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Topological flat bands in time-periodically driven uniaxial strained graphene nanoribbons
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We study the emergence of electronic nontrivial topological flat bands in time-periodically driven strained
graphene within a tight-binding approach based on the Floquet formalism. In particular, we focus on uniaxial
spatially periodic strain since it can be mapped onto an effective one-dimensional system. Also, two kinds
of time-periodic driving are considered: a short pulse (delta kicking) and a sinusoidal variation (harmonic
driving). We prove that for special strain wavelengths, the system is described by a two-level Dirac Hamiltonian.
Even though the study case is gapless, we find that topologically nontrivial flat bands emerge not only at
zero-quasienergy but also at ±π quasienergy, the latter being a direct consequence of the periodicity of the
Floquet space. Both kind of flat bands are thus understood as dispersionless bands joining two inequivalent
touching band points with opposite Berry phase. This is confirmed by explicit evaluation of the Berry phase in
the touching band points’ neighborhood. Using that information, the topological phase diagram of the system is
built. Additionally, the experimental feasibility of the model is discussed and two methods for the experimental
realization of our model are proposed.
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I. INTRODUCTION

It is a well known fact that the electronic properties of
graphene depend strongly upon the deformation field applied
to it, due, in part, to its high elastic response (about 23% of
the lattice parameter [1]). In fact, very interesting phenomena
arise from applying different kinds of deformation fields.
Among these phenomena we have band gap openings at the
Fermi level [2,3], shifts of the Dirac cones from their original
positions [2,4], localized energy edge modes [5,6], fractal-like
energy spectrum [5,7,8], merging of inequivalent Dirac cones
[5,9–11], tunable dichroism [12], anisotropic ac conductivity
[13], new and interesting transport properties [14–17], etc.
All these have opened an avenue for the emergent field of
straintronics [2,18–22], whose aim is to taylor the electronic
properties of graphene via mechanical deformations.

On the other hand, although graphene is a semimetal, it
possesses nontrivial topological properties [23]. For instance,
the zero-energy edge states observed in graphene are flat bands
that join two inequivalent Dirac cones [9]. Flat bands have their
origin in the energy spectrum, which can host lines or points
where bands touch each other at zero energy, as was first
pointed out by Volovik [23–25]. This results from the Dirac
equation topological properties. In fact, two inequivalent Dirac
cones in graphene have opposite Berry phase. Since the states
at the Dirac cone cannot be transformed into topologically
trivial states (with Berry phase equal to zero), a flat band
joining Dirac cones with opposite Berry phase emerges for
a finite system [23]. The three-dimensional (3D) version of
Dirac semimetals (usually called Weyl semimetals) also gives
rise to flat bands, known as Fermi arcs, joining Weyl points
(points at zero energy where the bands cross each other) with
opposite topological charge. These flat bands, as the ones that
emerge in Dirac semimetals, are very stable, since both of
them are protected by the bulk-edge correspondence [23].
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This is a consequence of the fact that in the neighborhood
of Weyl nodes, the effective Hamiltonian of the system can
be described by a Weyl equation. Therefore wave functions
describe Weyl fermions with opposite chirality [26], which
means that the only way to open a gap is by the annihilation of
two Weyl nodes with opposite chirality. Interestingly enough,
recent experiments have shown Fermi arcs in real condensed
matter systems [26,27].

The importance of flat bands stems from their potential to
be used in technological applications as topological quantum
computing [28]. This is possible since Dirac and Weyl nodes
always come in pairs and might have a Majorana-like nature
[29–32], which gives them robustness to weak perturbations
and decoherence [28].

Hence many theoretical condensed matter systems that
exhibit topological edge modes have been proposed, among
them, the most promising ones seem to be periodically driven
systems, studied under the Floquet approach [28,33–44].
Actually, these systems are able to host not only zero energy flat
bands but also ±π -energy flat bands [40,45]. This results from
the periodicity of the so-called quasienergy spectrum, which
arises in the frame of Floquet theory. Motivated by that, in this
article, we study the case of time periodically uniaxial strained
zigzag graphene nanoribbons (ZGNs) within the tight-binding
approach using the Floquet formalism, and, for the sake of
simplicity, in the small strain’s amplitude limit. We have found
that the case system supports two kinds of zero-quasienergy
flat bands and just one kind of ±π quasienergy flat bands.
For the zero-quasienergy flat bands, we found that one is the
well known zero edge state observed in pristine ZGNs, which is
well understood in terms of flat bands joining two inequivalent
Dirac cones with opposite chirality [23] or in terms of the Zak
phase [46]. The others arise as a consequence of the driving
and can be understood as flat bands joining touching band
points with opposite Berry phase.

The layout of this paper is the following. First we present in
Sec. II the model, then in Sec. III we present the quasienergy
spectrum obtained from numerical results. Section IV is
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devoted to explain such results using an analytical approach
based on an effective Hamiltonian. Section V contains an
analysis of the analytical found spectrum and the topological
phase diagram. In Sec. VI, we prove the nontrivial topological
properties of the modes, while Sec. VII is devoted to a
study of the experimental feasibility of our model. Finally, in
Sec. VIII, the conclusions are given.

II. PERIODICALLY DRIVEN STRAINED GRAPHENE

We start by considering a pristine zigzag graphene nanorib-
bon (ZGN) as the one displayed in Fig. 1(a). Then, we apply
an uniaxial strain field along the y direction u(y) given by

u(y) = 2λ

9
cos

[
8π

3
σ (y − 1/2) + φ

]
, (1)

which is similar to the pattern of strain that emerges when
graphene is growth on top of a different lattice substrate [7].
It is important to say that the strain field is tailored by three
parameters, namely, the amplitude (λ), the frequency (σ ) and,
finally, the phase (φ). Within the tight-binding approach and
considering the small strain’s amplitude limit the electronic
properties of an uniaxial strained ZGN are well described by
the following effective one-dimensional (1D) Hamiltonian [7]

H (kx) =
N−1∑
j=1

[γ2j a
†
2j+1b2j + c(kx) γ2j−1a

†
2j−1b2j ] + H.c.,

(2)
where c(kx) = 2 cos (

√
3kx/2), a is the interatomic distance

between carbon atoms, kx is the crystal momentum in x

direction, aj (bj ) annihilates an electron at the j th site in the
sub lattice A (B) along the y direction, and N is the number
of atoms within the unit cell (see Fig. 1). Finally, the hopping
parameters are given by

γj = γ0 + λ γ0ξ (j + 1) sin [πσξ (j )] sin (2πσj + φ), (3)

where ξ (j ) = 1 + (−1)j /3 and γ0 = 2.3 eV is the hopping
parameter for unstrained graphene. Frequently, we will use
a (the interatomic distance between carbon atoms) as the
unit of distance and γ0 as the unit of energy, although, when
necessary we will explicitly write them. Having said that, let
us introduce the time dependence to the model. That will be

done by considering the following driving layout:

γj (t) =
{
γ0 if t < mod(t,T ) < t1
γj if t1 < mod(t,T ) < T

, (4)

where T is the period of the driving and t1 is in the
range 0 < t1 < T . This leads to the following time-dependent
Hamiltonian:

H (kx,t) =
N−1∑
j=1

[γ2j (t) a
†
2j+1b2j + c(kx) γ2j−1(t)a†

2j−1b2j ]

+ H.c. (5)

The previous Hamiltonian describes a system for which the
strain field is turned on during the interval (t1,T ) and it is
turned off whenever t is on the range (0,t1). We will consider
the case of short pulses, this is, t1 → T . As long as the product
of the kicking amplitude (here represented by the parameter
λ, the strain’s amplitude) and the duration of the pulse T − t1
are kept constant, the kicking can be approximated by a Dirac
delta function if the t1 → T limit is considered. This kind
of kicking layout can be hard to be reached in experimental
conditions, therefore, we discuss the experimental feasibility
of our model in a special section (see Sec. VII), therein, we
also study a more realistic kind of driving: harmonic driving.
However, it is worth mentioning that many theoretical papers
consider a quite similar kind of kicking [41,47–52].

From here, we will study the t1 → T limit, then the driving
protocol can be written as

γj (t) = γ0 +
∑
m

δ(t/T − m)γ0λξ (j + 1)

× sin [πσξ (j )] sin(2πσj + φ), (6)

where m is an integer number and T is the period of the driving.
An schematic layout of the driving is shown in Fig. 1. Therein,
it can be seen that the strain field is turned on for t = mT

whereas is turned off for different times (this is, for t �= mT ).
The advantage of considering kicking systems relies in the

fact that the time evolution operator defined as

U (T ) |ψk(t)〉 = |ψk(t + T )〉 , (7)

(a) (b)

FIG. 1. Layout of the periodically driven strained zigzag graphene nanoribbon. Basically, the strain field is turned off (a) whenever that
t �= mT , where T is the driving period and m is an integer number. The strain field is turned on for t = mT , as shown in (b). Since the strain
field depends only upon the y direction, the zigzag graphene nanoribbon can be mapped onto an effective one-dimensional system, which is
represented by linear chains in the figure. The dots indicate the position of the atoms on each graphene/linear chain row.
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where |ψk(t)〉 is the wave function of the system for a given k,
can be written in a very simple manner:

U (τ ) = T exp

[
−i

∫ T

0
H (kx,t) dt/h̄

]
= exp (−iτH1) exp (−iτH0), (8)

where T denotes the time ordering operator, τ ≡ T/h̄, and

H0(kx) = γ0

N−1∑
j=1

[a†
2j+1b2j + c(kx) a

†
2j−1b2j ] + H.c.

H1(kx) =
N−1∑
j=1

[δγ2j a
†
2j+1b2j + c(kx) δγ2j−1a

†
2j−1b2j ]

+ H.c. (9)

with δγj = γj − γ0. In general, Hamiltonians H1 and H0 do
not commute, therefore, it is common to study the properties of
the system through an effective Hamiltonian given by U (τ ) =
exp (−iτHeff), which has eigenvalues exp (−iτω), where τω is
called the quasienergy of the system. Note that the product τω

is defined up to integer multiples of 2π due to the periodicity
of the Floquet space. Our periodically driven model (5) is very
rich, since it has four parameters, three owing to the strain field
(λ, σ , and φ) and one to the driving (τ ).

Even though one can study the system for different values
of σ and φ we will focus on the case σ = 1/2 and φ = 4πσ/3,
because this case has very interesting features and makes
possible to perform analytical calculations. For these values of
σ and φ, the hopping parameter takes the following form:

γ2j−1 − γ0 = −λ,

γ2j − γ0 = λ/2. (10)

This means that the Hamiltonian H1 is on a critical line that
separates two distinct topological phases via the parameter λ in
the time-independent case. In such a case, for λ < λC = 0.4,
the system is on a nontrivial topological semimetal phase (i.e.,
the system is gapless, there are Dirac cones) and it is able to
host edge modes [23]. For λ > λC , the system is on a normal
Zak insulator phase (there are no Dirac cones and the system
is gapped, however there still being zero energy edge states
[9,10]). It is interesting to see what happens at the critical value
λC . At that point, two inequivalent Dirac cones have merged
and the dispersion relation has an anomaly, in the sense that
it is quadratic in one direction, whereas in the other direction
remains linear [5]. However, we have used the approximation
of small strain’s amplitude, so we are interested on λ � λC .
The main reason for consider this is that provides a great
simplification on theoretical calculations, moreover, it is much
simpler to obtain small strain’s amplitude in experimental
setups.

Once that the model has been described, the next step is
to analyze the quasienergy spectrum as a function of τ (the
driving period) keeping σ , φ, and λ constant. The results of the
numerical analysis, obtained by the numerical diagonalization
of Eq. (8), are discussed in the next section.

III. QUASIENERGY SPECTRUM: NUMERICAL RESULTS

We begin the study of the physics properties of the system
by constructing the matrix representation of U (τ ), Eq. (8),
then we obtain its eigenvalues by numerical diagonalization.
In all cases presented here we studied ω as a function of kx and
τ , using σ = 1/2 and φ = 4πσ/3 for a system of N = 240
sites per unit cell, and imposing fixed boundary conditions.
The resulting quasienergy spectrum is shown in Fig. 2 for a
cut at kx = 0 using λ = 0.1. For small τ , the spectrum has a
central gap that grows linearly with τ . As can be seen in such
figure, the outer band edges also grow linearly with τ . Then,
when τ reaches a critical value, denoted by τc, the outer edge
bands touch the limit of the first Brillouin zone of the Floquet
space. At that point, flat bands emerge at ±π quasienergies,
these bands are labeled by red solid lines in Fig. 2. If we
continue increasing τ , we will reach the point τ = 2τc, at
which the outer edge bands will touch each other again and a
new flat band appears at zero quasienergy (denoted by green
solid lines, see Fig. 2). The flat nature of these bands and the
fact that they are separated by a finite gap from the other bands
suggest that they are due to surface effects. Moreover, since
these states emerge at crossing band points, they have a similar
origin as the edge states that appear in the Shockley model
[38,53–55], which always come in pairs and can have an exotic
Majorana-like nature. Actually, these kind of edge states have
been predicted to appear in a 1D s-wave superconductor wire
[36]. However, our system is two dimensional (2D), therefore
we expect that edge modes that appear in Fig. 2 give rise to
flat bands in the band structure, each of these flat bands made
out of Majorana-like modes.

To confirm the previous conjecture, we plotted the
quasienergy spectrum as a function of kx for τ = 3 (see Fig. 3)
and τ = 5.28 (see Fig. 4) under the same conditions of Fig. 2.
In panels (b) of Figs. 3 and 4, we show the amplitude of the
wave functions with flat dispersion for kx = 0. Note that these
states are localized near the edges of the unit cell and that they
come in pairs. Additionally there is a finite gap (although not a
full gap) that separates such states from the rest bands, which

FIG. 2. Quasienergy spectrum numerically obtained from the
eigenvalues of the matrix representation of Eq. (8). For making
the plot, we have used kx = 0, λ = 0.1, σ = 1/2, and φ = 4πσ/3,
N = 240 and fixed boundary conditions. Note that at certain values of
τ the bands touch each other at τω(0,ky) = 0, ±π . At such points flat
bands emerge, indicated in the figure by red solid lines for τω = ±π

and by green solid lines for τω = 0.
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(a)

(b)

(c)

FIG. 3. (Top) Quasienergy band structure as a function of kx for
λ = 0.1, σ = 1/2, φ = 4πσ/3, and τ = 3. We have flat bands at zero
and ±π quasienergies. Note that for τω = 0 there are two types of
flat bands, ones having a time-independent origin (yellow solid lines)
and the others having a time-dependent origin (green solid lines), this
is explained in the main text. The index n indicates the corresponding
region in the topological phase diagram and the types of edge states.
For odd n, we have τω = ±π states (red color), while n even indicates
zero-quasienergy edge states (green color). The case n = 0 stands for
time-independent edge states at τω = 0 (yellow color). In panel b),
two wave functions amplitude for τω = 0 and τω = π using kx = 0
are shown. The amplitudes follow the same color code as in (a). (c)
The quasienergy value is presented as a function of the quasienergy
eigenvalue number for kx = 0.

suggests that they have nontrivial topological properties and
that they posses a Majorana-like nature. Furthermore, we can
see three kinds of edge states, one at ±π quasienergy (indicated
by I in solid red lines) and the others as zero quasienergy
(indicated by II in yellow and green solid lines). The yellow
flat bands, as we will discuss below, are the well known zero
edge modes that emerge in a finite pristine ZGN due to edge
effects and have nothing to do with the driving, whereas the
other ones (the green and red ones) are a consequence of the
driving. It is important to mention that flat bands are very
robust under the driving. Note that flat bands always emerge
from touching band points either at ±π or zero quasienergy,
which suggests that the origin of them is quite similar to that of
Fermi arcs, which join two different Weyl points (i.e., points on
the momentum space at where energy vanishes) with opposite
chirality [56]. To confirm or refuse that conjecture, a more
detailed analysis is required. The next section is devoted to
that aim.

IV. ANALYTICAL STUDY OF THE QUASIENERGY
SPECTRUM

Once the numerical results have been established, we
will proceed to explain them analytically. This will be done

(a)

(b)

(c)

FIG. 4. (Top) Quasienergy band structure, made under the same
conditions of Fig. 3 but using τ = 5.28. The label n indicates the
corresponding region in the topological phase diagram and the types
of edge states. For odd n, we have τω = ±π states (red color), while
n even indicates zero-quasienergy edge states (green color). The case
n = 0 stands for time- independent edge states at τω = 0 (yellow
color). In (b), we show the wave function amplitudes for edge states
at kx = 0 using the same color code as in (a). In (c), we present
the quasienergy value as a function of the number of quasienergy
eigenvalue.

by studying the quasienergy spectrum for σ = 1/2 and
φ = 4πσ/3, imposing cyclic boundary conditions in the y

direction. This is possible because for σ = 1/2 the hopping
parameters just take two different values [see Eq. (10)],
therefore the system becomes periodic in the y direction and
ky is a good quantum number. We proceed as usual, i.e., first,
we define the following Fourier transform for the annihilation
operators:

aj = 1√
N/2

∑
ky

e−i3kyj/2aky
,

bj = 1√
N/2

∑
ky

e−i3kyj/2bky
, (11)

and apply them into Hamiltonians H1 and H0, Eq. (12). It is
straightforward to show that the bulk Hamiltonians are given
by

H0(kx,ky) = h0(kx,ky) ĥ0 · σ,

H1(kx,ky) = h1(kx,ky) ĥ1 · σ, (12)

where σi (i = x ,y ,z) is a 2 × 2 Pauli matrix defined in the
basis where σz is diagonal. The components of h0 and h1 are

h
(x)
0 (kx,ky) = 2 cos (

√
3kx/2) + cos (3ky/2),

h
(y)
0 (kx,ky) = sin (3ky/2),
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FIG. 5. Analytical quasienergy spectrum obtained from Eq. (18).
In the vertical axis, we plot τω/π as a function of ky and τ for kx = 0,
λ = 0.1, σ = 1/2, and φ = 2π/3. Note that this figure reproduces the
quasienergy spectrum obtained numerically by a diagonalization of
the Hamiltonian, as shown in Fig. 2. However, the flat bands that
appear in Fig. 2 are missing here since this is a surface effect.

h
(x)
1 (kx,ky) = −2λ cos (

√
3kx/2) + λ

2
cos (3ky/2),

h
(y)
1 (kx,ky) = λ

2
sin (3ky/2). (13)

From this we define the norms h0 = |h0| and h1 = |h1|.
Therefore the time evolution operator, Eq. (8), is given by

U(kx,ky,τ ) = exp [−iτH1(kx,ky)] exp [−iτH0(kx,ky)],

(14)

where U (τ ) = ∑
ky
U(τ,kx,ky) ⊗ |ky〉 〈ky |. The Hamiltonians

H1(kx,ky) and H0(kx,ky) do not commute since (see Appendix)

[H1,H0] = −6iλ sin (3ky/2) cos (
√

3kx/2)σz. (15)

Yet, it is still being possible to write,

U(kx,ky,τ ) = exp [−iτHeff(kx,ky)]. (16)

Using the results obtained in Appendix, the effective Hamil-
tonian Heff(kx,ky) can be written as

Heff(kx,ky) = ω(kx,ky) ĥeff · σ, (17)

where ĥeff is a unit vector (whose explicit form is also given
in Appendix). The quasienergies of the system, ±τω(kx,ky),
are given by (see Appendix)

cos [τω(kx,ky)] = cos (τh1) cos (τh0)

−ĥ0 · ĥ1 sin (τh1) sin (τh0) (18)

with

ĥ0 · ĥ1 = λ

h1h0

[
−4 cos2 (

√
3kx/2)

− cos (
√

3kx/2) cos

(
3ky

2

)
+ 1

2

]
. (19)

Through Eq. (18), we are able to exactly reproduce the
quasienergy bands obtained by numerical calculations. For
example, in Fig. 5, we plot ω(0,ky) obtained from Eq. (18),
showing an excellent agreement with its numerical counterpart
displayed in Fig. 2. Observe that cyclic boundary conditions
were used for obtaining Fig. 5, and thus the edge states seen
in Fig. 2 do not appear.

V. TOUCHING BAND POINTS

Since flat bands emerge from touching band points at
τω = nπ (n an integer number), knowing its exact location
is crucial. This is the subject of the present section. We start
by observing that touching band points are obtained by setting
τω = nπ in Eq. (18), resulting in the condition

±1 = cos (τh1) cos (τh0)

−ĥ0 · ĥ1 sin (τh1) sin (τh0), (20)

where it is understood that the previous condition holds only
for touching bands points. We will denote such special k points
by using a star, i.e., (k∗

x ,k
∗
y ). A detailed analysis shows that

Eq. (20) is satisfied for two possible cases.
(1) The first one requires that ĥ0 · ĥ1 = ±1. This is equiva-

lent to ask ĥ0 × ĥ1 = 0. Since [H0,H1] = −3i h0h1(ĥ0 × ĥ1) ·
êz σz, the condition is equivalent to [H0,H1] = 0.

(2) The second case is ĥ0 · ĥ1 �= ±1, which is equivalent
to [H0,H1] �= 0. However, in this case, it is required the extra
condition cos (τh1) cos (τh0) = ±1.

As we will see later on, the first case ĥ0 · ĥ1 = ±1 gives
rise to edge states, which are flat bands that join a kind of Weyl
nodes with opposite Berry phase. They can emerge for small
strain’s amplitudes. Although the second case ĥ0 · ĥ1 �= ±1
also hosts edge states, such states are no longer flat bands,
instead their quasienergy varies with kx . Unfortunately, the
last kind of edge states emerge for big strain amplitude, which
make them hard to be observed. As a consequence, we will
find the location of such second case points, but we will focus
only on the topological modes resulting from the first kind of
touching band points.

A. Touching band points for ĥ0 · ĥ1 = ±1

From Eq. (18), we find that ĥ0 · ĥ1 = ±1 only if k∗
x = π/

√
3

or k∗
y = 0,±2π/3. It can be proved that the solution for k∗

x =
π/

√
3 is contained in the ones for k∗

y = 0,±2π/3. Thus we
only analyze the cases k∗

y = 0,±2π/3. By substituting k∗
y into

Eq. (18),

τω±(kx) = τ (1 + λ/2) ± 2τ (1 − λ) cos (
√

3kx/2), (21)

where the “+” sign stems for ky = 0 and the “−” sign for
ky = ±2π/3. Now we require the condition τω+(kx) = nπ

(with n an integer number) in Eq. (21) at a special kx = k∗
x .

This gives two possible values for k∗
x ,

k∗(+)
x = ± 2√

3
arccos

[
nπ/τ − (1 + λ/2)

2(1 − λ)

]
,

k∗(−)
x = ± 2√

3
arccos

[−nπ/τ + (1 + λ/2)

2(1 − λ)

]
. (22)

As before, k∗(+)
x stems for k∗

y = 0 and k∗(−)
x for k∗

y = ±2π/3.
Note that Eq. (22), for a given n, has two different solutions
for k∗(+)

x and four solutions for k∗(−)
x . It is noteworthy that since

the cosine function is bounded, such solutions will exist and
be real if and only if∣∣∣∣nπ/τ − (λ + 1/2)

2(1 − λ)

∣∣∣∣ � 1. (23)
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FIG. 6. Band edges of the quasienergy spectrum as a function of
τ , calculated using the same conditions as in Fig. 2. The upper limits
are indicated by pink solid lines and labeled by ±τω+, whereas the
lower limits are shown by orange solid lines and labeled by ±τω−.
Both limits, ±τω+ and ±τω−, were found from Eq. (21). The limits
touch each other at τc = nτ+

c or τc = nτ−
c as indicated. It is clear

that edge states emerge when two different bands touch each other,
therefore, these states have a Shockley like nature [38,53–55].

From the previous equation, we can obtain the minimum
or critical value of τ for having touching band points at
τω = ±nπ . Since we are looking for the minimum value of τ

needed to have touching band points, it is enough to consider
the equality in Eq. (23). If τc is the value at which the equality
in Eq. (23) is held, we have that

nπ/τc ± (λ + 1/2)

2(1 − λ)
= ∓1. (24)

Two kinds of critical values of τc are obtained. Either τc = nτ+
c

or τc = nτ−
c , with

τ+
c = 2π

3(2 − λ)
(25)

and

τ−
c = 2π

|5λ − 2| . (26)

Now we explain why there are two critical values of τ .
Basically, nτ+

c gives the touching band points that arise from
the crossings between ±τω+(kx), as indicated in Fig. 6 for
the quasienergy spectrum as a function of τ for λ fixed and
kx = 0. It is important to say that whenever τ reaches a critical
value nτ+

c , a new pair of touching band points appear. Notice
that this argument explains the shape of the plot presented for
the numerical results of Fig. 2. From Figs. 2 and 6, is clear
that edge states emerge when two different bands touch each
other. These states have a Shockley-like nature [38,53–55].

In a similar way, if τ is increased from zero, the quasiener-
gies ±τω−(kx) will reach the edges of the Floquet space. This
will happen at τ−

c , where τ−
c > τ+

c , see Fig. 6. As before,
if τ increases up to 2τ−

c , then τω− and −τω− will touch
each other at zero quasienergy. New touching band points will
appear each time that τ reaches nτ−

c .

FIG. 7. Topological phase diagram, where the colors indicate re-
gions of different maximal allowed n. Here the number of topological
nontrivial edge states increases with n. The phase boundaries are
determined from Eq. (25) and Eq. (26), using τ = nτ+

c and τ = nτ−
c .

The shaded region with magenta lines corresponds to nonflat band
phases given by the condition ĥ0 · ĥ1 �= 1. Phases with λ < 0.4, as
indicated by the horizontal line, are nongapped at zero quasienergy
for τ < 2τ+

c .

Therefore the number of pairs of touching band points will
depend upon τ and λ. By plotting Eq. (23) for different values
of n, the phase diagram of the system can be built. In Fig. 7,
such diagram is displayed. Therein, each color represents a
phase of the system with the indicated allowed values of n.
For instance, for λ � 0.4, the white color indicates just two
pairs of touching band points, since only one value of n is
allowed. On the other hand, for the violet color and λ � 0.4,
there are two touching band points pairs since n = 0,1, or in
other words, there are two allowed values for n.

Up to now, we have found the location of touching band
points at τω(k∗

x ,k
∗
y ) = ±nπ , but a more detailed analysis

is needed since two cases are of great interest. Firstly, the
case n = 0, which give rise to touching band points at zero
quasienergy at any value of τ , suggesting that such points
have a time-independent origin. Secondly, n �= 0, i.e., touching
band points at zero or ±π quasienergy. The emergence of such
points depend upon the value of τ and λ as can be seen in Fig. 7.

First, we will study time-independent touching band points.
By setting n = 0 in Eq. (22), we obtain

k∗(−)
x = ± 2√

3
arccos

[
1 + λ/2

2(1 − λ)

]
. (27)

Therefore there are two touching band points pairs for n = 0,
one pair for each value of k∗

y , both located at ±k∗
x . Moreover,

from Eq. (27), we found that these points are Dirac cones
shifted from their original position due to the strain field.
As we will see in the next section, this kind of touching
band points will give rise to flat bands if the system is
considered to be finite. For illustrating purposes, in Figs. 8
and 9, we present the band structure obtained using the
analytical effective Hamiltonian quasienergies given by Eq.
(18). Therein the Dirac cones for n = 0 are indicated by yellow
points.

It is important to say that Dirac cones undergo a phase
transition as λ is increased in the time-independent case. For
λ < λC = 0.4, there are two Dirac cones, indicated in Fig. 7
by a horizontal line at λC . When λ reaches λC , the Dirac cones
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(a)

(b)

(c)

(d)

FIG. 8. (Left) Band structure obtained using the analytical effec-
tive Hamiltonian quasienergies given by Eq. (18) for (a) τ = 1.5τ+

c

and (b) τ = 2.5τ+
c using λ = 0.1. On the right, in (c) and (d), we show

upper views of the same band structures. Therein, the touching band
points are clearly seen. In (c), corresponding to τ = 1.5τ+

c there are
two touching band points for τω = 0 and another pair at τω = ±π ,
which are denoted by yellow and red dots, respectively. As is proven
in the main text, the yellow dots are Dirac cones vertices, which have a
time-independent origin. On the other hand, red touching band points
have a time-dependent origin. For τ = 2.5τ+

c [see (b)], the touching
band points are at τω = 0 (label n = 2) and at τω = ±π (label
n = 1). The Dirac vertices remain the same as in (a), corresponding
to n = 0.

merge at a single point and, finally, for λ > λC the energy
spectrum becomes gapped.

Here we are interested just in λ � λC , hence the gap
opening is far away from this limit. Additionally, our system
cannot become gapped since for τ � 2τ+

c , touching band

(a)

(b)

(c)

(d)

FIG. 9. (Left) Band structure obtained using the analytical effec-
tive Hamiltonian quasienergies given by Eq. (18) for (a) τ = 3 and (b)
τ = 5.28 using the same conditions as in Fig. 8, λ = 0.1. On the right
panel, upper views of the same band structure are shown. Note that in
(a), we have τ < τ−

c , therefore there are two pairs of touching band
points at ±π quasienergy. On the other hand, in (b), we have τ > τ−

c

and two new pairs of touching band points appear at quasienergy ±π ,
see main text. The parameters used for making this plot are the same
as those used in Figs. 3 and 4, in which a numerical diagonalization of
the Hamiltonian was performed. This plot confirms that the numerical
and analytical calculations are in excellent agreement.

points will emerge at zero quasienergy, avoiding the opening
of a full gap.

Second, we study the time-dependent touching band points
(n �= 0). Two different types of touching band points emerge
depending on the value of n. Since for touching band points
we have that τω(kx∗,k∗

y ) = nπ , it follows that U(k∗
x ,k

∗
x ,τ ) =

(−1)n. For odd n, we have U(k∗
x ,k

∗
x ) = −1, this means that,

due to the Floquet periodicity, touching band points at ±nπ -
quasienergy (n being an odd integer) are equivalent to touching
band points at ±π quasienergy. Similarly, for even n we
have U(k∗

x ,k
∗
x ) = 1, which implies that touching band points at

±nπ quasienergy (n being an even integer) are equivalent to
touching band points at zero quasienergy. In Figs. 8 and 9, we
labeled touching band points for odd n by red dots, whereas
touching band points for even n are labeled by green points.
The touching band points always come in pairs for a given
value of n, as can be inferred from Eq. (22). These different
kinds of points lead to different edge states as indicated in
Figs. 3 and 4. Therein, green flat bands result from joining a
pair of touching band points for even n. Red flat bands join
pairs of odd n touching band points.

B. Touching band points for ĥ0 · ĥ1 �= ±1

Let us start by finding the location of these kind of touching
band points. We first set τh1 = m1π and τh0 = n1π , where
m1 and n1 are integer numbers. Then, after some algebraic
operations, one gets

k∗
y = 2

3
cos−1

⎡
⎢⎢⎣

π2n2
1

6τ 2 − m2
1π

2

6τ 2λ2 − 1
8√

π2

3τ 2

(
m2

1
2λ2 + n2

1
4

)
− 1

8

⎤
⎥⎥⎦,

k∗
x = 2√

3
cos−1

⎡
⎣
√

π2

3τ 2

(
m2

1

2λ2
+ n2

1

4

)
− 1

8

⎤
⎦. (28)

In order to have real-valued k∗
x and k∗

y , the following conditions
must be fulfilled altogether:

0 � π2

3τ 2

(
m2

1

2λ2
+ n2

1

4

)
− 1

8
� 1,

∣∣∣∣∣∣∣∣
π2n2

1
6τ 2 − m2

1π
2

6τ 2λ2 − 1
8√

π2

3τ 2

(
m2

1
2λ2 + n2

1
4

)
− 1

8

∣∣∣∣∣∣∣∣
� 1. (29)

Therefore the phase diagram shown in Fig. 7 has to be
modified, since the previous constrictions add new phases to
the system. In the phase diagram shown in Fig. 7, these new
phases appear in the shadowed area. The different phases are
separated by the magenta curves. However, such values of
strain are difficult to achieve so in the present work we skip
the analysis of their topological properties.

VI. TOPOLOGICAL NATURE OF EDGE STATES

The topological characterization of the flat bands for
ĥ0 · ĥ1 = ±1 will be done in this section. To do that, we will
calculate the Berry phase around the touching band points
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found before. The Berry phase is defined as

γC =
∮

C

A · dk, (30)

where A = −i 〈ψk| ∇k |ψk〉 is the so-called Berry connection
(a gauge invariant quantity), and ∇k = (∂kx

,∂ky
) is the gradient

operator in the momentum space. We follow a four steps
method to calculate such quantity. First, we note that exactly
at the touching band points with ĥ0 · ĥ1 = ±1, commutator
(15) vanishes. This means that near the touching band points
[H1,H0] ≈ 0, so we can approximate the time evolution
operator Eq. (14) as

U(kx,ky,τ ) ≈ exp {−iτ (H1 + H0) + τ 2[H1,H0]/2}, (31)

where we used the Baker-Campbell-Hausdorff formula keep-
ing terms up to order τ 2. The second step is to expand
U(kx,ky,τ ) around the neighborhood of touching band points,
i.e., we calculate the Taylor series of U(kx,ky,τ ) around
kx = k∗

x and ky = k∗
y .

After some algebraic manipulations, we obtain

U(qx,qy,τ ) ≈ exp [−ihT ĥT · σ ], (32)

where

hT = A(λ,τ ) qx êx + B(λ,τ ) qy êy + C(λ,τ ) qy êz, (33)

with qx = kx − k∗
x , qy = ky − k∗

y , ĥT = hT /hT , hT = |hT |,
and

A(λ,τ ) = nπ +
√

3(λ − 1)τ

√
1 + (1 + λ/2 − nπ/τ )2

4(λ − 1)2
,

B(λ,τ ) = 3

4
(2 + λ)τ,

C(λ,τ ) = 9λτ [(2 + λ)τ − 2nπ ]

8(λ − 1)
. (34)

The topological properties of the system around the touching
band points are given by the approximated effective Hamil-
tonian ĥT · σ . To see that, note that near the touching band
points hT ≈ ±nπ , the time evolution operator Eq. (32) can be
expanded as

U(qx,qy,τ ) = cos (hT ) − i(ĥT · σ ) sin hT

≈ 1 − hT (ĥT · σ ).
(35)

Hence all the topological features of the system will be given
by (ĥT · σ ). The third step is to find the eigenvectors of (ĥT · σ ).
It can be proven that they are given by the following spinors:

|ψ↑
q ′ 〉 = 1√

2

⎛
⎜⎝

√
1 + C q ′

y

B hT

eiξαq′
√

1 − C q ′
y

B hT

⎞
⎟⎠,

|ψ↓
q ′ 〉 = − 1√

2

⎛
⎜⎝e−iξαq′

√
1 − C q ′

y

B hT

−
√

1 + C q ′
y

B hT

⎞
⎟⎠, (36)

where ξ can take the values ξ = +1 which corresponds to
+k∗

x and ξ = −1 to −k∗
x . We have used a new set of variables

defined by

q ′
x = qx/A,

q ′
y = qy/B, (37)

and αq ′ is given by

αq ′ = tan−1

(
q ′

y

q ′
x

)
. (38)

The four step is to compute the Berry phase directly from
the definition, Eq. (30). We start by calculating the Berry
connection for ξ = 1. We obtain that

A = 1

2

(
1 − C

B hT

q ′
y

)
∇q ′αq ′ , (39)

where

∇q ′αq ′ = −q ′
y êx + q ′

x êy

(q ′
x)2 + (q ′

y)2
. (40)

Finally, we just calculate the Berry phase along a circum-
ference centered at q ′

x = q ′
y = 0. By using polar coordi-

nates, q ′
x = q ′ cos θ and q ′

y = q ′ sin θ where (q ′)2 = (q ′
x)2 +

(q ′
y)2, we obtain

γC =
∫ 2π

0
A · dq′

= 1

2

∫ 2π

0

⎛
⎝1 −

C
B

sin θ√
1 + C2

B2 sin2 θ

⎞
⎠dθ = π. (41)

A similar calculation can be done for ξ = −1, which gives
γC = −π . Now the origin of the flat bands is clear, as they
have a similar origin as for flat bands on Weyl semimetals,
i.e., they are Fermi arcs which join two inequivalent Dirac
cones with opposite Berry phase. However, for the special
cases of resonant driving τ = nτ+

c , there is always one
touching point at k∗

x = 0 and k∗
y = 0,±2π/3. It has 0 or ±π

quasienergy depending on n (with n �= 0). At this point, the
Berry phase is equal to zero. If we increase τ by a small
amount, such point splits in two touching band points with
opposite Berry phase. Hence, if the considered system is finite,
an edge state joining such points will emerge, as it happens in
pristine graphene nanoribbons or in Weyl semimetals. For the
particular case n = 0, touching band points are the same as
in the time-independent case, thus their topological properties
are the same as in zigzag graphene nanoribbons, namely, a
flat band joining two inequivalent Dirac cones with opposite
Berry phase emerges [23,57]. Although commutator (15) is
zero at the touching band points studied here, away from such
points, commutator (15) is no longer zero but proportional to
σz, in other words, a masslike term appears and a gap between
touching band points is open.

Finally, the range where edge states will emerge can be
inferred from Eqs. (21) and (22), for n = 0 is given by
|kx | � k∗(−)

x . For edge states with n �= 0, the interval where
they appear in momentum space is given by the intersection
of the solutions of |kx | � k∗(+)

x and |kx | � k∗(−)
x . Then, we can

create touching band points just by increasing the period of the
driving τ . In the next section, we will discuss the experimental
feasibility of the model studied here.
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(a)

(b)

FIG. 10. Experiments proposed to observe topological flat bands
in strained ZGN. As is shown, this can be achieved by placing a
graphene monolayer over hexagonal boron nitride (h-BN). Then, the
substrate can be moved up and down (a) or twisted (b) via a fast
motor.

VII. EXPERIMENTAL FEASIBILITY

In this section, we discuss the experimental feasibility of
our model. We start by making a numerical estimation of the
kicking frequency needed to observe the results obtained here.
From Eq. (25), the critical value of the driving period at which
topological flat bands emerge is

T = 2πh̄n

3(2 − λ)
. (42)

By introducing the numerical values, we obtain a driving
period of T ≈ n × 10−16 s. This kicking period is too small
to be applied, however, it grows with n, so for n = 10,
we have T ≈ 10−15 s. To observe this kind of effect, some
experiments can be proposed. The first kind that one can
imagine is to apply a time-dependent stress at the boundaries
of the graphene membrane. Unfortunately, this experiment
will not be able to discern the proposed effects, since stress
is transmitted within graphene by phonons, which have a
frequency very close to the proposed kicking frequency. This
kind of experiment does not exhaust the options. We propose
two different kinds of experiments to achieve such driving
period. They are shown in Fig. 10, the first one, panel (a),
consists of a graphene monolayer above an hexagonal boron
nitride (h-BN) substrate, the substrate can be moved up and
down by using different kinds of fast devices. In Fig. 10(a),
the distance between graphene and h-BN, denoted by l(t),
is time-dependent. Similarly, the h-BN can be periodically
twisted by an angle θ (t), as is shown in Fig. 10(b). The
advantages of these experiments is that the strain field is
applied at the same time at all lattices sites, and thus phonons
are not needed to produce the strain field.

On the other hand, the delta kicking can be hard to be
experimentally realized. Let us consider a more realistic kind
of driving: harmonic driving. In particular, we chose a cosine
time modulation given by

γj (t) = γ0 + cos (�t)γ0λξ (j + 1)

× sin [πσξ (j )] sin(2πσj + φ). (43)

Then, we can write the time-dependent Hamiltonian of the
system as

H (t) = H0 + cos (�t)H1, (44)

where

H0 = γ0

N−1∑
j=1

[a†
2j+1b2j + c(kx) a

†
2j−1b2j ] + H.c.,

H1 =
N−1∑
j=1

[δγ2j a
†
2j+1b2j + c(kx) δγ2j−1a

†
2j−1b2j ]

+ H.c., (45)

where δγj = γj − γ0, see Eq. (10). Since H (t + T ) = H (t)
(here T = 2π/�), the Floquet theorem indicates that the wave
functions of H (t) can be written in terms of the fundamental
frequency � as

|ψn j (k,t)〉 = e−iεn(k) t/h̄

∞∑
m=−∞

∣∣ϕ(m)
n,j

〉
eim�t , (46)

where the coefficients |ϕ(m)
n,j 〉 at site j satisfy the time-

independent Schrödinger equation [58],∑
j ′,m′

Hm,m′
j,j ′

∣∣ϕ(m′)
n,j ′

〉 = εn

∣∣ϕ(m)
n,j

〉
, (47)

where H, called the Floquet Hamiltonian, is given by

Hm,m′
j,j ′ = m�δm,m′ + 1

T

∫ T

0
e−i(m−m′)�tH (t) dt. (48)

Note that Eq. (47) has solutions for each value of k all over
−∞ � εn � ∞. For our purposes, it is enough to consider just
the first Brillouin zone of the Floquet space, i.e., −π�τεn�π ,
with τ = T/h̄.

For a Hamiltonian given by Eq. (44), the Floquet Hamilto-
nian, Eq. (48), has a block trigonal form [58], where each block
is a N × N matrix. As a first approximation, the quasienergy
spectrum is well described by considering [58] −1 � m � 1.
In Fig. 11, we present the quasienergy spectrum of Hm,m′

j,j ′
for −1 � m � 1, λ = 0.1, τ = 3, σ = 1/2, φ = 4πσ/3, and
N = 240, calculated using fixed boundary conditions. As
can be seen, time-independent flat bands still emerge at
zero quasienergy, but the time-dependent flat bands at zero
quasienergy are almost within the bulk spectrum (see Fig. 11,
where such states are indicated by solid green lines). However,
edge states at the edges of the first Brillouin zone of the Floquet
space are still emerging, but they are no longer flat bands, in
fact they have a small curvature as can be seen in Fig. 11,
where such edge states are labeled by solid red lines. From
the numerical results it seems that the gap that separates edge
states from the bulk tends to be reduced by introducing a cosine
modulation. To clarify that point let us make a comparison
between the gaps that separate flat bands from the bulk states
for delta and harmonic driving. We chose edge states around
±π quasienergy since for these states there is a well defined
gap. At kx = 0, the gap is � ≈ 0.1 eV for the delta-kicking
and � ≈ 0.05 eV for the harmonic driving. This means that
the gap obtained for the delta kicking is twice the one obtained
for cosine kicking. Therefore, for the harmonic driving, the
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FIG. 11. Quasienergy spectrum obtained from Eq. (48) using
τ = 3, λ = 0.1, σ = 1/2, φ = 4πσ/3, and N = 240 using fixed
boundary conditions. Edge states for n = 0 (time-independent edge
modes at zero quasienergy) are indicated by solid yellow lines,
whereas time-dependent edge states for τε = ±π (τε = 0) are
represented by solid red (green) lines. Note that the gaps separating
time dependent edge states are smaller than the ones obtained by
using a delta kicking, see Fig. 3. In addition, edge states, at ±π

quasienergy, are no longer flat bands but dispersive edge modes.

experimental observation of edge states is harder. Even in
the worst scenery, where the experiments proposed cannot
be achieved, artificial lattices are good candidates for the
experimental realization of our model, since in such lattices the
hopping parameters can be tuned at will [59–64]. Also, there is
a recent proposal to use light to induce strain in graphene [22],
which is in the order of the required time-deformation driving.

VIII. CONCLUSIONS

We have found topological nontrivial flat bands in time
periodically driven strained graphene within the Floquet
approach and in the limit of small strain’s amplitude. This
result was obtained using analytical calculations and compared
with numerical calculations. An excellent agreement was
found between them. Flat bands were understood as a kind
of Fermi arcs joining nodal points (points at which the
quasienergy spectrum takes zero or ±π values). Such points
were characterized and have found to posses opposite Berry
phases, which explains the emergence of flat bands between
them. Moreover, our model provides a very simple picture
about the emergence of such kind of flat bands in more
complicated models and gives a very simple way to count
the number of flat bands. Additionally, the experimental
feasibility of the model was discussed and a more realistic time
perturbation was studied. We found that, in the presence of a
more realistic sinusoidal time perturbation, the main results of
the paper are not modified: we still found edge states at zero
and ±π quasienergy, although they are no longer flat bands.
In addition, the gap that separates edge states from bulk states
is bigger when a delta kicking driving is applied. In fact, the
gap for harmonic driving is reduced almost to a half of the gap
observed in delta driving.

ACKNOWLEDGMENTS

This project was supported by DGAPA-PAPIIT Project No.
102717. P. R.-T. acknowledges financial support from Consejo
Nacional de Ciencia y Tecnología (CONACYT) (México).

APPENDIX

First of all, let us calculate the commutator between H1 and
H0 given by Eq. (12). We have

[H1,H0] = [
h

(x)
1 σx + h

(y)
1 σy,h

(x)
0 σx + h

(y)
0 σy

]
= h

(y)
0 h

(x)
1 [σx,σy] + h

(x)
0 h

(y)
1 [σy,σx]

= 2i
(
h

(y)
0 h

(x)
1 − h

(y)
1 h

(x)
0

)
σz

= −6iλ sin (3ky/2) cos (
√

3kx/2)σz. (A1)

Even though H1 and H0 do not commute, we can write
equation (8) as

U (kx,ky,τ ) = exp [−iτHeff(kx,ky)]. (A2)

To do that, we will use the addition rule of SU(2), namely,

eia(n̂·σ )eib(m̂·σ ) = e−ic(ĝ·σ ). (A3)

Here,

cos c = cos a cos b − n̂ · m̂ sin a sin b (A4)

and

ĝ = 1

sin c
(n̂ sin a cos b + m̂ sin b cos a − n̂ × m̂ sin a sin b).

(A5)

In our case, we have that the Hamiltonians H1 and H0 can
be written as

H0(kx,ky) = h0(kx,ky)ĥ0 · σ,

H1(kx,ky) = h1(kx,ky)ĥ1 · σ, (A6)

where

ĥ0 = 1

h0

(
h

(x)
0 (kx,ky)êx + h

(y)
0 (kx,ky)êy

)
,

ĥ1 = 1

h1

(
h

(x)
1 (kx,ky)êx + h

(y)
1 (kx,ky)êy

)
, (A7)

and

h0 = ∣∣h0(kx,ky)
∣∣ =

√(
h

(x)
0

)2 + (
h

(y)
0

)2
,

h1 = ∣∣h1(kx,ky)
∣∣ =

√(
h

(x)
1

)2 + (
h

(y)
1

)2
, (A8)

where we have not written the explicit dependence on kx and
ky of h0, h1, h0, and h1 for the sake of simplicity.

Now, using the last part of equation (A3), the time evolution
operator Eq. (8) takes the following form:

U (kx,ky,τ ) = e−iaτ (ĥ1·σ )e−ibτ (ĥ1·σ ) = e−iωτ (ĥeff ·σ ). (A9)

As we can see, by using the addition rule of SU(2) the time
evolution operator is diagonalized. The quasienergies can be
obtained from Eq. (A4) and are given by

cos [τω(kx,ky)] = cos (τh0) cos (τh1)

−ĥ1 · ĥ0 sin (τh0) sin (τh1), (A10)
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where

ĥ1 · ĥ0 = λ

h0h1
[−4 cos2 (

√
3kx/2)]

+ λ

h0h1

[
− cos (

√
3kx/2) cos

(
3ky

2

)
+ 1

2

]
. (A11)

The unit vector ĥeff can be obtained from Eq. (A5), we have

ĥeff = − 1

sin (τω)
[ĥ1 sin (τh1) cos (τh0)]

− 1

sin (τω)
[ĥ0 sin (τh0) cos (τh1)]

− 1

sin (τω)
[ĥ1 × ĥ0 sin (τh1) sin (τh0)] (A12)

with

ĥ1 × ĥ0 = 3λ

h0h1
[sin (3ky/2) cos (

√
3kx/2)] êz. (A13)

Finally, the effective Hamiltonian is

Heff(kx,ky) = ω(kx,ky) ĥeff · σ. (A14)
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