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DIRECTOR: DR. GERARDO GARCÍA NAUMIS
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que me brindó en cada etapa del proceso de investigación y redacción del presente trabajo.

También quiero mencionar que, gracias al apoyo económico brindado por el CONACyT en
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Abstract

Tropical cyclones are one of the most fascinating, organized atmospheric systems. They are,

together with the climate, a benchmark of complex systems. This means that they are composed

of many subsystems and every element that forms the whole interacts with each other in different

ways. The aim of this thesis was to analyze annual tropical cyclone activity in the Northwest

Pacific using the accumulated cyclone energy index. Methods stemming both from statistics and

nonlinear dynamics were used to perform analyses of time series coming from chaotic systems

and stochastic processes as well as observational data on the accumulated cyclone energy of the

Northwest Pacific basin. More specifically, the statistical tools used were: probability density

function, autocorrelation function and rank-ordering representation. The nonlinear approach

studied the Hurst exponent, reconstructed the phase space and estimated the fractal dimension

of the underlying attractor. The main results were that the data seem to have two dynamical

states and that they present antipersistent behavior similar to a stochastic process. The tools

used to analyze the observational data delivered inhomogeneous results. This may be due to the

length of the data sets as statistical and nonlinear dynamics tools usually require large amounts

of data points to deliver reliable results. Even with the limitations introduced by the length

of the data set, the conclusions that can be reached provide an insight into the general state

of tropical cyclone activity. A natural progression of this work is to extend these analyses to

different basins and, ultimately, to global tropical cyclone activity.
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Chapter 1

Introduction

The climate system is extremely complicated as it is composed of a myriad of elements and

it functions over multiple spatial and temporal scales. Many interconnected subsystems make

up the climate system, among which are the atmosphere, hydrosphere, cryosphere and others.

These subsystems, in turn, interact very strongly with each other, presenting new characteristics

at different scales [1]. The climate, along with its subsystems, is driven by the action of external

agents, such as solar radiation and the rotation of the Earth [2]. The number of components,

together with their interactions and external forcings, make the study and understanding of the

climate and its phenomena a challenging task [3], [4].

In addition to the scientific understanding of the climate system, there is a variety of phe-

nomena that make this study a pressing issue. Tropical cyclones are one of such phenomena.

They are one of the most devastating natural phenomena on the planet, costing lives and wreak-

ing havoc[5], [6]. A further pressing issue, which makes it yet more important to understand the

climate system, is global warming. The exact effects that anthropogenic activity and emissions

have or will have on the climate system and its associated phenomena are not yet known [7],

[8]. In particular, tropical cyclone intensities are expected to increase globally [9], as well as the

proportion of tropical cyclones that reach very intense levels [10], [11]. Additionally, hazards

that are connected to tropical cyclone activity are projected to become more severe, such as sea
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level rise, tropical cyclone rainfall rates, among others [12].

The vastness of components mentioned earlier, together with their interactions and novel

behavior, mean that the climate system is not only complicated, it is complex [1], [13]–[15].

These reasons make it clear that a new approach to tackle the study of such a complex system

as the climate is needed. This new way of thinking is called complexity science [16], [17].

The standard approach to study the climate system and its associated phenomena has been

to deal with it as a complicated system, rather than a complex one [18]. Traditionally, the aim

of studying the climate system has been to predict its state in a future time. This is carried

out with the use of numerical models and statistical analyses [12]. The first method is based

on models that reproduce the features observed in experimental settings. They are complicated

models that use thousands of variables and aim at predicting the general state of the climate

system given a list of initial conditions [3]. The second approach to predict the future state of

the system is done performing statistical analyses on historical data. This method does not seek

a deeper understanding of the dynamics of the system. Instead, it aims at predicting future

behavior based on present and past observations [19]. Approaching the study of the climate

system through the lens of complexity science offers the benefits of using dynamical models to

study the most elementary features of the system while considering the big picture and taking

the multiple interactions into account [18].

The aim of this project was to characterize the state of the annual tropical cyclone activity

in the Northwest Pacific basin using tools that have been recently used and developed to study

complex systems. A parallel aim of this project was to assess the performance of these tools on

the study of short, univariate, time series, both on synthetic data obtained from chaotic and

stochastic models, and observational data retrieved from standardized databases.

The results of this research, along with previous work, were presented at the National Physics

Conference in Zacatecas, Mexico [20]. Additionally, a paper has been published in an indexed

journal: Roca-Flores, E., Naumis, G. G., Madrigal-Solis, E., & Fraedrich, K. (2022). Typhoon

complexity: Northwest Pacific tropical cyclone season complex systems analysis. International
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Journal of Modern Physics C. The cover page is reproduced in App. (A). An additional research

paper has been accepted for publication and is currently under publishing process: Roca-Flores,

E., Naumis, G. G., Madrigal-Solis, E., Fraedrich, K., & Torres, E. (2023). Hurricane season

complexity: the case of North-Altantic tropical cyclones.

This text is organized as follows: the following sections give background theory to tackle the

research work, namely the theory on tropical cyclones and complex systems. The next chapter

(Ch. 2) presents the tools used to study the time series used for this research work. Chapter 3

covers the results on the observational data obtained with the use of dynamical and statistical

tools and gives a brief explanation of them. Chapter 4 goes over the results again and draws

interpretations from them using the approach of complex systems and puts them into context.

Finally, Ch. 5 gives insights on the meaning of the results. This chapter reflects on the process

and significance of the results and gives possible directions for further study and development.

1.1 Tropical Cyclones

Tropical cyclones are one of the most important phenomena for both mankind and the climate.

On the one hand, they account for countless deaths [21] and enormous economic losses [22]. On

the other hand, they play a major role in the dynamics of the ocean and atmosphere, effectively

regulating global climate [23]–[25]. Thus, studying the dynamics of tropical cyclones can help

improve forecasts to warn the population under threat, as well as gain a deeper understanding

of their role in the general state of the climate [2], [5].

Tropical cyclones are rapidly rotating storm systems that form over tropical oceans. They

are characterized by a low-pressure center and a spiral arrangement of thunderstorms [26]. They

are normally between 200 and 500 km in diameter but there have been instances when they

have reached a diameter of more than 1000 km [27]. These storms are always originated by

pre-existing disturbances in the atmosphere [28]. Given such a storm-generating disturbance,

tropical cyclones will form when the warm water in the tropical sea evaporates and then con-
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denses into clouds. As the hot air rises, a low-pressure area is formed and the surrounding air

flows inward. Because of the Coriolis effect, this uprising air starts to rotate (counterclockwise

in the Northern Hemisphere) until a well-defined system emerges [5].

Following the classification of the National Weather Service (NWS), tropical cyclones, in

their formative stage, will have maximum wind speeds close to 17 ms−1. In this stage, they

are called tropical depressions. When their wind speeds reach between 18 and 32 ms−1, they

are called tropical storms and they are assigned a name. Tropical cyclones with wind speeds

exceeding 33 ms−1 are referred to as severe tropical cyclones.

The following subsections give an account of the various characteristics of Tropical Cyclones

that are important to describe them. These include the description of tropical cyclone activity

over large time spans (Subsec. 1.1.1), their description in terms of energy budget (Subsec. 1.1.2)

and the conditions needed to spawn them (Subsec. 1.1.3). Finally, the variable used to study

and quantify the intensity and energy used by tropical cyclones is presented in Subsec. 1.1.4.

1.1.1 Climatology

Although the term tropical cyclone encompasses every cyclone that originates over tropical

oceans, these systems receive different names depending on the region. Strong tropical cyclones,

for instance, will be known as Hurricanes in the Atlantic ocean, cyclones in the Indian Ocean

and Typhoons in the Western Pacific [29].

Tropical Cyclones have been found to form and move over defined regions. These regions are

called basins and they have been exactly defined to study tropical cyclones more closely [30].

These basins are shown in Fig. (1.1) and are as follows: North Indian (NI), Northwest Pacific

(WP), Northeast Pacific (EP), North Atlantic (NA), South Indian (SI), South Pacific (SP) and

South Atlantic (SA).

Around 80 tropical cyclones form globally every year. This quantity has remained approxi-

mately constant since reliable records began [26], [31]. Figure (1.2) shows the total number of

global tropical cyclones recorded from 1980 to the year 2021. Of these 80 tropical cyclones, the

4
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Figure 1.1: Tropical cyclone basins (From upper-left to right): North Indian (NI), Northwest
Pacific (WP), Northeast Pacific (EP), North Atlantic (NA), South Indian (SI), South Pacific
(SP) and South Atlantic (SA).

northern hemisphere experiences 70 %, in contrast with 30 % in the southern hemisphere. The

most active single basin is the Northwest Pacific, which accounts for 31 % of the total annual

tropical cyclone counts. This makes it the ideal subject of study to understand global tropical

cyclone activity. This basin is followed by the Northeast Pacific (19 %) and the North Atlantic

(16 %).
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Figure 1.2: Bar plot of annual global tropical cyclone counts (data taken from [30]).

Since the start of reliable global records, no discernible trend in the global count of tropical

cyclones has been identified [31]. Nevertheless, single tropical cyclone basins have seen signif-

icant changes in annual tropical cyclone counts. The North Atlantic basin, for instance, has

had a significant, upward trend [32]–[34]. The Northwest Pacific, in turn, has seen a downward

trend that coincides with the observed increase in the North Atlantic [31], [32], [34]. The inter-

annual variability of tropical cyclone counts in the different basins is driven by natural modes

of variability, with El Niño Southern Oscillation (ENSO) having the biggest influence across
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multiple basins [35]–[37].

1.1.2 Energy budget

Although the total number of tropical cyclones that form globally or in different basins in a given

year can give us information on the general state of tropical cyclone activity, this information

does not shed light on the state of the energy budget of the system. Since what drives the

formation and life cycle of tropical cyclones is the available energy from the warm waters, which

in turn receive it from the incoming radiation from the sun and other sources, it becomes natural

to define a way to describe tropical cyclone activity in terms of the energetics of the system.

As first noted by Emanuel [38], the energy cycle of mature tropical cyclones can be ideal-

ized as that of a Carnot heat engine. In the case of tropical cyclones, the working fluid is a

combination of dry air, water vapor and condensed water. The power source of this cycle is the

heat transfer that results from thermodynamic disequilibrium between the sea and atmosphere.

This heat transfer is done mainly through water evaporation.

Figure (1.3) shows a depiction of the thermodynamic cycle of tropical cyclones. The cycle

starts at point A, at around 100 km from the eyewall. Here, air starts to flow in due to the low

pressure at the storm center. As it flows in, air undergoes (approximately) isothermal expansion

while in contact with the surface of the ocean and its entropy increases. At the eyewall (B),

the flow turns upward toward lower pressure and maintains its entropy. This ascent is nearly

adiabatic (BC). When it is far from the storm center (C), air descends losing the entropy it

gained as electromagnetic radiation to space. This part of the cycle is nearly isothermal (CD).

The cycle is completed as air undergoes adiabatic compression by cooling down (DA) while

approximately maintaining its entropy. As already known, the energy in the Carnot cycle is

used to do work on its environment. In tropical cyclones, on the other hand, work is used in

turbulent dissipation, where it is turned back into heat. One more difference is that the energy

cycle of tropical cyclones is in fact open, but the differences in energy are small in comparison

to the energy used, so we can idealize the cycle as closed [26].
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Figure 1.3: Thermodynamic cycle of tropical cyclones. Colors show a measure of the total
specific entropy content of the air (cooler colors indicate lower entropy) (taken from [39])

A meaningful quantity to measure the destructiveness of a tropical cyclone is the rate of

generation of kinetic energy, which, in a steady storm, equals the rate of dissipation [40]. The

corresponding dissipation rate per unit area, D, is given by

D = ρCDv
3 , (1.1)

where ρ is the density of air, v is a characteristic near-surface wind and CD is the surface drag

coefficient. If we take Ts to be the Sea Surface Temperature and T0 the mean temperature of

the outflow, then, according to the Carnot theorem, the net production of mechanical energy

over the first stage of the cycle will be

P = 2π
TS − T0
TS

∫ b

a

[Ckρ v(k
∗
0 − k) + CDρv

3]r dr , (1.2)

where k is the specific enthalpy of the near-surface air, k∗0 is the enthalpy of the air that is in

contact with the ocean and Ck is the transfer coefficient of enthalpy. We integrate r, which is

7



the radius measured from the eyewall. The net energy dissipation of the tropical cyclone, on

the other hand, will be

D = 2π

∫ b

a

CDρ v
3r dr. (1.3)

As mentioned earlier, for a steady storm, the rate of generation of kinetic energy is the same

as the rate of dissipation. Thus, equating Eqs. (1.2 and 1.3) and integrating near the radius of

maximum wind speed, we have the expression

v2max ≈
Ck

CD

Ts − To
To

(k∗0 − k) . (1.4)

We take E ≡ Ck(k
∗
0 − k)/CD, which we call the thermodynamic disequilibrium between the

ocean and the atmosphere. We now have the expression

v2max =
Ts − To
To

E . (1.5)

This expression, following the considerations made thus far, stands as an equivalent of the

kinetic energy used by each tropical cyclone.

1.1.3 Cyclogenesis

Since the earliest studies of tropical cyclone formation, it has been recognized that these systems

form from a disturbance that is independent of the regional state of the atmosphere [41]. Later,

general conditions that are necessary for tropical cyclone formation were identified by [42] and

are as follows:

1. Sea surface temperature above 26 ◦C.

2. Small vertical shear of the horizontal wind.

3. low-level relative vorticity.

4. Larger values of the Coriolis parameter.

8



5. Relative humidity of the middle troposphere.

It is important to note that these conditions are necessary, albeit not sufficient, for the devel-

opment of tropical cyclone-intensity systems.

These necessary conditions account for the formation of individual tropical cyclones. In a

larger temporal and spatial scale, some elements have been identified that determine annual

and decadal tropical cyclone activity. Sea Surface Temperature, for example, has been found

to be strongly correlated with tropical cyclone activity [43]. More recently, Sea Level Pressure

(SLP) has been identified as a good predictor of tropical cyclone seasons [44].

It has been noted that the main input of energy into the atmosphere is the sun through the

greenhouse effect. This makes solar radiation the main determiner of tropical cyclone activity.

Nevertheless, the exact effects of solar activity on tropical cyclones are not known [45], [46]. An

additional natural radiative forcing that affects the climate in different ways are stratospheric

aerosols (volcanic activity), which act as covers and prevent the incoming radiation from the

sun to transfer energy to the atmosphere [47]. More recently, it has been hypothesized that

human activity may have an impact on tropical cyclone activity through forcings such as the

increase of global temperature and, thus an inrease, albeit lagged, of Sea Surface Temperature.

Additionally, anthropogenic aerosols have an influence similar to that of volcanic activity, which

can cause different effects on global tropical cyclone activity [9], [12], [48], [49].

1.1.4 Accumulated cyclone energy

Although the total number of tropical cyclones recorded in a given year provides an insight into

tropical cyclone activity, studying the mechanical energy released every season can give a more

accurate picture of the state of the system. This description is achieved with the Accumulated

Cyclone Energy (ACE). This metric, first proposed by [50] as the Hurricane Destruction Poten-

tial, is a quantity that varies as the square of velocity, thus being proportional to the kinetic

energy of the system.

The ACE index is calculated by summing the squares of the maximum one-minute sustained

9



wind speeds (in knots; 1 kt = 0.5144ms−1) of every storm at six-hour intervals while they are

at least at tropical storm strength (> 35 knots) [51]. This is expressed as

ACE =

∑
v2max

10, 000
, (1.6)

which has units 104 kt2. This metric can be calculated for individual tropical cyclones or it can

be summed to describe whole seasons.

Since the ACE is a sum of squared velocities, it is used as a proxy for the kinetic energy

of individual tropical cyclones and seasons [52]. As mentioned earlier (Subsec. 1.1.2), we can

idealize tropical cyclones as being thermal engines, which means that the ACE index stands for

the mechanical energy produced by these engines [2]. This means that, by studying this metric,

we are indirectly studying the right-hand side of eq. (1.5) [53].

As previously stated, tropical cyclones are phenomena that pertain to the atmosphere and

climate system, which are themselves perfect examples of complex systems. In the next section

we give an account of the main characteristics of complex systems, as well as the tools for their

mathematical description and relevant concepts to understand their behavior.

1.2 Complex systems

Tropical cyclones, like many other natural and social systems, exhibit complex behavior that

cannot be inferred from the understanding of their isolated individual components alone. The

main feature of complex systems is the arising of emergent phenomena due to the interactions

between the many components of the system [54]. This idea can be expressed by Aristotle’s

quote “The whole is more than the sum of its parts”. The word complex, which comes from the

Latin plectere (meaning to weave, to entwine), entails the interconnectedness of the constituent

parts of a system. Nevertheless, this interconnectedness does not fully represent what complexity

science observes and studies [55].

There is currently no agreed upon definition of the term complex system or complexity
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science. Nevertheless, we could give a very general definition that encompasses any system that

we consider to be complex: a system consisting of many parts that interact with each other

in different levels and which showcases nontrivial emergent behavior [56]. Many disciplines

define complex systems in different ways based on their specific foci and analyses, but there are

some properties that all systems which are considered complex share. These properties include,

among others:

• Nonlinearity. This property means that the response of a system to a change is not

directly proportional to the applied change. Instead, the response can follow a complicated

rule that connects the system’s constituents.

• Emergence. When a system presents behavior or characteristics that its elements do

not individually posses it is said to show emergent behavior. This global outcome results

from the interactions of the constituent elements and cannot be predicted with their

understanding alone.

• Self-organization. This term refers to the spontaneous emergence of new levels of order

or complexity within a system. It is worth mentioning that this new level of organization

is achieved in the absence of external inputs.

Complex systems science approaches the study of nature in a comprehensive and integrative

way and attempts to build bridges between the different scientific disciplines to form a more

complete understanding of these natural phenomena. This is in contrast to the reductionist

approach, which seeks to describe the universe in terms of its basic constituents and their

interactions [57]. As mentioned earlier, the most important aspect of complexity science is its

attempt at explaining the behavior of complex systems in terms of the interactions between

their components.

In spite of the myriad of elements comprising the climate system, including tropical cyclones,

it is an example of a complex system whose elements follow fixed physical laws. This means

that we can describe the climate system with a mathematical function that describes at least
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the most basic features of its evolution along time. This mathematical description pertains to

the theory of dynamical systems, which will be described in the next section.

1.2.1 Dynamical systems

The theory of dynamical systems studies how systems change over time. We can define a dynam-

ical system as a system whose state is uniquely specified by a set of variables and whose behavior

is described by predefined rules. This mathematical model represents the basic behavior of the

observed qualities of a system [54].

We can categorize dynamical systems into two main categories depending on their use of

time: continuous dynamical systems take time to be continuous and discrete dynamical systems

consider discrete time steps for their description. Continuous-time systems are described using

differential equations, such as:

dx

dt
= F (x, t) . (1.7)

Discrete-time systems, on the other hand, use difference equations, also known as iterative maps:

xt+1 = F (xt, t) . (1.8)

The second characteristic of a dynamical system is whether it is linear or nonlinear. In terms

of their mathematical description, we say that a linear dynamical system’s rule involves a

linear combination of state variables. Any system whose state is is not described by a linear

combination is known as nonlinear. Lastly, the number of independent variables involved in

determining the state of the system is known as the number of degrees of freedom of the system.

The number of degrees of freedom of a system determines the dimension of its associated state

space, which is the set of all possible configurations of the system [58].

Some dynamical systems, whose rules for evolution along time are completely deterministic,

exhibit seemingly erratic behavior. This type of behavior is now known as chaotic behavior and

it is the result of nonlinearities in the system. Chaos, as opposed to periodic and quasiperiodic

12



motion, is considered to be irregular in time. This means that chaotic motion cannot be the

result of the superposition of periodic motions [59]. Two chaotic systems that are initialized

at very close, but not equal states, will follow a close trajectory up to a certain point, where

they will diverge and present completely different trajectories. This feature of chaotic systems

is known as sensitive dependence on initial conditions. This feature results in the impossibility

of exactly predicting the state of the system in the long term. This means that, although

chaotic systems are completely deterministic, the range in which we can predict their behavior

is exponentially short [60].

As mentioned earlier, chaotic systems exhibit seemingly random behavior and motion in real

space. These systems, nevertheless are clearly-organized in their phase space. After transient

motion, the trajectories in phase space will settle in a defined region, which is known as the

attractor of the system. In the case of chaotic systems, this attractor tends to be fractal in

nature, which is known as a strange attractor. [61].

The approach of dynamical systems theory to study natural phenomena analytically assumes

they follow a deterministic path of evolution. This assumption works well for simple systems,

or when only the essence interests their study. In the case of complex systems, or any real

system for that matter, this basic description proves insufficient to describe minor qualities or

behavior that does not align with the deterministic rules defined beforehand. Some of these

qualities, among others, can be introduced to the analysis assigning random qualities to the

processes being studied. This introduces the use of statistics and statistical concepts in the

study of complex systems, enriching the deterministic, dynamical systems approach.

1.2.2 Determinism and randomness

The deterministic view of nature that was established before the advent of quantum mechanics

and the understanding of chaos was thought to give a complete description of nature and that

every phenomenon could be predicted if we had the sufficient information on its variables. The

“uncertainty principle” of quantum mechanics discovered by Heisenberg in 1927 pinned down
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this idea and introduced the notion of intrinsic indeterminism in nature [62]. Additionally, the

discovery of chaotic behavior in atmospheric systems by Lorenz in 1960 introduced the idea of

unpredictability in deterministic systems because of their strong sensitive dependence to initial

conditions [63].

The description of nature of quantum mechanics introduced the possibility of the existence

of real randomness in nature. Apart from the discussion of whether real randomness exists,

many phenomena and systems behave in a way that is indistinguishable from mathematical

randomness. This may come from an incomplete understanding of their inner dynamics, mea-

surement noise or real erratic behavior. Additionally, chaotic systems, as mentioned before,

exhibit behavior that can be practically indistinguishable from random motion, rendering a

deterministic description of their observables practically impossible.

The impossibility to perfectly describe many systems with the tools developed for determin-

istic behavior leads to find other ways to study them. An alternative way to describe this kind

of phenomena, be they deterministic, random or highly complex in nature, is to consider them

as following the rules of random behavior. With this approach we can use probability theory

and statistics to describe these systems and gain insight into how they behave [64]. This ap-

parent dichotomy between the dynamical systems approach and the study of phenomena using

concepts from probability and statistics does no other than enrich the discussion. Studying a

phenomenon using concepts and tools stemming both from deterministic and random theory

offers a broader understanding of their inner workings, as well as their macroscopic behavior.

In these introductory sections we defined the aims of this thesis work and put the present

study into context. We then laid out the theoretical background necessary to undertake the

research ahead. In the following chapter we present the analysis tools that will be used to

undertake the research. These tools will first be used to describe synthetic data and then, in

Ch. 3, they will describe real, observational data from global tropical cyclone activity in the

Northwest Pacific.
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Chapter 2

Time series analysis tools

In this thesis we will analyze observations of the Accumulated Cyclone Energy index in the

Northwest Pacific over many years. These observations are presented in the form of a time

series. By definition, a time series is a set of regular observations of a quantitative characteristic

of a phenomenon taken at successive points in time. There are two main schools of thought

to analyze time series. The first one views time series as samples from stochastic processes

and applies traditional statistical tools and assumptions to study them. The second school of

thought views the data as coming from deterministic dynamical systems that can be plagued

with noise. This approach aims to reconstruct the underlying system from which these data

were obtained [64].

In the following sections we will present the tools to analyze time series which fall into the

two categories mentioned above, namely statistical and dynamical analysis tools. In order to

illustrate the results they produce, we will study two kinds of time series. The time series

from the first kind come from deterministic systems, namely one- and three-dimensional chaotic

maps. The second kind comprises time series resulting from stochastic processes with different

characteristics.

15



2.1 Synthetic data

Time series can be obtained from virtually anything that can be quantified at different points

in time. The two main categories in which a process can fall is two-fold: deterministic and

stochastic processes. In the following subsections we will present models that generate time

series and their main characteristics will be mentioned.

2.1.1 Chaotic systems

A deterministic system is one in which future behavior depends directly on its present state.

A deterministic model will always produce the same result given predefined parameters. The

following systems exhibit seemingly erratic behavior and thus may lead to believe they are

produced by random processes, but they are fully deterministic. These systems are called

chaotic.

Tent map

The best examples of complex behavior are systems that exhibit chaotic behavior. A simple

one-dimensional map that exhibits this type of behavior is given by the expression:

Xn+1 =
1

|Xn|1/4
− 1

2
− |Xn| . (2.1)

Although being completely deterministic, this system has an approximately Gaussian distribu-

tion [65]. Figure 2.1a) shows a time series generated by the tent map.

Logistic map

The most basic and paradigmatic dynamical system that exhibits chaotic behavior is the logistic

map. This discrete-time map was first proposed by [66] as a discrete-time alternative to the
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logistic equation, which is in turn a model of population growth. This system is given by:

Xn+1 = rXn(1−Xn) , (2.2)

where Xn ∈ [0, 1] represents the ratio of the population and r, usually taken from the range

(0, 4], is called the control parameter. For low values of r, i.e. r ∈ (0, 3), the solutions will

have one period. After r > 3 the period will double until, we reach r ≈ 3.56995. This is

when the number of periods becomes infinite and the system exhibits chaotic behavior [67]. An

implementation of the logistic map can be seen in Fig (2.1c).

Lorenz system

After the logistic map, which is the simplest one-dimensional system that exhibits chaotic

behavior comes the Lorenz system, which is three-dimensional and continuous. This system of

ordinary differential equations is a simplified mathematical model for atmospheric convection

[68]. This model is given by the next system of differential equations:

dx

dt
=σ(y − x) ,

dy

dt
=x(ρ− z)− y ,

dz

dt
=xy − βz .

(2.3)

Here, x is the rate of convection, y is the horizontal temperature variation and z stands for the

vertical temperature variation. The constants σ, ρ and β are positive system parameters [69].

It has been noted that some combinations of these parameters yield chaotic behavior. Figure

(2.1e) shows the time series produced by the Lorenz system.

2.1.2 Stochastic processes

We can model systems and phenomena that vary in an apparently random manner with the help

of stochastic processes. The simplest way to obtain a time series of a stochastic process is to
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take a sequence of variables produced by a random number generator. The following expression

produces a random sequence of uncorrelated values:

Xn+1 = ηn , (2.4)

where η ∈ [0, 1] is a random number generated by a specified probability distribution. A random

sequence generated by a uniform distribution is shown in Fig. (2.1b).

Random walk

A random walk is a stochastic sequence given by:

Xn+1 = Xn + ηn (2.5)

where ηn stands for a random number at time n. Note that, while ηn is an independent random

variable, the actual value ofXn is not, as it describes the path followed by the random increments

given by ηn. Figures (2.1d, 2.1f) depict realizations of a random walk that exhibit different

types of behavior. Figure (2.1d), for instance, exhibits persistent behavior, which means that

the values will tend to follow the local (immediate) trend. Figure (2.1f), in turn, is an example

of antipersistent behavior, which means that following values will tend to oscillate around the

local mean.

2.2 Statistical analysis

The highly nonlinear nature characteristic of complex systems and the frequent presence of

chaos mean we cannot exactly predict their future behavior. Furthermore, there are inherent

uncertainties in the components and interactions of these systems. This means that, even if the

underlying rules controlling the dynamics are deterministic, the evolution of these systems is

practically stochastic. So, according to this school of thought, we can study and model them
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Figure 2.1: Time series of chaotic systems (left) and stochastic processes (right).

as if they were the result of stochastic processes [70].

In light of this, the first thing to do when presented with time series data is to plot it

and perform a visual inspection. With this we can directly tell if the data follow a trend and

seasonalities are present. This preliminary inspection can yield clear outliers or extreme values.

2.2.1 Probability Density Function

Once the most evident features of a time series have been pointed out we can turn our atten-

tion to the distribution of the data. The most common way to represent the outcomes of an

experiment is through the frequency distribution, which shows the frequency of occurrence of

each possible outcome. A representation of this characteristic from observed data is called a

histogram. We build a histogram by grouping the values of the observations into equally-sized
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intervals. We then plot a bar graph whose height represents the number of observations present

in every interval. This graph gives an immediate impression of the Probability Density Func-

tion (PDF) that produced the observations, which is a function that assigns a probability of

occurrence to each value of a random variable, which corresponds to every data point in the

case of a time series [70].

We can describe the shape of a function (in this case the PDF) with its moments. For the

present analysis, only the first two moments of the data will be obtained. The first moment,

known as the mean is the expected value and it is a measure of the central tendency of the

data. We represent this expected value with µ ≡ E[X]. The second moment is the variance,

which is the square of the standard deviation. The standard deviation, in turn, is given by

σ ≡ (E[(x− µ)2])
1
2 and it measures the amount of variation within the data.

Figure (2.2) presents the histograms, Probability Density Function and Gaussian fit of our

systems for comparison. As mentioned earlier, the tent map has an approximately Gaussian

distribution (2.2a), as well as the antipersistent random walk (2.2f). Both the time series

obtained from a uniform distribution and the persistent random walk display an apparent

uniform histogram (2.2d and 2.2e respectively). This means that every value has the same

probability to be observed. The Lorenz system shows an approximately bimodal distribution

(2.2c), which means the values tend to be clustered around two centers (this is reminiscent of

the actual butterfly-shaped attractor). The logistic map, in turn, appears to have a trimodal

distribution (2.2b).

2.2.2 Autocorrelation function

A given time series may have an underlying structure, but the presence of noise can make it

difficult to identify it. The autocorrelation of a time series can help us identify randomness,

whether it is stationary or it has a trend and detect the seasonalities present in it.

ACF (k) ≡
N−k∑
n=1

(Xn − ⟨X⟩)(Xn+k − ⟨X⟩)∑N−k
n=1 (Xn − ⟨X⟩)2

, (2.6)
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Figure 2.2: Histogram, Probability Density Function and Gaussian fit of some chaotic systems
(upper panels) and stochastic processes (lower panels).

where ⟨X⟩ is the mean value ofX and k is the lag. This function is the ratio of the autocovariance

to the variance of the data [65].

The behavior of ACF as k increases can give insight into the nature of the data. For instance,

when Xn comprises a random process, ACF (k) will be near zero for all k. When the system is

nearly periodic, the function will be a decaying oscillation. The autocorrelation decays rapidly

to zero when the time series is stationary and it drops slowly for a non-stationary time series

[71]. In general, the value of ACF is 1 at k = 1 and falls to zero for large k. The value of k

at which ACF falls to 1/e ≃ 37% is called the correlation time τc and it can give some insight

into the memory of the system. An estimate of the rate at which predictability is lost is given

by 1/2τc [65].

Figure (2.3) shows the autocorrelation plot for the chaotic systems and stochastic processes

we are comparing. As mentioned earlier, an intrinsically random process will show low cor-

relation values for any k, such as Fig. (2.3b) shows. Figures (2.3a) and (2.3c), however, are

completely deterministic yet show low correlation as well. Figure (2.3d), for instance, drops

slowly to zero, which shows that this system has a trend. From these figures, we can see that
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Figure 2.3: Autocorrelation plots of chaotic systems (left) and stochastic processes (right). The
shaded region marks the 95% confidence interval.

ACF is useful to identify persistence in a given time series.

2.2.3 Rank-ordering statistics

Many physical and natural systems’ PDFs are characterized by heavy tails, which means they

differ from the well-behaved Gaussian and Gaussian-like distributions. These heavy tails mean

that large events have larger probabilities than they would have were they well-behaved distri-

butions. In a heavy-tail distribution, neither the mean nor the variance can give information on

the behavior of the phenomenon we are studying since there is no characteristic scale in which

it happens. If the sample gets bigger, both the mean and variance can grow indefinitely [70].
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Apart from these applicability problems, there are some practical difficulties that arise when

using the histogram representation. The first difficulty of representing these systems with a

histogram is that, by definition, the statistics of rare events is limited as they become under-

sampled due to their being in the tail [72]. Another limitation of the histogram representation

is that the selection of number of bins is arbitrary and different numbers can lead to varying

conclusions [70].

An alternative approach to study the distribution of data is the rank-ordering technique

first introduced in this context by [73]. This technique presents a function that quantifies the

dependence of the observations according to their rank. This approach introduces the advantage

of constraining the fit of empirical distributions by the large events, rather than by the large

majority of small and intermediate event sizes, which is the usual fit of density and cumulative

distributions [74].

To construct the rank-ordering representation we do as follows. We have a time series

consisting of N observations. We reorder these observations by decreasing values:

v1 ≥ v2 ≥ . . . ≥ vn ≥ . . . ≥ vN , (2.7)

where v1 is the largest value, v2 is the second, and so on. This method consists in quantifying

the dependence of vn as a function of the rank n.

Figure (2.4) shows the linear and log-log plots of the ranking distribution of our reference

systems, namely chaotic (blue lines) and stochastic processes (red lines). The linear plots show

the general shape of the distributions, while the log-log plot zooms in on the larger values,

which means we can more closely inspect outliers. A Gaussian distribution is plotted as a

reference (orange lines) to be compared. Two of the chaotic systems, namely the tent map and

Lorenz system, have a distribution that closely resembles a Gaussian process. Regarding the

stochastic processes, the antipersistent random walk resembles the Gaussian. This process is

ultimately a correlated Gaussian noise. The sequence taken from a uniform distribution and the

persistent process resemble a straight line. This means that the values are uniformly distributed
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Figure 2.4: Ranking plots of chaotic systems (upper half panels) and stochastic processes (lower
half panels).

throughout the data.

The ranking representation is useful to identify the presence of fractal behavior in a process

or system, which means a specific mechanism dominates the behavior across scales. This can

be identified as a straight line in the log-log representation. The fact that our reference systems

show no fractal qualities in the log-log plot means there is no self-similarity in their behavior.

2.3 Dynamical Analysis

As mentioned at the start of this chapter, the second approach to study time series tries to

elucidate the inner dynamics of the systems that produced them. Chaotic systems, for instance,

often produce outputs that are apparently random, but studying their dynamics unveils an often

simple structure. The first tool proposed here studies the presence of long-term dependence in

the system. The next tools work on the state space of the system that produced the data.
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2.3.1 Long-term memory: Hurst exponent

It has been observed that many natural systems, including the atmosphere, exhibit long-memory

dependence [75]. This means that correlations between observations with increasing time in-

terval or spatial distance decay much slower than would be expected from classical stochastic

processes [76].

The presence of long-memory dependence or persistence in a time series can be characterized

by the Hurst exponent H [77]. This index is defined in the interval 0 < H < 1 and it quantifies

the presence of persistent (the tendency to cluster in a direction) or anti-persistent (the relative

tendency to regress strongly to the mean) behavior in a time series. For values 0 < H < 0.5,

H indicates anti-persistent behavior. Conversely, H indicates persistent behavior if it is in the

range 0.5 < H < 1. For H = 0.5, it means the time series is similar to a random walk. A value

of H close to 0.5 may be an evidence of chaotic behavior.

The most popular tool to estimate H is the rescaled range analysis (R/S). This method

computes the ratio R/S, where R is the range of the input data and S is its standard deviation.

We compute these quantities as follows [78]. The difference between two consecutive data points

will be the input data:

I ′i = Ii − Ii+1 , (2.8)

where Ii is the record at time i. Over a period τ , the mean will be

⟨I ′⟩τ =
1

τ

τ∑
i=1

I ′i . (2.9)

We define the difference between I ′i and ⟨I ′⟩τ :

X(i, τ) =
i∑

u=1

[I ′u − ⟨I ′⟩τ ] . (2.10)

Finally, the range will be

R(τ) = maxX(i, τ)−minX(i, τ) , (2.11)
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and the standard deviation will be given by:

S(τ) =

{
1

τ

τ∑
i=1

[I ′τ − ⟨I ′⟩τ ]

}
. (2.12)

We finally have the relation proposed by Hurst [77]:

R(τ)

S(τ)
= C · τH , (2.13)

where C is a positive constant and H is the Hurst exponent . For every τ we get a value

R/S that follows a power law. The Hurst exponent H, then, will be the log-log slope of Eq.

(2.13). Table (2.1) shows the calculated Hurst exponent for our reference systems. Note that

the algorithm used gave an error for the Lorenz system and the persistent and antipersistent

random walks.

Table 2.1: Hurst exponent with linear and nonlinear fit of reference systems together with the
expected result from theory or known results

H (linear fit) H (nonlinear fit) Expected
Tent 0.539 0.516 ± 0.008

Logistic 0.329 0.321 ± 0.011
Lorenz NaN NaN ≈ 0.5 [79]

Uniform 0.571 0.579 ± 0.037 0.5
Persistent NaN NaN 0.7

Antipersistent NaN NaN 0.3

2.3.2 Phase space

As mentioned earlier, in dynamical systems theory, the evolution of a system is defined in some

phase space. This phase space represents the space of all its possible states. Thus, a specific

point in phase space represents a specific state of the system. Every degree of freedom of the

system is represented as an axis in phase space. Thus, the number of degrees of freedom of

the system determines the dimension of the phase space. The evolution of a dissipative system
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will tend to a subset of its phase space once the transient response due to the initial conditions

settles. This subset is called the attractor of the system, and it is invariant under its evolution

[80].

Phase space reconstruction

As mentioned earlier, the evolution of a system is fully determined by its associated differential

equations, in the case of a continuous system, or by a map for discrete-time systems. However,

in experimental or observational settings, there is no access to the underlying expressions that

govern the dynamics of the system [80]. Furthermore, in the case of complex systems, there

may be times in which no underlying governing rules exist [81]. Thus, in an experimental or

observational setting, what we observe is not the phase space of the system itself, but imperfect

observations that take the form of a time series [82].

According to Takens’ theorem (also known as embedding theorem), it is possible to recon-

struct the attractor of the system from the time series alone [83]. This reconstructed attractor

will be topologically equivalent to the unknown attractor. This reconstruction is achieved

through the method of delays, which works as follows.

We have a one-dimensional time series of length n comprised of observations sn with a

sampling time ∆t. Every observation will be given by

sn = ψ(x(n∆t)) , (2.14)

where ψ is an observable measurement function. We neglect the effect of measurement noise

for this discussion. An m-dimensional reconstruction of the sn state vectors will be given by

sn = (sn−(m−1)τ , . . . , sn−τ , sn) τ ∈ Z+ . (2.15)

The time interval between adjacent coordinates of the state vector is τ∆t, and it is known as

the lag or delay time.
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The optimal selection of the parameters for reconstructing the phase space is ultimately a

question of optimization and accuracy [82]. For most systems, and as an initial approximation,

we can set a time lag τ = 1. The embedding dimension m can be set to two or three dimensions

in order to elucidate some sign of structure.

The phase spaces of our reference systems are shown in Fig. (2.5). Looking at these phase

portraits we can immediately identify the two types of systems: chaotic (plotted in blue) and

stochastic (plotted in red). The upper half panels show a clear structure. The first two panels

(2.5a and 2.5b), for instance, show a very simple two-dimensional attractor. Figure (2.5c), in

turn, comprises three-dimensional trajectories following a clear attractor, known as the Lorenz

attractor. The panels on the lower half, on the other hand, show something different. Figure

(2.5d), for instance fills the space uniformly, as expected from the distribution from which the

data points were taken. Figures (2.5e and 2.5f) show clear correlation (we can identify this for

the data points follow a straight line of slope m = 1). The antipersistent time series, in contrast,

is more scattered around the line, which means the variance is higher.
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Figure 2.5: Phase space of chaotic systems (upper half) and stochastic processes (lower half).
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2.3.3 Complexity: Attractor dimension

The fractal dimension, D, of a profile or surface is a measure of its roughness. We can use

fractal dimension to describe physical objects, which exist in ordinary physical space, and

strange attractors, which exist in the state space of chaotic dynamical systems [84]. Higher

values of D indicate rougher surfaces in the case of real-world objects and a more complex

nature in the case of objects in phase space.

When quantifying the complexity of a system through its time series, we can do so by

capturing either its spatial or temporal dimensionality [15]. By quantifying the temporal di-

mensionality of a time series, we are estimating the complexity of the signal treating the time

series itself as a geometric figure [15]. In the case of the spatial dimensionality of a system

we are actually determining the fractal dimension of the attractor contained in its state space.

Estimating the fractal dimension of the attractor reconstructed from a recorded time series can

give an estimate of the active Degrees of Freedom of the system [84].

There are many ways to estimate the fractal dimension of a system from its time series. The

most robust and closest estimation of the attractor dimension of a given system is given by its

Correlation Dimension (CD), which was introduced in [85].

This so-called correlation dimension (CD) is obtained by considering correlations between

points of a time series on the attractor and it is computed as follows. We define the correlation

integral

C(r) = lim
N→∞

1

N2

N∑
i,j=1

θ(r − |Xi −Xj|) ≡
∫ r

0

dd r′ c(r′) , (2.16)

where θ is the Heaviside function and c(r′) is the standard correlation function. For small r,

this correlation integral behaves as

C(r) ∝ rν . (2.17)

It has been shown that ν is very close to D [61], [85] This means that we can use it as an

approximation of the fractal dimension of the attractor (DC ≡ ν). With this, we now obtain
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the Correlation Dimension [84]:

ν ≡ DC = lim
r→0

logC(r)

log r
. (2.18)

This algorithm, known as the Grassberger-Procaccia algorithm, has proven to be a robust and

practical way to obtain estimations of the fractal dimension of a system from a univariate time

series when D < 2 [85]. Table (2.2) presents the average correlation dimension found with

the Grassberger-Procaccia algorithm for an embedding dimension m = 2 for all our reference

systems, except for the Lorenz system (m = 3), and a delay time τ with values going from 1 to

50.

Table 2.2: Correlation dimension of reference systems (N = 1000)

Tent Logistic Lorenz
DC 1.88 ± 0.13 1.59 ± 0.15 1.73 ± 0.09

Uniform Persistent Antipersistent
DC 1.85 ± 0.02 1.08 ± 0.017 1.92 ± 0.013
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Chapter 3

Results

The analysis tools presented in the previous chapter were used to study the data on tropical

cyclone activity, as well as samples of the chaotic systems and stochastic processes discussed

before. In order to make a useful comparison, the length of the synthetic data sets was matched

to that of the observed data (i.e. 72 data points). Building from the vast literature and

repertoire of libraries and modules found in Python, some built-in algorithms were used for our

analysis tools and some were adapted from them to fit the specific needs of this project.

This chapter briefly introduces the observational data under study and very generally de-

scribes it. Then, a statistical analysis using the tools presented in previous sections is carried

out followed by a dynamical account of the data. Additionally, each tool is used to analyze the

observational data and the samples of our reference systems.

3.1 Tropical cyclone activity data

As mentioned before, the variable under study is the Accumulated Cyclone Energy index, which

tracks the wind speed of particular events or seasons. Tropical cyclone data from multiple

agencies and historical databases are combined at a central database, which can be found in

the International Best Track Archive for Climate Stewardship (IBTrACS) [30]. This database

offers global TC best track data of cyclone distribution, frequency and intensity.
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Figure (3.1) shows the yearly time series of Accumulated Cyclone Energy in the Northwest

Pacific basin. This data set comprises 72 data points and goes from the year 1950 to 2021. It

has mean µ = 304×104 kt2 and standard deviation σ = 99×104 kt2. A simple visual inspection

shows that the data form a non-smooth curve with no apparent trend. There are three clear

outliers: two minima with values 110 × 104 kt2 and 121 × 104 kt2 observed in 1999 and 2010,

respectively, while a clear maximum with value 570× 104 kt2 was observed in 2019.
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Figure 3.1: Time series of annual Accumulated Cyclone Energy in the Northwest Pacific.

3.2 Statistical analysis

As mentioned earlier, we can find periodicities, as well as identify whether the data have a

trend or not with the autocorrelation function. Figure (3.2) shows an autocorrelogram of our

observational data with lags ranging from 1 to 71 years with a confidence interval of 95%. This

plot shows significant autocorrelations for time lags of 1, 16 and 17 years with values 0.28, -0.38

and -0.36, respectively. Additionally, Fig. (3.3) shows the autocorrelograms of our reference

systems.

Building from the autocorrelation found with the autocorrelogram, a moving average and

standard deviation was plotted together with the original time series. Figure 3.4 shows this plot

with 16- and 30-year moving mean and standard deviation superimposed on the original time

series. The 16-year average corresponds to the autocorrelation found for a lag of 16 years. The

30-year smoothing, in turn, conforms to the agreed time average which characterizes climate
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Figure 3.2: Autocorrelation function of the Accumulated Cyclone Energy in the Northwest
Pacific. The shaded region indicates 95 % confidence interval.

[12]. For the 30-year average a slight downward trend of µ can be identified, while σ appears

to increase after around the year 1984.

Plotting the histogram lets us visualize the distribution of values of the data. Figure (3.5)

shows the histogram of the data under study and presents the Probability Density Function

associated with it. Additionally, a Gaussian using µ and σ from the data is fitted to the plot

to assess how the distribution compares to a Gaussian process. As this figure shows, our data

are close to a Gaussian distribution that has µ = 304× 104 kt2 and σ = 99× 104 kt2. A closer

look at the Probability Density Function reveals a slightly asymmetric bimodal distribution.

Additionally, the histogram, Probability Density Function and Gaussian fit for our reference

systems, namely chaotic systems and stochastic processes, are shown in Fig. (3.6). Comparing

these figures with Fig. (2.2), it can be sen that the data preserve their characteristic shape

regardless of the shorter time series and number of bins used for the histogram.

As already mentioned, by ranking the values of a given data set we can get the distribution

of the data as well as a perspective on the rare, largest elements. Such a representation is given

in Fig. (3.7). This figure consists of a linear plot in Fig. (3.7a) and a log-log representation in

Fig. (3.7b). The representation in linear scale shows a straight-line profile with a clear outlier

for the highest value (first place), and the two lowest values (last two places in the rank). The

log-log plot shows.

For comparison purposes, Fig. (3.8) shows the ranking representation of our reference sys-

tems with N = 72 data points. Again, this short number of data points still shows the general

33



0 20 40 60
Lag

1.0
0.5
0.0
0.5
1.0

Au
to

co
rre

la
tio

n

(a) Tent map

0 20 40 60
Lag

1.0
0.5
0.0
0.5
1.0

Au
to

co
rre

la
tio

n

(b) Uniform dist.

0 20 40 60
Lag

1.0
0.5
0.0
0.5
1.0

Au
to

co
rre

la
tio

n

(c) Logistic map

0 20 40 60
Lag

1.0
0.5
0.0
0.5
1.0

Au
to

co
rre

la
tio

n

(d) Persistent r.w.

0 20 40 60
Lag

1.0
0.5
0.0
0.5
1.0

Au
to

co
rre

la
tio

n

(e) Lorenz system

0 20 40 60
Lag

1.0
0.5
0.0
0.5
1.0

Au
to

co
rre

la
tio

n

(f) Antipersistent r.w.

Figure 3.3: Autocorrelation plots of chaotic systems (left) and stochastic processes (right) with
N = 72 data points. The shaded region marks the 95% confidence interval.
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Figure 3.4: 16 and 30 year moving average and standard deviation of annual Accumulated
Cyclone Energy in the Northwest Pacific.
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Figure 3.5: Histogram, associated Probability Density Function and fitted Gaussian of the data
from the Accumulated Cyclone Energy in the Northwest Pacific

distribution of the data, although the sinusoidal shape of the Gaussian and Gaussian-like dis-

tributions is less pronounced and the noise is more evident.

3.3 Dynamical analysis

This section consists of analyses carried out on the observed data and the chaotic and stochas-

tic systems using the tools developed by nonlinear dynamical systems theory, which aim at

reconstructing the system that is believed to have generated the data.

Table 3.1 shows the calculated H using rescaled range analysis. Both a linear and nonlinear

fit were applied to the data points obtained with the algorithm to compare the performance and

similarity of results. The value of H for the Accumulated Cyclone Energy shows that it presents

antipersistent behavior. As for the reference systems, the tent map has H close to 0.5, which

points at the presence of chaos. Both the Logistic map and Lorenz system show antipersistent

behavior, which was not expected as they are in the chaotic regime. The Hurst exponent of all

the stochastic processes is close to 0.5. For the time series generated by a uniform distribution

this was expected, but for the antipersistent process, H was expected to be lower. The algorithm

gave an error when computing H for the persistent random walk. This leads to suspect that it

did not work well for such short time series as the ones analyzed in this section.
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Figure 3.6: Histogram, Probability Density Function and Gaussian fit of chaotic systems (upper
half) and stochastic processes (lower half).
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Figure 3.7: Ranking representation of the Accumulated Cyclone Energy in the Northwest Pacific
in (a) linear plot and (b) log-log plot of the data.
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Figure 3.8: Ranking plot of chaotic systems (upper half) and stochastic processes (lower half).

As the first approximation to determine whether the data have an underlying attractor or a

deterministic system generated them, a phase space reconstruction was made using the method

of time delay. Figure (3.9) shows a return map of the observed data using a time delay τ = 1 year

and embedding dimension m = 2. The dispersion and no clear order of the data points suggest

the presence of stochastic behavior. Nevertheless, the arrows and color-coded time evolution of

the data points suggest they follow quasi-trajectories around two main clusters. This is a signal

that there may be some underlying structure which the data points are following. Additionally,

the trajectory of data points seems to be following a line of slope one plus some dispersion.

For comparison purposes, Fig. (3.10) shows the phase space reconstruction of the reference

systems, i.e. the chaotic and stochastic data sets. The presence of a structure is clear for

the chaotic systems. For the stochastic time series, the lack of pattern is seen for the random

sequence taken from a uniform distribution (3.10d). On the other hand, the random walk with

persistent and antipersistent behavior, shown in Figs. (3.10e and 3.10f), show a clear correlation.
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Table 3.1: Hurst exponent of the annual Accumulated Cyclone Energy in the Northwest Pacific
basin in contrast with chaotic systems and stochastic processes.

H (linear fit) H (nonlinear fit) Expected
ACE WP 0.399 0.370 ± 0.071

Tent 0.576 0.547 ± 0.037
Logistic 0.239 0.217± 0.056
Lorenz 0.430 0.375± 0.075 ≈ 0.5

Uniform 0.538 0.506± 0.038 0.5
Persistent NaN NaN 0.7

Antipersistent 0.490 0.429 ± 0.068 0.3
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Figure 3.9: Phase space reconstruction of the annual Accumulated Cyclone Energy in the West
Pacific basin.

The main difference between these two figures is the dispersion of the points. In Fig. (3.10e),

the variance is low and there seems to be a temporal continuity, as the color of the data points

shows. Figure (3.10f) shows a greater dispersion of the points (i.e. greater variance) and no

temporal relation whatsoever.

In order to find a lower bound for the attractor’s fractal dimension, Df , the correlation

dimension was computed for the observed data, as well as the reference systems. This correlation

dimension was computed with the Grassberger-Procaccia algorithm described beforehand. The

embedding dimension that was used for computing the observed data and the synthetic time

series was m = 2 and the time delay τ was varied starting from τ = 1 to τ = 50. The
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Figure 3.10: Phase space of chaotic systems (upper half) and stochastic processes (lower half).

multiple values were averaged and the resulting DC ’s are presented in Table (3.2). It is worth

mentioning that these values are close to those presented in Tab. (2.2). Both sets of results

show a correlation dimension smaller than 2.

Table 3.2: Correlation dimension of Accumulated Cyclone Energy in the Northwest Pacific and
time series generated by chaotic and stochastic systems (N = 72).

ACE
DC 1.77 ± 0.15

Tent Logistic Lorenz
DC 1.76 ± 0.18 1.45 ± 0.17 1.71 ± 0.40

Uniform Persistent Antipersistent
DC 1.63 ± 0.17 1.62 ± 0.15 1.73 ± 0.17
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Chapter 4

Discussion

The aim of this project was to characterize the dynamics of tropical cyclone activity in the

Northwest Pacific basin through the proxy variable known as Accumulated Cyclone Energy. This

analysis was performed on the variable in the form of a time series comprising 72 data points.

A parallel aim was to assess the performance of nonlinear time series analysis tools on synthetic

(deterministic and stochastic) and observational data. A comparison of the performance of

these tools can also be made with the study of data sets of different lengths (in this case 72 and

1000 data points).

Statistical analysis

The first statistics tool used to study the ACE data was the autocorrelation function. The

autocorrelogram shows a lack of meaningful correlations, except for significant correlations for

a time lag of 16 an 17 years. Comparing the autocorrelogram of the ACE with the synthetic

data, we can confirm that the data present no trend and that the next value becomes basically

unpredictable for time lags greater than 1 year [65].

A moving average with a window length of 30 years shows a subtle downward trend for the

Northwest Pacific, which is in accordance with results obtained by studies focusing on this basin

[31], [34]. This downward trend, together with the significant autocorrelation of 16 years may
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be connected to the El Niño Southern Oscillation (ENSO) phenomenon, which affects global

tropical cyclone activity on a multi-decadal scale. The effects of ENSO on tropical cyclone

activity in the Northwest Pacific have already been studied previously [31], [35], [37], [86].

The histogram of the data, when using the recommended number of bins for a time series of

length N (i.e.
√
N), resembles a Gaussian distribution, albeit with a higher probability for mild

and extreme tropical cyclone seasons. When we use 11 bins for the histogram representation, we

can see what appears to be a bimodal distribution [87]. This is a sign that building a histogram

and extracting the Probability Density Function from it introduces artifacts which may lead to

different interpretations.

The ranking representation shows three main outliers in the observed data, as was already

observed directly from the time series. Apart from these extreme values, a main cluster that is

almost uniformly distributed can be seen. This can be compared to the time series generated

by random numbers from a uniform distribution shown in Fig. (3.8c). The rank-ordering

representation, as opposed to the histogram, shows the data in their raw form, which does not

introduce artifacts coming from the use of specific parameters. This makes this representation

more appropriate for short data sets [88]. As to the presence of fractal behavior in the data,

the ranking representation shows no sign of power-laws in the log-log representation.

Dynamical analysis

The dynamical part of the analysis was more difficult to perform, as larger data sets are nor-

mally required to use nonlinear analysis tools. The first analysis, namely computing the Hurst

exponent, requires at least ∼ 100 data points [89]. The algorithm that was used for comput-

ing this quantity did not behave homogeneously with the input data (both for N = 1000 and

N = 72 data points). The conclusions that can be drawn from the Hurst exponent are limited

and should be taken cautiously because of the errors that were presented by the algorithm.

Both the phase space reconstruction and the ranking representation, however, support the idea
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that the data are antipersistent. This alleged antipersistence may point at the presence of a

negative feedback in tropical cyclone seasons. For example, a specially active season reduces

the available thermal energy of the sea and prevents the following season to be as active [90].

As for the methods that work on phase space, the results are ambiguous as to whether

or not there is an attractor present. As pointed out in the results section, the phase space

reconstruction shows that the trajectories follow what could be interpreted as an attractor

with two main clusters. For instance, the phase space reconstruction of the observed data

could be vaguely compared to that of the generated data from a random walk that showcases

antipersistent behavior.

The dimension of the supposed attractor was found to be small, DC = 1.77 ± 0.15, which

is in accordance to the presence of a low-dimensional attractor. This would mean that at least

two variables are needed to describe the dynamics of the system. The low dimensionality of

climate and weather variables has been already reported by numerous studies [91]–[95]. Again,

estimating the dimension of an attractor reliably requires around 102+0.4D data points [64]. This

means that the size of the observed data set cannot yield a reliable estimate of the attractor.

To further probe the idea that the observed data behave like a random walk with antipersis-

tent behavior, surrogate data of the observational records are generated and the analysis tools

of this project are applied on it. This analysis is presented in the next section.

Surrogate data

As mentioned in the previous sections, the observed Accumulated Cyclone Energy data are

similar to what we would obtain from a stochastic process which exhibits antipersistent behavior.

In order to test this conclusion we can perform the same analysis on synthetic data designed

to mimic the statistical properties of the observed data, but with an explicit stochastic nature

[96].

These surrogate data are obtained using an AutoRegressive Moving Average model, known
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as an ARMA(p, q) model, given by the expression:

yt = α +

p∑
k=1

ϕkyt−k + wt +

q∑
k=1

θkwt−k , (4.1)

where p and q are the order of the autoregressive and moving average parts respectively. Here,

ϕi and θi are constants and wt are white noise variables. Finally, α is given by

α = µ

(
1−

p∑
k=1

ϕk

)
. (4.2)

In the autoregressive part of the model, the next value of y is a linear combination of its

previous values. The moving average part, in turn, represents y as the result of smoothing q+1

independent random variables. Here, there is no direct dependence between successive values

of y [64].

The first part for generating surrogate data involves estimating the parameters for the ARMA

model. Using the Python library tqdm and using the Akaike Information Criterion (AIC), we

obtained the optimal model: ARMA(0,1), which means only a moving average model of order

q = 1 is necessary to reproduce the features of the observed data. We then obtained θ = 0.3062.

With this information we implemented the model and obtained a time series with N = 72 data

points to maintain the same length as the observational data.

Figure (4.1) shows the time series of both the Accumulated Cyclone Energy in the Northwest

Pacific and the surrogate data generated from the original data. As it can be seen at first glance,
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Figure 4.1: Time series of: a) Accumulated Cyclone Energy in the Northwest Pacific and b)
Moving Average model of order 1.
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both time series are similar. The only notable difference is that the ACE data shows a smaller

variance in the first years compared to the variance seen after the year 1990. This does not

necessarily mean there has been a change in TC activity in this basin. This difference in variance

may be due to the changes in the way the data were obtained [30], [97].

The autocorrelation function, presented in Fig. (4.2), shows that the surrogate data, in

contrast to the observational record, does not have significant autocorrelation values. This

means that we can see the presence of randomness in the surrogate data, but not in the observed

Accumulated Cyclone Energy.
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Figure 4.2: Plot of the autocorrelation function of: a) Accumulated Cyclone Energy in the
Northwest Pacific and b) Moving Average model of order 1.

The histograms of the ACE data and the synthetic data, shown in Fig. (4.3), clearly show

that the observational data have an excess of occurrences for both weak and strong tropical

cyclones when compared to a Gaussian. The surrogate data, on the other hand, are closer to

the Gaussian benchmark. This reinforces the fact that a stochastic process is at play for the

surrogate data.

The ranking representation of both data sets, presented in Fig. (4.4), shows that their

distributions are very similar, which means the modeling successfully captured the distribution

of values of the experimental data.

The Hurst exponent obtained for the synthetic data, however, differs from that obtained

for the ACE data. We obtained H = 0.629 with the linear fit and H = 0.696 ± 0.068 with

the nonlinear fit. This means that, according to this computation, the synthetic data show
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Figure 4.3: Histogram of: a) Accumulated Cyclone Energy in the Northwest Pacific and b)
Moving Average model of order 1.
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Figure 4.4: Rank profile of Accumulated Cyclone Energy in the Northwest Pacific and Moving
Average model of order 1 in a) linear plot and b) Log-log representation.

persistent behavior, which is in contrast to the antipersistent behavior found in the ACE data.

Lastly, the phase space reconstructions of both data sets show a very similar distribution of

points in the lagged time. What was originally thought to be an attractor with two apparent

centroids in the observational data shows no clear structure in the context of this new figure (Fig.

4.5b). As a conclusion of this figure, we can say that we lack data points to point confidently

to a defined structure in the data.

From these surrogate data we can draw the conclusion that we can, in principle, model the

observational data set as a moving-average stochastic process. Nevertheless, the autocorrelation

plot points at the surrogate data as having a clear stochastic nature, whereas the real-world data

show some significant autocorrelations that stray from a stochastic description. Additionally,

the histogram of both data sets showed a difference in occurrences of both high and low values
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Figure 4.5: Phase space reconstruction of: a) Accumulated Cyclone Energy in the Northwest
Pacific and b) Moving Average model of order 1.

of the parameter.

This chapter went over the results and gave an interpretation of them and their relevance

to the present study. Additionally, a statistical model called AutoRegressive Moving Average

model was used to generate surrogate data and compare it with the observational data set. It

was found that the experimental data can be described with an ARMA model, but with some

caveats. The following chapter draws from these observations and condenses them into a series

of conclusions regarding the validity and usefulness of the results. Furthermore, we outline

possible directions for future work within the context of global warming and other pressing

issues.
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Chapter 5

Conclusion

In this thesis project we studied the annual tropical cyclone activity in the Northwest Pacific.

We performed two kinds of data analysis on the time series of observed Accumulated Cyclone

Energy. The first kind was based on statistical tools and the second relied on tools developed

to study nonlinear dynamical systems.

From the analysis tools we applied to the observational data, as well as the synthetic data

sets, the main results are:

• The probability density function suggested the presence of two dynamical states.

• The ranking representation of the data revealed an almost homogeneous distribution sim-

ilar to that of the antipersistent random walk.

• According to the Hurst exponent and phase space reconstruction, the Accumulated Cy-

clone Energy shows antipersistent behavior.

• The phase space reconstruction, although not being able to clearly show a determined

structure, does confirm the presence of two dynamical states.

Additionally, in accordance with the results reported by previous works, the data showed no

signs of increasing activity over the past two decades as compared to when reliable measurements

started.
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It is important to take this list of conclusions carefully as there are a number of limita-

tions associated to the data and methods used. First, the data set used is inhomogeneous.

The introduction of satellite observations in the 1970’s improved the quality and precision of

observations, but this means that pre-satellite observations are not necessarily consistent with

modern data. The second limitation has to do with sample size and the tools used to analyze

the data. Statistical and dynamical analysis tools usually require larger number of data points

to give reliable results, yet the data set used to carry this work contains only 72 data points.

This means that the results that can be obtained with these tools are already limited in the

precision and the conclusions that can be reached with them may be biased.

A natural progression of this work is to extend the same analysis to different tropical cyclone

basins. Additionally, a variation or extension of these tools could aid in the investigation of the

effects of global warming on tropical cyclone activity. Such a connection is being pursued for

the North Atlantic basin, where tropical cyclone activity has been shown to be increasing in the

last decades [98] (This manuscript has been submitted to the International Journal of Modern

Physics C and is currently under revision).
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“Una revisión de los métodos para estimar el exponente de Hurst y la dimensión fractal en
series de precipitación y temperatura,” Revista Mexicana de Fisica, vol. 63, no. 3, 2017.

[79] M. Tarnopolski, “Correlation between the Hurst exponent and the maximal Lyapunov
exponent: Examining some low-dimensional conservative maps,” en, Physica A: Statistical
Mechanics and its Applications, vol. 490, pp. 834–844, Jan. 2018.

[80] J. de Pedro-Carracedo, D. Fuentes-Jimenez, A. M. Ugena, and A. P. Gonzalez-Marcos,
“Phase Space Reconstruction from a Biological Time Series: A Photoplethysmographic
Signal Case Study,” Applied Sciences, vol. 10, no. 4, p. 1430, Feb. 2020, Publisher: MDPI
AG.

[81] N. Boers, J. Kurths, and N. Marwan, “Complex systems approaches for Earth system
data analysis,” Journal of Physics: Complexity, vol. 2, no. 1, Mar. 2021, Publisher: Web
Portal IOP.

[82] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis. Cambridge University Press,
Nov. 2003.

[83] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical systems and tur-
bulence, Warwick 1980, Springer, 1981, pp. 366–381.

[84] J. Theiler, “Estimating fractal dimension,” Journal of the Optical Society of America A,
vol. 7, no. 6, p. 1055, Jun. 1990.

[85] P. Grassberger and I. Procaccia, “Characterization of strange atractors,” Phys. Rev. Let-
ters, vol. 50, no. 3, pp. 346–349, 1983.

[86] J. C. L. Chan, “Tropical Cyclone Activity in the Northwest Pacific in Relation to the El
Niño/Southern Oscillation Phenomenon,” en, Monthly Weather Review, vol. 113, no. 4,
pp. 599–606, Apr. 1985.

[87] E. Roca-Flores, G. G. Naumis, E. Madrigal-Soĺıs, and K. Fraedrich, “Typhoon complexity:
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and D. Salas-Monreal, “Nonlinear analysis of the occurrence of hurricanes in the Gulf
of Mexico and the Caribbean Sea,” Nonlinear Processes in Geophysics, vol. 25, no. 2,
pp. 291–300, Apr. 2018, Publisher: Copernicus GmbH.

[96] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Doyne Farmer, “Testing for
nonlinearity in time series: The method of surrogate data,” en, Physica D: Nonlinear
Phenomena, vol. 58, no. 1-4, pp. 77–94, Sep. 1992.

[97] S. S. Chand, K. J. E. Walsh, S. J. Camargo, et al., “Declining tropical cyclone frequency
under global warming,” Nature Climate Change, vol. 12, no. 7, pp. 655–661, Jul. 2022.

[98] E. Roca-Flores, G. G. Naumis, E. Madrigal-Soĺıs, K. Fraedrich, and E. Torres, “Hurricane
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