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Effective Dirac Hamiltonian for anisotropic honeycomb lattices: Optical properties
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We derive the low-energy Hamiltonian for a honeycomb lattice with anisotropy in the hopping parameters.
Taking the reported Dirac Hamiltonian for the anisotropic honeycomb lattice, we obtain its optical conductivity
tensor and its transmittance for normal incidence of linearly polarized light. Also, we characterize its dichroic
character due to the anisotropic optical absorption. As an application of our general findings, which reproduce the
previous case of uniformly strained graphene, we study the optical properties of graphene under a nonmechanical
distortion.
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I. INTRODUCTION

Among the most unusual properties of graphene, one can
cite the linear dispersion relation for electrons and holes at the
so-called Dirac points [1]. Therefore, at low energies, electrons
and holes behave as two-dimensional massless Dirac fermions,
which also present chiral symmetry. This special property
provides for the possibility of observing phenomena such
as Klein tunneling [2,3], originally predicted for relativistic
particle physics [4]. From a practical viewpoint, considering
the use of graphene for electronic applications, the unity
probability of tunneling through such a barrier, at least for
the normal incidence, has resulted in a challenge.

Given the unique mechanical properties of graphene,
in particular its striking interval of elastic response [5,6],
strain engineering has been an alternative to explore the
strain-induced modifications of the electronic properties of
graphene [7–10]. Although a theoretical prediction has been
made of a strain-induced band-gap opening [11–14], the most
interesting strain-induced effect is the experimental observa-
tion of Landau-level signatures to zero magnetic field [15,16].
As predicted earlier for carbon nanotubes [17] and subse-
quently extended to graphene [18–20], the lattice deformation
fields can be interpreted in the form of pseudomagnetic
fields. Manifestations of such strain-induced pseudomagnetic
fields are continuously examined [21–29], even in other
materials such as transition-metal dichalcogenides [30] and
Weyl semimetals [31].

In the optical context, strain-induced effects in graphene
are significant and open an avenue to potential applications
[32–34]. The optical properties of graphene are ultimately
determined by its electronic structure, which is modified by
strain. Needless to say, strain produces anisotropy in the
electronic dynamics [35], which is traduced in an anisotropic
optical conductivity [36–38] and, finally, in a modulation of the
transmittance as a function of the polarization direction [39].
Such modulation of the transmittance has been observed
in graphene samples under uniaxial strain [40]. Recently, a
theoretical characterization of the transmittance and dichroism
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was given for graphene under an arbitrary uniform strain, e.g.,
uniaxial, biaxial, and so forth [41].

Nowadays, synthetic systems with honeycomb lattices are
artificially created to mimic the behavior of Dirac quasi-
particles [42–44]. The main advantage of these artificial
systems is that one can tune, in a controlled and independent
manner, the hopping of particles between different lattice
sites. As a consequence, in such artificial graphene, one
can observe effects which are induced by the anisotropy of
the hopping parameters, which are not observable in normal
graphene under strain. For example, in normal graphene
under a uniaxial strain, it has been predicted that the Dirac
cones can merge [11,45]. However, such theoretical prediction
requires unrealistically large values of strain. However, in
artificial graphene of a different nature, e.g., of cold atoms
or photonic crystals, the merging of the Dirac point has been
experimentally observed [46]. More recently, in electronic
artificial graphene created in a two-dimensional electron
gas in a semiconductor heterostructure, the merging of the
Dirac point has been demonstrated for realistic experimental
conditions [47].

Undoubtedly, artificial graphene paves new opportunities
for studying the physics of Dirac quasiparticles in condensed
matter. Now, given the excellent possibility to tune the
lattice parameters, it seems necessary to have on hand an
effective Dirac Hamiltonian, which appropriately describes the
dynamics of the quasiparticles in anisotropic configurations
of the hopping parameters. In the case of normal graphene
under a uniform strain, in the literature one finds various
different effective Dirac Hamiltonians. For example, Goerbig
et al. [48] obtained the effective Dirac Hamiltonian of graphene
under a uniaxial strain along the armchair direction. For
this problem [48], Harrison’s law (quadratic delay) was
resorted to evaluate the nearest-neighbor hopping variations
induced by deformation. On the other hand, to derive the
effective Dirac Hamiltonian of graphene under a uniaxial
strain, Pereira et al. [39] used a exponential decay to model the
nearest-neighbor hopping changes as a function of the strain
magnitude. Subsequently, for graphene under a uniform strain,
Oliva-Leyva et al. [35] derived an effective Dirac Hamiltonian
which generalized the reported one in Ref. [39]. However,
these reported effective Dirac Hamiltonians do not describe
the more general case of a honeycomb lattice with weak
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but arbitrary anisotropy of the hopping parameters. Previous
Hamiltonians are based on particular laws of the hopping
parameters’ variations. One of the main objectives of this
paper is to give a low-energy Hamiltonian for an anisotropic
honeycomb lattice (artificial graphene), able to reproduce the
more general conditions of the nearest-neighbor hoppings’
variations.

This paper is organized as follows. In Sec. II, we derive
the effective Dirac Hamiltonian for a honeycomb lattice with
weak anisotropy in the hopping parameters. For this purpose,
we start from a nearest-neighbor tight-binding model and
carry out an expansion around the real Dirac point. We show
how the obtained low-energy Hamiltonian generalizes our
previous effective Dirac Hamiltonian of graphene under a
uniform strain [35]. Section III is devoted to discuss the
optical properties of anisotropic honeycomb lattices, which are
assumed by having a linear response to an external oscillating
field. Here we give general expressions for the dichroism
and transmittance as functions of the variation of hopping
parameters. In Sec. IV, our findings are particularized to the
case of graphene under a nonmechanical deformation, which
cannot represented by means of the strain tensor. Finally, in
Sec. V, our conclusions are given.

II. GENERALIZED HONEYCOMB LATTICE

We are interested in the low-energy Hamiltonian, i.e., the
effective Dirac Hamiltonian, of a honeycomb lattice with
anisotropy in the nearest-neighbor hopping parameters. As
unstrained graphene, our lattice consists of a triangular Bravais
lattice with a pair of carbon atoms [open and filled circles in
Fig. 1(a)] located in its primitive cell. However, we consider
that the hoppings between nearest sites are dependent on
the direction and, in general, are characterized by three
hopping parameters t1, t2, and t3 [see Fig. 1(a)]. Within this
nearest-neighbor tight-binding model, one can demonstrate
that the Hamiltonian in momentum space can be represented
by a (2×2) matrix of the form [49]

H = −
3∑

n=1

tn

(
0 e−ik·δn

eik·δn 0

)
, (1)

where δ1,δ2,δ3 are the nearest-neighbor vectors. Hereafter, we
define the the nearest-neighbor vectors as

δ1 = a

2
(
√

3,1), δ2 = a

2
(−

√
3,1), δ3 = a(0, − 1), (2)

i.e., we choose the coordinate system xy in a way that the
x axis is along the zigzag direction of the honeycomb lattice
[see Fig. 1(a)]. We denote the system xy as the crystalline
coordinate system.

From Eq. (1) follows that the dispersion relation is given
by two bands,

E(k) = ±|t1eik·δ1 + t2e
ik·δ2 + t3e

ik·δ3 |. (3)

As is well documented, for the isotropic case t1,2,3 = t0,
the Dirac points KD , which are determined by condition
E(KD) = 0, coincide with the corners of the first Brillouin
zone. Then, to obtain the Dirac Hamiltonian in this case, one
can simply expand the Hamiltonian (1) around a corner, e.g.,
K 0 = ( 4π

3
√

3a
,0). However, for the considered anisotropic case,

the Dirac points do not coincide with the corners of the first
Brillouin zone [as illustrated in Figs. 1(b) and 1(c)] [11,12].
Consequently, to derive the Dirac Hamiltonian, one can no
longer expand the Hamiltonian (1) around K 0. As recently
demonstrated, such expansion around K 0 yields an inappro-
priate Hamiltonian [50]. The appropriate procedure is to find
the position of the Dirac points and carry out the expansion
around them [50–52]. Note that when the hopping anisotropy
increases, a gap can appear while the Dirac points disappear.
Such effects are characterized by the Hasegawa triangular
inequalities [53].

Effective Dirac Hamiltonian

Now let us study the effect of a weak anisotropy given by a
small perturbation of the hopping parameters. The perturbed
hoppings are given by

tn = t0(1 + �n), (4)

on the low-energy description. As expressed above, to derive
the proper effective Dirac Hamiltonian, it is essential to find
the position of the Dirac points [50]. In Appendix A, we show
that from the condition E(KD) = 0, up to first order in the

(a) (b) (c)(a) (b) (c)

FIG. 1. (a) Honeycomb lattice and hoppings. The primitive cell, in light purple, contains a pair of carbon atoms. (b) Dispersion relation
E(k) of the anisotropic honeycomb lattice and its hexagonal first Brillouin zone. (c) A zoom of the Dirac cone region shows that the Dirac
point KD is not located at the corner K 0 of the hexagonal Brillouin zone. The anisotropy-induced Dirac point shift is given by the vector A.
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parameters {�n}, one can obtain that KD is given by

KD ≈ K 0 + A, (5)

where

Ax = 1

3a
(2�3 − �1 − �2), Ay = 1√

3a
(�1 − �2), (6)

and K 0 presents valley index ξ = +1. As is well
known [54,55], the shift A of the Dirac point plays the role
of an emergent gauge field, similar to a vector potential, when
the hopping parameters are position dependent throughout the
sample. Thus gauge fields couple with opposite signs to valleys
with different index [54,55].

Once the position of KD is found, we expand the Hamil-
tonian (1) around the Dirac point by means of k = KD + q.
Following this approach up to first order in the parameters
{�n}, which is the leading order used throughout the rest of the
paper, we derive that the effective Dirac Hamiltonian results
in (see Appendix B)

H = �vF σ · ( Ī + �̄) · q, (7)

where vF = 3t0a/2� is the Fermi velocity for the unperturbed
honeycomb lattice, σ = (σx,σy) are the nondiagonal Pauli
matrices, Ī is the 2 × 2 identity matrix, and �̄ is the symmetric
matrix

�̄ =
( 1

3 (2�1 + 2�2 − �3) 1√
3
(�1 − �2)

1√
3
(�1 − �2) �3

)
. (8)

Let us note some important remarks about our generalized
Hamiltonian (7). First of all, when the three hopping parame-
ters {tn} are equal to t0(1 + �), we have that �̄ = � Ī . Then,
Eq. (7) reproduces the expected result �vF (1 + �)σ · q, which
is just a renormalization of the Fermi velocity. In general,
from Eq. (7), one can recognize a generalized Fermi velocity
tensor as

v̄ = vF ( Ī + �̄), (9)

whose matrix character is due to the shape of the isoenergetic
contours around KD , which are rotated ellipses. Only for
the case that t1 = t2 (�1 = �2), the Fermi velocity tensor
is diagonal with respect to the chosen crystalline coordinate
system xy. In this case, the principal axes of the isoenergetic
ellipses are collinear with the xy axes.

The general character of Eq. (7) enables one to obtain the
effective Dirac Hamiltonian for any form of variation of the
hopping parameters. For example, in Ref. [35], for the case of
graphene under a spatially uniform strain, the authors assumed
that to first order in the strain tensor ε̃, the hopping parameters
are approximated by tn ≈ t0(1 − βδn · ε̄ · δn/a

2), where β is
the electron Grüneisen parameter. Thus, in this particular case,
�n = −βδn · ε̄ · δn/a

2 and, then, from Eq. (8), one obtain that
�̄ = −β ε̄, as reported in Ref. [35]. Similarly, our generalized
expressions (7) and (8) can be used to reproduce the effective
Hamiltonian reported in Ref. [48], where a different form
of variation of the hopping parameters (Harrison’s law) was
assumed.

It is important to emphasize that the expression (8) for the
matrix �̄ is referred to the crystalline coordinate system xy.
In general, if one chooses an arbitrary coordinate system x ′y ′,

rotated at an angle φ with respect to the system xy, then the new
components of �̄ can be found by means of the transformation
rules of a second-order Cartesian tensor. In other words, �̄ is a
second-order Cartesian tensor, whose explicit form (8) is given
with respect to the crystalline coordinate system xy.

III. OPTICAL CONDUCTIVITY

Let us now study the optical properties of those anisotropic
electronic honeycomb fermionic lattices that exhibit a linear
response to an external electric field of frequency w. For this
purpose, we first obtain the optical conductivity tensor σ̄ij (w)
by combining the Hamiltonian (7) and the Kubo formula.
Following the representation used in Refs. [56,57], the optical
conductivity σij (w) can be written as a double integral with
respect to two energies E, E′:

σ̄ij (w) = i

�

∫∫
Tr{jiδ(H − E′)jj δ(H − E)}

× 1

E − E′ + w − iα

f (E) − f (E′)
E − E′ dEdE′, (10)

where f (E) = {1 + exp[E/(kBT )]}−1 is the Fermi function at
temperature T and jl = −ie[H,rl] is the current operator in
the l direction, with l = x,y.

To calculate the integral (10), it is convenient to carry out
the change of variables,

q = ( Ī + �̄)−1 · q∗. (11)

In the new variables (q∗
x ,q∗

y ), the Hamiltonian (7) becomes
H = �vF σ · q∗, corresponding to an unperturbed honeycomb
lattice, as unstrained graphene. On the other hand, the current
operator components transform as

jx = −ie[H,rx] = e
∂H

∂qx

= e

(
∂H

∂q∗
x

∂q∗
x

∂qx

+ ∂H

∂q∗
y

∂q∗
y

∂qx

)

= (1 + �̄xx)j ∗
x + �̄xyj

∗
y , (12)

and, analogously,

jy = (1 + �̄yy)j ∗
y + �̄xyj

∗
x , (13)

where j ∗
x = e(∂H/∂q∗

x ) and j ∗
y = e(∂H/∂q∗

y ) are the current
operator components for the case of the unperturbed honey-
comb lattice.

Then, substituting Eqs. (12) and (13) into Eq. (10), we
obtain

σ̄xx(w) � (1 + 2�̄xx)Jσ0(w), (14)

σ̄yy(w) � (1 + 2�̄yy)Jσ0(w), (15)

σ̄xy(w) = σ̄yx(w) � 2�̄xyJσ0(w), (16)

where J is the Jacobian determinant of the transformation (11)
and σ0(w) is the optical conductivity of the unperturbed
honeycomb lattice. Note that as an explicit expression for
σ0(w), one can use the reported optical conductivity of
unstrained graphene [57–59].
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FIG. 2. (a) Scattering problem for normal incidence between two
media with the anisotropic honeycomb lattice separating them. The z

direction is chosen along the propagation of the electromagnetic wave.
ki and kt represent the wave vectors of the incident and transmitted
waves, respectively. (b) Schematic representation of the dichroism
induced by the anisotropic absorption of the honeycomb lattice. The
electromagnetic fields lie in the lattice plane.

Finally, from Eqs. (14)–(16), it follows that the optical
conductivity tensor for the anisotropic honeycomb lattice
results in

σ̄ (w) � σ0(w)[ Ī + 2�̄ − Tr(�̄) Ī]. (17)

In other words, a Dirac system described by the generalized
Hamiltonian (7) presents an anisotropic optical response given
by Eq. (17), independently of the expression of matrix �̄. Now
substituting Eq. (8) into Eq. (17), we obtain the explicit form of
the optical conductivity tensor for the anisotropic honeycomb
lattice, with respect to the crystalline coordinate system xy.

Dichroism and transmittance

The anisotropy of the optical absorption yields two effects:
dichroism and modulation of the transmittance as a function
of the polarization direction. To examine such effects, let us
consider normal incidence of linearly polarized light between
two dielectric media separated by our anisotropic honeycomb
lattice, as illustrated in Fig. 2(a). From the boundary conditions
for the electromagnetic field on the interface between both
media, one can obtain that the electric fields of the incident
and transmitted waves, Ei and Et , respectively, are related
by [41]

Ei = 1

2

√
μ1

ε1

[(√
ε1

μ1
+

√
ε2

μ2

)
Ī + σ̄

]
· Et , (18)

where ε1,2 are the electrical permittivities and μ1,2 are the
magnetic permeabilities. Note that, in general, the anisotropy
of the conductivity σ̄ produces that Ei and Et are not collinear
[see Fig. 2(b)]. Analogously, the magnetic fields, H i and H t ,
fulfill the same relation.

Now, from Eq. (18), the calculation of the transmittance is
straightforward [41]:

T (θi) = |Et × H t |
|Ei × H i | =

√
ε2/μ2|Et |2√
ε1/μ1|Ei |2

,

≈ T0

(
1 − 2

√
μ1μ2√

ε1μ2 + √
ε2μ1

eᵀ
i · Reσ̄ · ei

)
, (19)

where T0 is the transmittance for normal incidence between
two media in the absence of the anisotropic honeycomb lattice

as interface and eᵀ
i = (cos θi, sin θi), with θi being the incident

polarization angle θi .
To illustrate even more clearly the dichroism and the

modulation of T (θi) induced by the anisotropic honeycomb
lattice, it is convenient to consider that the chemical potential
equals zero for the lattice. In consequence, for the domain
of infrared and visible frequencies, in Eq. (17) σ0(w) can be
replaced by the universal and frequency-independent value
e2/(4�) [59,60]. Additionally, if both media are vacuum, then
from Eqs.(17)–(19) we obtain

θt − θi ≈ πα

2
A sin(2θi − θ0) (in radians), (20)

T (θi) ≈ 1 − πα[1 + A cos(2θi − θ0)], (21)

where

A =
√

(�̄xx − �̄yy)2 + 4�̄2
xy =

√
(Tr�̄)2 − 4Det�̄, (22)

sin θ0 = 2�̄xy/A [cos θ0 = (�̄xx − �̄yy)/A], and α is the fine-
structure constant.

It can be immediately verified that for �̄ = 0, the dichroism
disappears and T (θi) reduces to 1 − πα (≈97.7%), which
is the transmittance of unstrained graphene [60]. Expres-
sions (20) and (21) clearly show π -periodic modulations of
the dichroism and transmittance with respect to the incident
polarization angle θi , which is due to the physical equivalence
between θi and θi + π , for normal incidence of linearly polar-
ized light. From Eq. (20) follows that the principal directions of
�̄ can be determined by monitoring the polarization angles θi

for which the incident and transmitted polarizations coincide.
At the same time, Eq. (21) shows that the principal directions
of �̄ can be determined by measuring the polarization angles
θi for which the transmittance takes its minimum or maximum
values. Also, it is important to note that while the phase θ0

of both modulations is dependent on the coordinate system
orientation, the amplitude A is independent of any orientation
of the coordinate system, as physically expected, because A is
given as a function of the invariants Tr�̄ and Det�̄.

So far, our discussion of dichroism and transmittance is
general for an anisotropic Dirac system described by Eq. (7).
By substituting Eq. (8) into Eqs. (20) and (21), one obtains the
explicit form of such effects for the anisotropic honeycomb
lattice with respect to the crystalline coordinate system xy.

IV. APPLICATION

As an application of the obtained results, we consider a
deformation of graphene lattice, as illustrated in Fig. 3. Here
the primitive vectors a1 and a2 remain undeformed, while
the atom of basis, denoted by an open circle, is displaced
as a vector u in an arbitrary direction. This deformation of
the graphene lattice is basically a displacement, given by
u, of the open-circles sublattice with respect to the filled-
circles sublattice. A possible scenario for such deformation
could occur in graphene grown on a substrate with an
appropriate combination of lattice mismatch between the two
crystals [40,61].

It is important to emphasize that the considered nonme-
chanical deformation cannot be represented by means of the
standard strain tensor. Therefore, the previous reported results
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FIG. 3. Scheme of the modified graphene lattice. The red arrow
represents the displacement u of the open-circles sublattice.

for graphene under a uniform strain, e.g., the effective Dirac
Hamiltonian reported in [35] and its optical properties [37,41]
cannot be used to characterize such deformation. This fact
clearly shows the relevance and usefulness of the general
treatment developed in the present work.

The new nearest-neighbor vectors δ′
n are related to the un-

strained nearest-neighbor vectors δn by means of δ′
n = δn − u.

However, the reciprocal lattice of our modified graphene lattice
remains undeformed because the direct lattice, determined by
a1 and a2, is undistorted. The last is a notable difference
with respect to the case of strained graphene by means of
mechanical stress, for which the lattice vectors are deformed.

As in Sec. II, if we begin from a nearest-neighbor approach,
it is easy to demonstrate that the dispersion relation for this
modified graphene lattice reads

E(k) = ±|t1eik·(δ1−u) + t2e
ik·(δ2−u) + t3e

ik·(δ3−u)|
= ±|t1eik·δ1 + t2e

ik·δ2 + t3e
ik·δ3 |, (23)

where we characterize the variation of the hopping parameters
in the usual form: tn = t0 exp[−β(|δ′

n|/a − 1)] [11]. Note that
Eq. (23) coincides with Eq. (3), so the modified graphene
lattice can be considered as a particular case of the generalized
honeycomb lattice examined in Sec. II. Therefore, now we
can particularize all general previous results for the modified
graphene lattice.

Effective Dirac Hamiltonian. Writing the variation of the
hopping parameters to first order in u, one gets

tn = t0 exp[−β(|δn − u|/a − 1)]

≈ t0(1 + βδn · u/a2), (24)

and thus, for this case, one can identify from Eq. (4) that
�n = βδn · u/a2. Consequently, from Eqs. (7) and (8), the
effective Dirac Hamiltonian of the modified graphene lattice
results in

H = �vF σ · ( Ī + �̄
u) · q, (25)

where the matrix �̄
u depends on the components of the vector

u as

�̄
u = β

a

(
uy ux

ux −uy

)
. (26)

It can be immediately verified that for u = 0, one recovers
the case of unstrained graphene. Note that Tr�̄u = 0, which
is because the studied deformation does not vary the area of

the graphene sample. This fact is analogous to having a pure
shear strain.

The form (26) of the tensor �̄
u is referred to as the

crystalline coordinate system xy. Now let us give its general
expression with respect to an arbitrary coordinate system x ′y ′,
which is inclined to xy at an angle φ. Using the transformation
rules of a second-order Cartesian tensor, we find

�̄u
x ′x ′ = −�̄u

y ′y ′ = β

a
(uy ′ cos 3φ + ux ′ sin 3φ), (27)

�̄u
x ′y ′ = �̄u

y ′x ′ = β

a
(−uy ′ sin 3φ + ux ′ cos 3φ), (28)

where ux ′ and uy ′ are the components of the vector u with
respect to the system x ′y ′. These expressions for the tensor
�̄

u(φ) exhibit a clear periodicity of 2π/3 in φ, which reflects
the trigonal symmetry of the underlying honeycomb lattice.

Optical properties. From Eqs. (17) and (26), the optical
conductivity for the modified graphene lattice immediately
follows as

σ̄ u(w) = σ0(w)( Ī + 2�̄
u)

= σ0(w)

(
1 + 2βuy/a 2βux/a

2βux/a 1 − 2βuy/a

)
, (29)

with respect to the crystalline coordinate system xy. At the
same time, from Eqs. (20) and (21), one obtains that for normal
incidence of linearly polarized light, the dichroism and the
transmittance are characterized by

θt − θi ≈ παβ

a
(uy sin 2θi − ux cos 2θi), (30)

T (θi) ≈ 1 − πα − 2παβ

a
(uy cos 2θi + ux sin 2θi), (31)

where the incident polarization angle θi is measured with
respect to the x axis of the crystalline coordinate system.

In Fig. 4, we display the evaluated expressions (30)
and (31) for two different displacements, u1/a = (0.05,0)
and u2/a = (0.04,0.03). Such deformations present the same
modulation amplitude either for the rotation of the transmitted
field (dichroism) or for the transmittance. The reason is simple.
From (31), it follows that the transmittance modulation ampli-
tude �T is determined by the module of the vector u: �T =
2παβ|u|/a. Note that |u1| = |u2|, and therefore, �T1 = �T2.
The analogous argument is valid for the modulation amplitude
of the rotation of the transmitted field: �φ = παβ|u|/a.

Nowadays, measurements of transmittance can be used
to characterize the deformation state in the graphene sam-
ple [40,41].

To complete, let us point out how Eq. (31) serves to
characterize the strain state of our modified graphene lattice
by means of two measurements of transmittance. Measuring
the transmittance at θi = 0 and θi = π/4, from Eq. (31) one
obtains

ux = a

2παβ
[1 − πα − T (π/4)], (32)

uy = a

2παβ
[1 − πα − T (0)], (33)

and, in this manner, the strain state can be determined.
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FIG. 4. Rotation of the transmitted field (top panel) and trans-
mittance (bottom panel) as a function of the incident polarization
angle for two different deformations. The red curves correspond to
the displacement u1/a = (0.05,0), while the blue curves correspond
to the displacement u2/a = (0.04,0.03).

V. CONCLUSION

In summary, starting from a nearest-neighbor tight-binding
model, we derived the effective Dirac Hamiltonian of
an anisotropic honeycomb lattice, beyond strained normal
graphene. This general Hamiltonian results in a useful tool
for studying the anisotropic dynamics of Dirac quasiparticles
in artificial graphene. Our generalized Hamiltonian (7) has
a remarkable merit with respect to previous effective Dirac
Hamiltonians. It is not limited to a particular law of the
hopping parameters’ variation. Moreover, it is an excellent
starting point for obtaining the effective Dirac Hamiltonian in
the case of position-dependent anisotropy of the honeycomb
lattice [50]. We also obtained the optical conductivity tensor
of the anisotropic honeycomb lattice and showed how such
anisotropic optical absorption produces a modulation of the
transmittance and of the dichroism as a function of the incident
polarization angle. Our findings could provide a platform to
characterize the anisotropy in electric artificial graphene by
means of optical measurements. At the same time, they could
be used for tailoring the optical properties of electric artificial
graphene.
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APPENDIX A

Here we provide the derivation of the expressions (6) for
the shift vector A of the Dirac point KD .

The condition E(KD) = 0, which defines the Dirac points
KD , can be equivalently rewritten as

3∑
n=1

tne
i KD ·δn = 0. (A1)

In the isotropic case tn = t0, the Dirac points coincide with
the corners of the first Brillouin zone, in particular KD =
K 0 = ( 4π

3
√

3a
,0), with K 0 being a corner with valley index +1.

For the anisotropic case tn = t0(1 + �n), the Dirac points do
not coincide with the corners of the first Brillouin zone, in
particular KD �= K 0. Then, one can propose the position of
KD in the form

KD = K 0 + A + O
(
�2

n

)
, (A2)

where the unknown shift A will be looked for as a lineal com-
bination on the parameters {�n}. Now, substituting Eq. (A2)
into Eq. (A1) results in

3∑
n=1

t0(1 + �n)ei[K 0+A+O(�2
n)]·δn = 0,

3∑
n=1

[
1 + �n + i A · δn + O

(
�2

n

)]
ei K 0·δn = 0,

− 3aAx − �1 − �2 + 2�3

+ i(−3aAy +
√

3�1 −
√

3�2) + O
(
�2

n

) = 0. (A3)

Thus, one obtains that the shift A is given by

Ax = 1

3a
(2�3 − �1 − �2), Ay = 1√

3a
(�1 − �2), (A4)

which is our Eq. (6). Following a similar calculation, the Dirac
point shift with respect to the corner K

′
0 = (− 4π

3
√

3a
,0), with

valley index −1, results in −A.

APPENDIX B

In this section, we present the details of the calculations
to derive the effective Hamiltonian around KD = K 0 + A.
Also, these calculations can be taken as an alternative proof of
Eq. (6), as pointed out below.

Considering momenta close to the Dirac point KD , i.e.,
k = KD + q, and expanding to first order in q and {�n},
Hamiltonian (1) transforms as

H = −
3∑

n=1

tn

(
0 e−i(K 0+A+q)·δn

ei(K 0+A+q)·δn 0

)

= −
3∑

n=1

t0(1 + �n)

(
0 e−i K 0·δn

ei K 0·δn 0

)

× ( Ī + iσz A · δn)( Ī + iσzq · δn)

= −t0

3∑
n=1

(
i
σ · δn

a
σz

)
[ Ī + iσzq · δn + iσz A · δn

+�n Ī − (q · δn)(A · δn) Ī], (B1)
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where it has been assumed that the A vector is given by Eq. (6)
and K 0 = ( 4π

3
√

3a
,0) has valley index ξ = +1. Collecting the

contribution of each term in this expression, one obtains

−t0

3∑
n=1

(
i
σ · δn

a
σz

)
= 0, (B2)

−t0

3∑
n=1

(
i
σ · δn

a
σz

)
(iσzq · δn) = �vF σ · q, (B3)

−t0

3∑
n=1

(
i
σ · δn

a
σz

)
(iσz A · δn) = �vF σ · A, (B4)

−t0

3∑
n=1

(
i
σ · δn

a
σz

)
�n = −�vF σ · A, (B5)

t0

3∑
n=1

(
i
σ · δn

a
σz

)
(q · δn)(A · δn) = �vF σ · �̄ · q, (B6)

where the �̄ matrix is given by Eq. (8). Then, taking into
account the contribution of each term in Eq. (B1), the effective
Dirac Hamiltonian around KD has the form

H = �vF σ · ( Ī + �̄) · q. (B7)

This result also proves that the Dirac point KD is given by
Eqs. (5) and (6). Note that in the Hamiltonian (B7), all terms are
O(q), which is a consequence of an expansion around the real
Dirac point and, therefore, this proves that the expression (6)
for the shift A of the Dirac point is correct.

For K 0 with valley index ξ = −1, the calculation is
analogous and the effective Dirac Hamiltonian results,

H = �vF σ ∗ · ( Ī + �̄) · q, (B8)

where σ ∗ = (σx, − σy).
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