the ripple’s wavelength (σ )
and are valid for all values of λ.

Another important aspect of the electronic properties is the
wave function localization. For studying it, we will use the
normalized participation ratio (NPR), defined as

NPR(E) = ln
∑N

j=1 |ψ(j )|4
ln N

. (17)

This quantity is a measure of the wavefunction localization
[33] for extended states NPR → −1 (blue color in the figures),
whereas it tends to zero for localized states (red color in the
figures). In the next section, we will study the physical effects
on the electronic properties of AGNs and ZGNs under the
previously described periodic ripples.

A. AGNs with uniaxial periodic ripples

When we apply a uniaxial periodic ripple as given by
Eq. (16) to AGNs, the hopping integral becomes

tAGN
j = t0

[
1 + α

(
1 − NAGN

j+1 · NAGN
j

)]

× exp

{
−β

[√
1+ 4λ2 sin2

(√
3

2
πσ

)
ξ 2
A(j +1/2) −1

]}
,

(18)

where ξA(j ) = sin (
√

3πσj + φ). To get a better understand-
ing, it is worth considering the small-amplitude case. Using
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FIG. 3. (Color online) Energy spectrum of AGNs as a function of
σ for λ = 0.8, using (a) α = 0.4 and (b) α = 0 obtained by solving
the Schrödinger equation for a system of 400 atoms, using 250 grid
points for sampling kx and with cyclic boundary conditions. The
different colors represent the normalized participation ratio NPR(E).

Eq. (18), the hopping interchain parameter becomes

tAGN
j ≈ t0 exp

[
−2βλ2 sin2

(√
3

2
πσ

)
ξ 2(j + 1/2)

]

≈ t0 − 2t0βλ2 sin2

(√
3

2
πσ

)
ξ 2(j + 1/2). (19)

This expression is quite similar to the hopping integral that
appears in the off-diagonal Harper model [26]; the main
difference here is that all terms are squared. Hence, we expect
the period in σ to be half of the period of AGNs under
uniaxial periodic strain. Otherwise, both spectra would be
really similar in the low-energy or long-wavelength limit, as
can be confirmed in Fig. 3. Therein, it is shown the spectrum
of HAGN as a function of σ for (a) α = 0 and (b) α = 0.4,
obtained using cyclic boundary conditions by diagonalizing
the resulting matrix for each value of kx . Many interesting
features are observed. First, the spectrum has a fractal nature
with gaps at the Fermi level. Second, we observe that localized
states coexist with extended ones. It is easy to understand this
feature, since when the period of the lattice is commensurable
with the ripple’s period the system behaves as a modulated
crystal, and the states have a Bloch nature; these are extended.
When the periods are incommensurate with each other, the
system behaves as a quasicrystal and the wave functions tend to
have different localization properties. Finally, we observe that
the effect of relative orientation changes between π orbitals
(i.e., the α-dependent-term effects) is to produce a widening of
the spectrum, which becomes important for σ around 1/

√
3. To

gain further insight into the spectrum, consider the interesting
transition seen as σ goes from zero to σ = 1/

√
3, as shown

in detail in Fig. 4. Therein, the band structure is displayed for
(a) σ = 0.6/

√
3, (b) σ = 0.8/

√
3, and (c) σ = 1/

√
3. This

transition goes from unrippled graphene to a system made up
of weakly coupled dimers. The dimers are made from pairs of

FIG. 4. (Color online) Band structure and density of states (DOS)
of an AGN for φ = 0 and λ = 0.8 using (a) σ = 0.6/

√
3, (b) σ =

0.8/
√

3, and (c) σ = 1/
√

3 for a system with 200 atoms. Cyclic
boundary conditions were used.

sites joined by a horizontal bond as shown in Fig. 1. The dimers
appear since for σ = 1/

√
3, the hopping parameter becomes

tAGN
j = t(λ = 0.8) ≈ 0.05t0. The exact expression of t(λ) will

be given in the next section. Thus, t(λ = 0.8) � t0 and tj can
be considered as a weak perturbation to a system made of pure
dimers. The eigenenergies of the dimers are highly degenerate,
with values E = ±t0 as observed in Fig. 4(a). The effect of t(λ)
is just a widening around these values, giving a spectrum in the
intervals [±t0 − t(λ = 0.8), ± t0 + t(λ = 0.8)], as observed
in Fig. 4(a). As σ → 0, the dimers evolve into the Van Hove
singularity at E = ±t0 observed in unrippled graphene. Also,
the system can be treated as a ladder with tAGN

j = 〈t〉 + δj ,
where 〈t〉 is the average hopping parameter, and δj is a small
perturbing potential, δj � 〈t〉. For example, the case (c) in
Fig. 4 corresponds to weakly coupled squares.

Before showing how the case σ = 1/
√

3 can be solved
analytically, leading to weakly coupled dimers, let us discuss
the band structures displayed in Fig. 5. Therein are shown
the band structure and the DOS for σ values that are

(a)

(b)

FIG. 5. (Color online) Band structure and DOS for an AGN using
(a) σ = 4

√
5/3 and (b) σ = 0.4

√
7/3 for α = 0.4 and the same

conditions as in Fig. 4. Note that there are two partially flat bands at
E = ±1 and that the DOS is spiky.
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incommensurable with the period of unrippled AGNs. In these
cases, the dimer model is still useful. When tAGN

j → 0 the ef-
fective system is made of dimers with two different intradimer
hopping parameters t0 and t0d(kx), with eigenenergies ±1.
These energies are highly degenerate because of the factor
d(kx). When tAGN

j becomes quasiperiodic, the degeneracy is
broken and the spectrum is fragmented, as observed in Fig. 5.
However, the other dimers with hopping parameter given by t0
are not affected. This kind of dimers are the ones responsible
for the partly flat bands at ±t0.

Particular case σ = 1/
√

3

For σ = 1/
√

3, the eigenergies can be calculated exactly.
At this particular σ value the hopping integral can be written
as follows:

tAGN
j = t(λ) = t0 exp [−β(

√
1 + 4λ2 − 1)]. (20)

Hence, the unit cell contains only four different kinds of site.
Note that for big λ we have t(λ) → 0 and the effective system is
made of two different dimers, corresponding to horizontal pairs
of atoms, with interdimer hopping parameter t0 and t0d(kx).
This confirms the previous discussion and the band structure
shown in Fig. 4(c). The eigenenergies for such a system are

E(kx) = ±t0
√

1 + [t(λ)]2 ± 2t(λ)| cos (kx/2)|. (21)

From the previous equation one can prove that the gap’s size
is

�AGN = 2|t(λ) − t0|. (22)

which is the same that we obtained using the intervals [±t0 −
t(λ = 0.8), ± t0 + t(λ = 0.8)] when perturbation theory was
applied. It is worth finding the minimum value of λ for opening
a gap. It is easy to show that this occurs for any λ > 0, which
is an important result for applications, due to the fact that it
is possible to tailor the gap’s size at the Fermi level by using
Eq. (22) with a ripple amplitude within the elastic response of
graphene.

B. ZGN with periodic uniaxial ripples

When a ripple given by Eq. (16) is applied to ZGNs, the
hopping integral becomes

tAGN
j

= t0
[
1 + α

(
1 − NZGN

j+1 · NZGN
j

)]
× exp

{
−β

[√
1+ 4λ2 sin2

(
π

2
σϕj

)
ξ 2
Z(3j/2 +1) −1

]}
,

(23)

where ϕj = [3 + (−1)j ]/4 and ξZ(j ) = sin (πσj + φ). Fur-
ther insight can be obtained by analyzing the case of small-
amplitude ripples, in which the hopping parameter is as
follows:

tZGN
j t0 ≈ exp

{
−2βλ2 sin2

(π

2
σϕj

)
ξ 2
Z(3j/2 + 1)

}
≈ t0 − 2t0βλ2 sin2

(π

2
σϕj

)
ξ 2
Z(3j/2 + 1). (24)

(a)

(b)

FIG. 6. (Color online) Energy spectrum of a ZGN as a function of
σ for (a) λ = 0.8 and α = 0, and (b) λ = 0.8 and α = 0.4 obtained by
solving the Schrödinger equation for a system of 80 atoms, using 250
grid points for sampling kx and with cyclic boundary conditions. The
different colors represent the normalized participation ratio NPR(E).
Note that the gaps at the Fermi level are fewer and smaller than in
AGN ripples; the wave functions are more localized as well.

Again, this hopping integral is very similar to that for ZGNs
under uniaxial periodic strain [19]. As in AGNs, the main
difference is that all terms are squared. That makes the period
one-half of that in the uniaxially periodicallly strained ZGNs,
as confirmed in Fig. 6. There in, we show the energy spectrum
for ZGNs obtained using cyclic boundary conditions and by
diagonalizing the corresponding matrix for each value of kx .
Two different values of α were used, (a) α = 0 and (b) α = 0.4.
There are many interesting features. First, the states are more
localized than in the AGN case. Second, the gaps at the Fermi
level are smaller than the gaps in AGNs. Third, ZGNs are more
sensitive to the effect of α; however, as in AGNs, this effect
is just a widening of the energy spectrum. The structure still
being the same as in the case α = 0, especially for values near
or at σ = 2/3,4/3 [see Figs. 6(a) and 6(b)]. For σ = 2/3,4/3,
we have

tZGN
j = teff(λ) = t(3λ/4)

[
1 + α

(
1 − 1√

1 + 4π2λ2/3

)]
,

(25)

where t(λ) is given by Eq. (20). This equation does not depend
upon the site. Substituting all the parameters and by using
λ = 0.8, the hopping parameter is found to be teft(λ = 0.8) ≈
0.19t0 for α = 0.4 and teft(λ = 0.8) ≈ 0.15t0 for α = 0. Thus,
in these cases, the system has a ZGN-like spectrum with
hopping parameter teff. Although teff depends upon α, this
effect is small and the spectrum at the points σ = 2/3,4/3
is very narrow, as seen in Fig. 6. For σ near to that point
the spectrum is highly fragmented, because the α-dependent
terms become important. They act as a perturbation potential,
splitting the band structure; therefore, the spectrum is wider
near σ = 2/3,4/3, as can be observed in Fig. 7(b).

Let us now discuss the transition observed in Fig. 7 as σ

goes from zero to 1.

035406-5



PEDRO ROMAN-TABOADA AND GERARDO G. NAUMIS PHYSICAL REVIEW B 92, 035406 (2015)

(a)

(b)

(c)

FIG. 7. (Color online) Band structure and density of states (DOS)
of a ZGN for φ = 0, λ = 0.8 using (a) σ = 1, (b) σ = (

√
5 − 1)/2,

and (c) σ = 1/4. The same conditions as in Fig. 6 were used. Note
the big gap opened at the Fermi level in (a); in (b) the band structure
is fragmented and hence the DOS has a lot of spikes, and in (c) the
DOS is similar to that of linear chains weakly interacting.

1. Case σ = 1/4

For σ = 1/4, the band structure and DOS are shown in
Fig. 7(c). In this case, the unit cell has only four different
atoms, with hopping parameters given by

tZGN
1 = t1 = t(λ/2)

[
1 + α

(
1 − 1√

1 + π2λ2

)]
,

tZGN
2 = t2 = t0 + t0α

(
1 − 1 − π2λ2

1 + π2λ2

)
,

tZGN
3 = t1,

tZGN
4 = t(λ),

(26)

where t(λ) is defined in Eq. (20). The eigenenergies can be
calculated exactly,

E(kk) = ±[t(λ) + t2]

±
√

[t(λ) − t2]2 + 16t2
1 cos2 (

√
3kx/2). (27)

From the dispersion relation it can be seen that the system
behaves as a linear chain with two different atoms, hopping
parameter giving by t1, and self-energies t(λ) and t2. When σ

takes irrational values near σ = 1/4 the degeneracy is broken
and the DOS becomes spiky, as can be seen in Fig. 7(b).

Finally, the case σ = 1 is displayed in Fig. 7. Note that
this case [Fig. 7(a)] is the same as in Fig. 4(c). Let us explain
this feature. When σ = 1, the hopping parameter takes two
different values depending on the parity of j ; if j is odd,
tZGN
j = t0 whereas if it is even, tZGN

j = t(λ = 0.8) ≈ 0.05t0.
So the effective system is again made of dimers with intradimer
hopping integrals given by t(λ = 0.8)c(kx) and t0. Due to
t(λ = 0.8) � t0 the effective system can be seen as weakly
coupled dimers with hopping parameter t(λ = 0.8)c(kx).
Hence, the gap’s size must be 2|2t(λ = 0.8) − t0| the main

difference from AGNs is that here we have 2t(λ), due to
c(kx) = 2 cos (

√
3kx)/2. This prediction will be confirmed by

calculating the eigenenergies analytically in the next section.

2. Case σ = 1

We first calculate the hopping parameter

tZGN
j =

{
t0 if j is even,
t(λ) = exp {−β[

√
1 + 4λ2 − 1]} if j is odd.

(28)

Thus, the effective system just has four different atoms per
unit cell, and the effective chain is made of dimers with
hopping parameter t0c(kx). The eigenenergies for this system
as a function of λ and kx are

E(kx) = ±t0 ± 2t(λ) cos

(√
3

2
kx

)
. (29)

To confirm the gap’s size predicted before, we calculate it from
Eq. (29), resulting in

�ZGN = 2|2t(λ) − t0|. (30)

In this case, a gap is opened for λ � λC , where

λC = 1

2

√(
1 + 1

β
ln 2

)2

− 1 ≈ 0.34. (31)

This minimal value of λC for opening a gap at the Fermi
level exceeds the elastic response of graphene and thus seems
difficult to observe experimentally.

IV. CONCLUSIONS

Summarizing, we have analyzed the electronic properties
of AGNs and ZGNs under uniaxial periodic ripples, using an
exact mapping of the corresponding tight-binding Hamiltonian
into effective one-dimensional chains. In particular, we studied
uniaxial periodic ripples, finding complex spectra, gaps at the
Fermi level, and flat bands for AGNs. All these features can be
understood by looking at an effective system which is made
of dimers. For instance, when σ is commensurable with the
characteristic period of the lattice the effective system behaves
as weakly coupled dimers resulting, for λ big, in flat bands for
AGNs. However, when this is not the case, the reciprocal space
becomes dense, which results in a fractal spectrum.
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