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Abstract

Rigidity theory has shown experimentally a link between rigidity and relaxation. Specifically, how by

varying the coordination number of a glass forming material the necessary cooling speed for a strong

glass forming tendency varies as well. Yet, a proper understanding on how these two features are re-

lated is still lacking. The main objective in this work is to provide a better understanding of relaxation

and rigidity in glass forming systems as well as establishing the missing links between these two. To

this end, we first develop a simple solvable glass model from the energy landscape point of view. This

model has a first order phase transition to a crystal as well as a dynamic transition to a glass. In this

model we are able to find analytical expressions for the relaxation times as a function of the short

time dynamics as well as the minimum cooling speed for a strong glass forming tendency. We show

how the vibrational modes, together with the energy barriers, determine the relaxation. Our strategy

consists on using Kramers’ transition state theory. Then, we present a non-linear, non-deterministic,

zero temperature model where we study the floppy modes relation with energy barriers and the latter

with the relaxation time. We find a broad range of relaxation times scales that arise from dynami-

cal heterogeneity. We further pinpoint the plethora of initial configurations to understand how these

power-law relaxation time appear. This, we discuss, is useful in glass dynamics such as molecular re-

arrangements usually related with the β-relaxation. Then we present the conclusions of the chapter

while setting the tone for the next chapter.Then we turn to the rigidity aspects, namely, we first study

the relationship between rigidity and floppy modes by means of simulation of hard-disks. We present

the concept of dynamical-gap and show its usefulness in characterizing the rigidity, counting floppy

modes and using it as a order parameter. Then, we present a model which shows how floppy modes

emerge through maximization of vibrational entropy. We then relate this with the heterogeneous-

homogeneous phase transition.
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12 CONTENTS

Productive stupidity means being ignorant by choice. Focusing on important questions puts us in the

awkward position of being ignorant. One of the beautiful things about science is that it allows us to

bumble along, getting it wrong time after time, and feel perfectly fine as long as we learn something

each time. No doubt, this can be difficult for students who are accustomed to getting the answers right.

No doubt, reasonable levels of confidence and emotional resilience help, but I think scientific education

might do more to ease what is a very big transition: from learning what other people once discovered to

making your own discoveries. The more comfortable we become with being stupid, the deeper we will

wade into the unknown and the more likely we are to make big discoveries.

Martin A. Schwartz

The importance of stupidity in scientific research

Journal of Cell Science 2008 121: 1771 doi: 10.1242/jcs.033340



Chapter 1

Introduction

1.1 Conventional Wisdom

Glasses have an overwhelming presence in our societies, they are part of our daily lives. Examples

of the above are window glasses, jars and containers of products for our consumption, smart phone

screens, optic fiber and data storage devices. Corning Industries claim that when historians write

about this age, it should be called Glass Age. Although the scientific literature concerning this subject

is extensive, it is still an open and complex problem, and our understanding of the subject is, to a

large extent, phenomenological (1–13). The reason for this is due to the fact that the formation of

glass occurs outside the thermodynamic equilibrium and there is no long-range order. That is why

studying glasses with techniques of the solid state or conventional statistical physics does not respond

to the unknowns of the glass forming process (14).

From a fundamental and technological point of view, the most important variable for glass forma-

tion is the cooling rate (10; 15). However, in recent times a variety of phenomena have been found to

show glassy behavior. In this sense, it is said that a material is glassy when its relaxation time becomes

of the order of or greater than the duration of the experiment or the numerical simulation. Under this

generic definition, a large number of systems are grouped altogether, that is, supercooled liquid, type

II superconductors with disorder, spin glasses, colloidal systems, emulsions, granular media, proteins

and complex fluids (16).

In general, if one takes a material in its liquid phase and it is cooled in a quasi-static manner, the

given material will have a temperature such that when it is crossed, the material crystallizes. That

temperature is defined as the crystallizing temperature of the material, Tc . If we repeat the process

13



14 CHAPTER 1. INTRODUCTION

but now the cooling is carried out (sufficiently) fast, the material will not crystallize. What happens is

that the liquid enters a supercooled metastable state where a number of thermodynamical properties

seemingly behave as in the liquid while a number of dynamical properties do not. For instance, the

viscosity varies by more than ten orders of magnitude as the temperature varies by a factor of three

and at some point the system becomes so viscous that for the purpose of the experiment, the system

becomes a solid. This state of matter is called glass or glass state. Thus glass is a solid as is the crys-

talline phase, but unlike the latter, the glass is isotropic and has no long-range order, as in the liquid

phase. There are those who state that glass is a system outside of equilibrium, which physical proper-

ties evolve into a state in equilibrium (17). Therefore, in principle, glass properties change over time,

and the glass state is not unique. The latter is supported by the fact that the glass, in principle, does

not comply with the third law of thermodynamics. This relaxation of the glass is easily observed as the

cooling increases or when the glass is at a temperature close to the glass transition temperature (13).

There are several techniques to characterize a glass, among them there’s neutron, light and X-rays

diffraction which measures the dielectric constant, specific heat, compressibility and viscosity, that

is, the susceptibilities or responses to a change in an external parameter. The point at which the

glass state is obtained is called the glass transition and the temperature at which it occurs is called

the glass transition temperature. Additionally, it is possible to obtain a glass at high pressure, so one

would define a glass transition pressure. One property of the transition is the continuity of the entropy

and the volume although its derivatives are discontinuous, in this sense the transition is similar to a

second order phase transition in the Ehrenfest formalism.

On the other hand, Phillips (see (18)) observed that for several chalcogenides supercooled liquids,

the minimum cooling rate for a strong tendency to form the glass is a function of the system rigidity.

This gave rise to his well-known rigidity theory which we can summarize as follows. When the num-

ber of constraints between atoms is equal to the number of degrees of freedom, the tendency of glass

formation is optimized, that is, to obtain glass it is enough to cool it with a minimal speed. In this

situation, the average number of coordination is equal to the critical coordination number of perco-

lation, so that domains of floppy modes (modes of zero frequency) coexist with rigid modes. As the

average number of coordination decreases, which is achieved by varying the chemical composition

of the system, floppy modes increase. Increasing floppy modes by number makes glass formation

difficult. The same happens in the case where there are only non-floppy modes.

Relaxation times are proportional to the viscosity coefficient. To see this, recall that the viscosity
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Figure 1.1: Specific volume (or enthalpy, as well) dependence with temperature at constant pressure. The tempera-

ture Tm denotes the melting temperature, while Tg a and Tg b denote the glass transition temperature for different cooling

speeds, where the former corresponds to a smaller cooling speed than the latter. As the liquid is cooled in equilibrium at

constant pressure, a first order phase transition occurs at Tm and the liquid becomes a crystal following the dark blue line.

When the liquid is cooled sufficiently fast, it enters a metastable supercooled regime, while the thermodynamical quan-

tities, such as specific volume and enthalpy, follow the same trend as the equilibrium liquid. Eventually, as temperature

decreases, response functions, such as the compressibility coefficient, behave as if the liquid had crystallized. Taken from

(7)
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η is defined as follows: when a liquid is placed between two parallel solid plates of area A moving

with relative velocity v between each other, the force F needed to maintain this velocity is F = ηv A/d ,

where d is the distance between the plates. The viscosity of water under normal conditions is 10−3 Pa

s, while a material, cooled with a speed of the order of Kelvin per minute, above the glass transition

temperature has a viscosity of the order of 1012 Pa s. When this happens, the material is effectively

frozen for lab time scales. Therefore, the glass transition occurs at a temperature, Tg , where the vis-

cosity equals 1012. It is also possible to obtain a glass at high pressures, however, we will not consider

that scenario throughout this thesis unless otherwise specified.

In 1867, Maxwell suggested that in a short enough time scale, any liquid has an elastic response

and behaves like a solid (13). If x is the relative displacement of the plates, the shear displacement γ is

defined as γ= x/d ; for a solid the elastic shear modulus G is defined through σ=Gγ, where σ= F /A

is the shear stress. In terms of σ and γ̇ the definition of viscosity, η, is σ = ηγ̇. Maxwell proposed to

make an extrapolation between the solid and liquid behavior by assuming,

γ̇= σ

η
+ σ̇

G
. (1.1)

Notice from Eq. (1.1) that a liquid with steady flow corresponds to σ̇ = 0, while when you have a

solid then η=∞.

Furthermore, let us suppose an initial condition γ̇(t ) = γ0δ(t ), which corresponds to an initial

displacement. By solving Eq. (1.1) with this initial condition, one finds,

σ(t ) ∼Gγ0Θ(t )e−Gt/η , (1.2)

whereΘ(t ) is the Heaviside function, and Maxwell’s relaxation time is,

τ= η

G
. (1.3)

Thus, in general, a liquid behaves like a solid for time scales much less than τ, while for time scales

much greater than τ it behaves like a liquid. Generally, the values of G are in the range of 109−1010 Pa,

therefore, given that η≈ 1012 Pa s at the glass transition, then τ is in the range of 102 −103 s. With this

argument we can say that the transition takes place when Maxwell’s relaxation time is of the order of

the cooling rate.

The previous derivation is rather coarse-grained, to say the least, yet it gives a picture and pin-

points the important variables to understand the dynamics. The problem in its full dimensions is

actually quite complex in the sense that, for instance, the Maxwell’s relaxation time depends on the
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microscopic processes, such as the molecular characteristic translation and reorientation time. Per-

haps an illustrative example of the existance of different relaxation times is the well-known Prince

Rupert’s drops (PRDs), which made of SiO2. The story behind the name is beyond the scope of this

thesis. However, a PRD looks like window glass in the form of a drop and a long tail as shown in Fig.

1.2. What is interesting in PRDs is that they have exceptional strength properties, all the while if the

tail is cut off the whole drop shreds to pieces! The science behind this phenomenon was rather well

understood, but it was only until quite recently that it was proved that the drop is under large sur-

face compressive stresses (19). As mentioned previously, as the temperature of the supercooled liquid

decreases, its viscosity increases abruptly. In fact, as the temperature changes around three units,

the viscosity has a variation over 16 orders of magnitude! Moreover, nothing particularly spectacular

happens to the structure during such huge viscosity increase. Now, as mentioned, the necessary cool-

ing speed to form a glass is material-dependent. In order to form a glass window, SiO2-based melts

must be heated to the order of thousands of degree Celsius and then, to cool the liquid and form the

glass, it is generally sufficient to put it in contact with air at room temperature (see for instance Ref.

(20)). In the case of PRDs, it must be cooled with water at room temperature as shown in Ref. (21).

By simply dropping a drop of supercooled liquid in a water bucket. What happens next is quite fas-

cinating. The drop will have different relaxation times. Thus, we may think of a characteristic time

function that is space-dependent. Furthermore, notice that since the drop cools from the outside

towards the inside, this characteristic relaxation time function is strongly radial-dependent. This dy-

namical heterogeneity has a huge impact on the glass properties. As the outside layer has solidified,

the inner layers are still in the supercooled regime and the specific volume is decreasing (see Fig. 1.1),

thus inner layers pull on the outer solidified layers, generating large surface compressive stresses. The

underlying idea is that in a supercooled liquid there are different characteristic time scales which are

space-dependent. These characteristic time scales have an effect on the internal structure and stress

in the glass. Thus, one question we may ask is: How are characteristic times related to the internal

structure of the supercooled liquid?

Whilst the previous question is valid and interesting from a theoretical point of view, from a tech-

nological point of view it is essential. The internal structure of a liquid may be tuned by changing

the composition of the given liquid. Hence, a proper understanding regarding the aforementioned

question would enable us to tune the characteristic relaxation times at will. Foremost important, we

then should be able to elucidate why the viscosity in a supercooled liquid increases exponentially with
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Figure 1.2: left) Prince Rupert’s drop. The color fringes is indicative of residual stresses. right) Prince Rupert’s drop

right after the tail of the drop is cut off. The drop shatters to pieces given the internal stresses this glass has, given the

preparation protocol. This also gives PRDs exceptional strength properties (see main text for further details). Taken from

the web.

decreasing temperature.

As mentioned, there is a proportionality between the viscosity and Maxwell’s relaxation time. One

of the best methods for measuring characteristic time scales in liquids and supercooled liquids as well

as glasses and crystal is dielectric spectroscopy. This method, however, is only applicable when cer-

tain conditions are met by the given material. Since the increase of the characteristic time scales, as

temperature decreases, is associated with the slowing down of the molecular dynamics of the given

system, then dielectric spectroscopy will only be able to capture this if the entities responsible for the

slowing of the molecular dynamics respond to the external electric field. This is true if the entities

are charged or exhibit a dipolar moment so that one may see the slowing down molecular dynamics

through dielectric spectroscopy (22). On the plus side, dielectric spectroscopy has a broad accessible

frequency range and the essence of this method is to measure the dielectric response function of a

given material when an external AC electric field is applied to it. The poles in the imaginary part of

the dielectric permittivity, also termed dielectric loss, yield the resonant frequencies. The inverse of

these frequencies are defined as the characteristic relaxation time. In Fig. 1.3 we show the typical

behavior of the dielectric loss for a) a liquid, b) a supercooled liquid, and c) a glass. There are several

remarks to be made here, the first one being that the Boson peak is related with the transverse normal

modes (23), in this sense, crystal do show a Boson peak as well. Nevertheless, the Boson peak is be-

yond the scope of this thesis. Notice, from Fig. 1.3, that the dielectric loss function in the liquid has a
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peak, called the α-peak and as temperature is lowered and the liquid enters the supercooled regime,

this peak shifts to lower frequencies while another peak, called the β-peak appears at higher frequen-

cies. The inverse of the frequencies at the α and β peaks are known as the characteristic α- and β-

relaxation times, τα and τβ , respectively. Although it is not entirely clear to what kind of miscro-

scopic process these characteristic times are related to, it is argued that τα corresponds to translation

movements of the entities (such as atoms, molecules, etc.) and τβ corresponds to rotational char-

acteristic relaxation times of these entities. Perhaps in the liquid regime the α-peak corresponds to

a wide variety of processes, each having relaxation times of the same order, however, as previously

mentioned, when the temperature is lowered and the system enters the supercooled regime, the vis-

cosity increases abruptly, which implies that translational movement begins to slow down. Hence,

theα-peak in the supercooled regime is associated with translational dynamics. Now, if this is true, in

the supercooled regime, ταÀ τβ, thus, for time scales of the order of τβ, translational movements are

effectively halted, which would imply that the entities are caged and only then rotational relaxation

becomes relevant (24; 22).

Let us suppose that as we lower the temperature, we compute τα. Then, we would obtain some-

thing similar to Fig. 1.4 if we plot logτα on the y-axis instead of the viscosity and 1/T on the x-axis.

This kind of plot is known as the Angell plot (25). Moreover, this provides a way to characterize glass

formers as strong or fragile.

As was mentioned before, the glass transition temperature,Tg , is defined as the one for which the

viscosity of the material is of the order of ≈ 1012 Pa s. Then, fragility index m is defined as the slope of

the curves shown in Fig. 1.4 when T = Tg , namely,

m = ∂ log(η)

∂
(
Tg /T

) ∣∣∣∣∣
T=Tg

. (1.4)

This provides a "quantitative" measure of the strong-fragile behavior of the glass former. For small

fragile index values, the glass former is said to be a strong glass former, whereas for large fragile index

values the glass former is said to be a fragile one. Strong glass formers require a cooling speed smaller

than the ones needed for fragile glass formers (7). Loosely speaking, any given physical configura-

tion of a given system will have some internal energy, some degree of degeneracy and some entropy.

Thus, from a statistical mechanics stand point, we may map any given physical configuration to a

point in a hypersurface corresponding to the energy. This hypersurface will have valleys and barriers

as sketched in Fig. 1.5. Given a temperature, the system will be able to visit any point in the hypersur-
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Figure 1.3: Sketch of the logarithm of the dielectric response for a liquid, a supercooled liquid and a glass. The inverse

of the frequency where the α and β peaks occur correspond to the τα and τβ relaxation times, respectively. Notice that

τα > τβ. In addition, τα increases exponentially with the decrease in temperature. Adapted from Ref. (22)
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Figure 1.4: Angell’s glass classification through viscosity vs ∼ 1/T . The viscosity of strong glasses are usually modeled

through Arrhenius Law, while for fragile glasses a spectrum of non-Arrhenius formulas are used. Furthermore, the Volger-

Tammann-Fulcher formula is widely used. Taken from Ref. (26)
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face that has an energy lower than the temperature times Boltzmann’s constant. Under this picture

it is easy to see that as the temperature is lowered, the configurational space is reduced and, eventu-

ally, if the temperature is low enough, the configurational space available to the system will consist

of one single point corresponding to the global minimum of the energy hypersurface, which would

correspond to the crystal phase. However, if the temperature is lowered fast enough, the system might

become arrested in a local minimum. This local minimum corresponds to the glass state. Then, one

could ask the question "How fast should the temperature be lowered to arrest the system in a local min-

imum?". In general, this would depend on the specific topology of the hypersurface. However, one

should expect that to answer the former question, only general features of the hypersurface would be

necessary 1, but that does not seem to be the case. Having reached this point, we should state that

this energy landscape picture is not enough to fully understand the glass transition, but it is useful

enough for the purposes of this thesis. Another thing to stress is that the number of metastable states

(local minima) grow exponentially with the number of entities (22). In this sense, it is said that the

glass state is a very degenerate state.

The literature regarding the nature of strong and fragile glasses is vast, but one must dive into it

with much care as the rabbit hole goes far down. Nevertheless, several ideas are worth emphasizing,

namely,

• Perhaps not the most useful way, yet the most common way in classifying glasses is under the

strong-fragile prism.

• The viscosity for strong glasses follows the Arrhenius law, while the viscosity for fragile glasses

are usually modeled using the the Volger-Tammann-Fulcher formula (13; 16).

• The dynamics of strong glasses are, ultimately, driven by activation energies. For fragile glasses,

entropy seems to play a crucial role.

There are many models that try to explain the glass transition from a dynamical approach. At

some point, the holy grail was to make dynamics and thermodynamics meet. This was one of the

strong points in the Adams-Gibbs model. This is beyond the scope of this thesis, but for a very nice

review, see Ref. (13).

1Similar to solid state physics and many other fields where the central limit theorem and its corollaries play a crucial

role in averaging and simplifying things.
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Figure 1.5: Free energy landscape sketch. In this sketch, the system as a whole moves over the X Y

plane, while the Z corresponds to the energy. Each point in the energy landscape corresponds to a

system configuration. Notice that different configurations may have the same energy (same value

in the Z -axis). Additionally, to go from one minimum to another, the system has to cross an energy

barrier as well as to take into account the curvature of the minimum. Take from Ref. (27)



24 CHAPTER 1. INTRODUCTION

Figure 1.6: Sketch of a underconstrained (upper panel), isostatic (central panel) and overconstrained

system (lower panel). When a system is underconstrained, there are floppy modes, i.e., vibrational

modes such that the eigenvectors associated to these floppy modes point in directions where the

system may flow without losing energy. From the rigidity theory standpoint, the isostatic system cor-

responds to a finite coordination number value where the number of constraints equal the number

of freedom degrees. By increasing the coordination number, the number of constraints surpasses the

number a degrees of freedom and the system becomes overconstrained. Rigidity theory relies com-

pletely on the coordination number in order to determine rigidity. Take from Ref. (28)
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As already mentioned , one of the foundations in current glass research is the constraint rigidity

theory of Phillips and Thorpe (29; 30). This helped to understand the supercooled behavior of chalco-

genides. The underlying idea is that by changing the coordination number the necessary cooling rate

for glass forming tendency varied. To modify the coordination number, the chemical composition

is varied and used as a proxy. A first result was realizing that there is a critical coordination number

at which the necessary cooling rate is minimum. This critical coordination number is equal to 2.4.

They further realized that this result is obtained when the number of constraints equals the number

of degrees of freedom. Phillips compared this theory with actual experiments (see Fig. 1.7 (a)) of the

time and obtained a fairly nice agreement between theory and experiment. Then, Thorpe introduced

the notion of rigidity threshold and, through a mean field approach, realized that the critical coordi-

nation number corresponded to the rigidity threshold. But the story does not end there. A simple way

to grasp these ideas is shown in Fig. 1.6 where we show a network of four nodes with (upper panel)

four edges in which case the network has a direction where it may be deformed without doing work.

As we increase in one the number of edges (center panel) the network becomes isostatic (i.e., the net-

work may not be deformed without doing work). In this case, the number of constraints equals the

number of degrees of freedom. We may add another edge (lower panel) in which case this lead to the

overconstrained configuration. In real systems, such as chalcogenides, the number of edges is tuned

by changing the concentration of the substances in question.

A little over twenty years after Phillips’ paper came out, Boolchand (31; 32) experimentally found

that rather than a critical value, there is in fact a window over which the glass melt properties change

dramatically, as shown in Fig. 1.7 (b). This was further supported by simulations (33). This window

was coined as the intermediate phase (see Fig. 1.7 (c)). Since then much controversy has surrounded

this intermediate phase and, to be fair, it is still a subject of heated debate. Nevertheless, there is

supporting evidence that properties such as the viscosity, the molar volume and the enthalpy expe-

rience a dramatic change when entering this window (34). Additionally, it has been shown that glass

formers in this intermediate phase are reversible in terms of heat absorption and release at the glass

transition, and also become strong in terms of dynamical fragility. These features are singular with

respect to those of the glass formers out of the phase. On the other hand, calorimetry experiments

imply a first-order phase transition in some strong glass-forming liquids above the glass transition

temperature. There, we assume the existence of this phase transition.

Still, no one has been able to produce a coherent theory to account for the empirically found
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relationship between relaxation and rigidity. In fact, it is worthwhile mentioning that there are several

thesis that deal with rigidity in disordered systems as well as relaxation in glass melts, yet there hasn’t

been a thesis that deals and relates both properties. Here we relate them and provide such a theory.

(a) (b)

(c)

Figure 1.7: a) Glass forming difficulty. As the concentration is varied, the mean coordination num-

ber changes. This affects the glass forming tendency. Taken from Ref. (29). b) Thermodynamical

and dynamical features variation with composition. Taken from Ref. (34). c) Schematic view of the

intermediate phase. Taken from Ref. (35).
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1.2 Outline of the thesis

The second chapter deals with the relaxation dynamics in glass forming models. First, we study a sim-

ple solvable glass model from the energy landscape point of view. This model has a first order phase

transition to a crystal as well as a dynamic transition to a glass. In this model we are able to relate

the relaxation time and the short time dynamics as well as the minimum cooling speed for a strong

glass forming tendency. We show how the vibrational modes, together with the energy barriers, deter-

mine the relaxation. Our strategy consists on using Kramers’ transition state theory. Then, we present

a non-linear, non-deterministic, zero temperature model where we study the floppy modes relation

with energy barriers and the latter with the relaxation time. We find a broad range of relaxation times

scales that arise from dynamical heterogeneity. We further pinpoint the plethora of initial configura-

tions to understand how this exponential relaxation times appear. This, we discuss, is useful in glass

dynamics such as molecular rearrangements usually related with the β-relaxation. Then we present

the conclusions of the chapter while setting the tone for the next chapter.

The third chapter is concerned with the rigidity aspects. We first study the relationship between

rigidity and floppy modes by means of simulation of hard-disks. We present the concept of dynamical-

gap and show its usefulness in characterizing rigidity, counting floppy modes and using it as a order

parameter. Then, we present a model which shows how floppy modes emerge through maximization

of vibrational entropy. We then relate this with the heterogeneous-homogeneous phase transition.

The fourth chapter presents the conclusions. Additionally, there are six appendices which com-

plement the ideas and derivations throughout the main text. The whole text has been written to be

self-contained.
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Chapter 2

On the relaxation properties of glass forming

systems

2.1 Introduction

Relaxation processes are ubiquitous in the Universe. In fact, if one were to take a snapshot of the

Universe, one would see that only a few number of physical systems are in equilibrium, while the rest

are either in steady states or relaxing towards equilibrium. All the same, it is not clear how relaxation

processes depend upon the energy landscape (12; 36; 16; 22; 37; 38). It is of common knowledge that

this is due to mainly two contributions, one being the energy landscape complexity itself, and the

other being the interaction with the sourrounding of the system. However, even if we only consider

the complexity of the energy landscape, one would find that the system has an intermittent chaotic

behavior. In this way, the deterministic feature is meaningless, similar to what happens in stochas-

tic processes (39). Furthermore, what we call stochastic behavior and chaotic behavior seems to be

two faces of the same coin (40). In this sense, Alvaro et al. in (41) are able to establish this sort of

correspondence for two particular well-known stochastic models.

In order to guarantee that the system under study will tend to an equilibrium state, one usually

imposes detailed balance or assumes that the conditions are fulfilled for the fluctuation-dissipation

theorem or the equipartition theorem. However, this is not obvious when going from a classical me-

chanical to a statistical mechanical approach. As it is well known, this is what Fermi, Pasta and Ulam

investigated back in 1954, by considering a chain of nonlinear oscillators. What they found is quite

long to sumarize here (see (42)). However, as one would expect, this relaxation depends strongly on

29
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the mode-coupling, i.e., the non-linear terms. In fact, Ponno in Ref. (43) presents some estimates on

how the energy is transfered from one mode to another, as well as the characteristic relaxation time

which is proportional to the number of oscillators. What is even more interesting is that this energy

sharing starts in the low vibrational modes due to resonances, which was first pointed out in Ref. (44).

This is because the dispersion relation for the low vibrational modes is linear and the frequencies are

linearly dependent. Then each mode will resonate with their mode-coupling term. Here is a hint on

the importance of the low vibrational modes in the relaxation properties.

Nonetheless, the relaxation mechanism, in particular, in supercooled liquids, has proven to be

very complex. In fact, the general features of supercooled liquids still lack a scientific explanation,

because of their complex nature. On the one hand, the problem is difficult because the harmonic

approximation breaks down for the Hamiltonian at long-time scales, which are relevant to describe

the relaxation and viscosity properties of glassy melts (12). On the other hand, the glass transition is

a non-equilibrium transition problem where the system does not have long range order. These argu-

ments are just the tip of the iceberg that give foundation to why this problem is a very complex one.

Despite the amount of research focused on it (see (45–50; 4; 15) and in particular (13) and references

therein), there is not too much of a consensus and rather different points of view. To spice things up a

little, experiments and simulations have not yet met in the sense that it takes too much computational

time to drive the system towards a region near the glass transition temperature. Yet attention should

be payed on recent simulations (51).

One of the questions that arise about this phenomenon is how the glass transition temperature,

Tg , is related to the composition of the glass former (1; 3). Rigidity theory (18; 52–55) gives some

insight on this aspect in a qualitative manner, and works quite well in the case of chalcogenide glasses.

Another rather interesting feature of supercooled liquids is the viscosity behavior during a quench. As

is well known, viscosity is a property that depends upon relaxation, i.e., the time that the system takes

in order to leave a basin of the energy landscape and produce a structural relaxation. Depending on

this behavior, the supercooled liquid is classified as strong if it follows the Arrhenius equation and

as fragile if it follows the Vogel-Fulcher-Tamman equation (13; 16). The fragility or non-fragility of

a supercooled liquid is related with the glass forming tendency in the sense that strong supercooled

liquids have a strong glass forming tendency such that do not require large quenches in comparison

with fragile ones which are poor glass formers. Thus, the glass forming tendency is clearly related with

the relaxation times of the system.
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It is well known that there is a correlation between the glass transition temperature, Tg , and the

cooling rate. Quite recently, Lerner et al. in Refs. (56; 57) have shown that the statistics and localiza-

tion of low-frequency vibrational modes depend upon the cooling rate. Thus, there lies a trichotomy,

namely, glass transition, relaxation and low-frequency vibrational. This has been, further, discussed in

Refs. (58–60; 23; 61; 62). In fact, rigidity theory has allowed to rationalize how they are interrelated(14).

As already mentioned, in their rigidity theory, Phillips and later Thorpe, consider covalent bonding as

a mechanical constraint(18; 52). In this sense, one may summarize the main feature of this theory as

follows. When the number of bond constraints equals the number of degrees of freedom, the glass

forming ability is optimized, i.e., producing glass requires the slowest cooling rate. In this situation,

the mean coordination number equals the critical percolation coordination number, i.e., domains of

floppy modes (zero frequency modes) and rigid modes coexist. As the mean coordination number

decreases, which may be tuned by varying the chemical composition, floppy mode domains grow

while rigid mode domains disappear. As floppy modes increase in number, the glass formation is

more difficult. We stress the previous through the thesis (as the reader may have noticed) because of

its importance. This sets the baseline for this thesis.

In this chapter we first present a simple solvable two-level glass forming model which has a first

order phase transition to a crystal, while also having a dynamical transition to a glass when cooled

fast enough. In this model we are able to analytically relate short time dynamics with long time relax-

ation properties. We do this by modeling the system from an energy landscape approach. One caveat

under this approach is that the topology of the energy landscape is subject to changes as tempera-

ture varies, hence the difficulty to mathematically model it, in addition to the topological complexity

as can be seen in Fig. 2.1 which is what an energy landscape actually looks like. What lacks in the

two-level model is the correlation between vibrational modes and energy barriers. To address this

issue, we present our findings on the relaxation behavior when we decrease the energy barriers which

are coupled with the frequency of the normal modes. When the energy barriers decrease so does the

vibrational modes which then yield floppy modes. Our approach is base on a chain formed by three

non-linear oscillators, which yields the Hénon-Heiles potential when expressed in the coordinates

that diagonalize the linear part. This potential is a particular case of the Fermi-Pasta-Ulam (FPU)

model, in which it is known that low-frequency modes are responsible for relaxation (63–66). This has

been made by adding second-neighbours, disorder and quasiperiodicity (64; 65; 67; 68). The advan-

tage of the Hénon-Heiles model (69–74) is that it contains the minimal ingredients to understand the
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effects of non-linearity.

Figure 2.1: Energy landscape of a supercooled liquid in silico. Each end node corresponds to a system configuration,

while the edges resemble the connected configurations. Obtained from Ref. (75)

It is worthwhile mentioning the results from Zwanzig (see Ref. (36)) where he shows that if we take

a particle coupled to N harmonic oscillators, by appropriately choosing the memory function, it is

possible to obtain the Langevin Equation. This is conceptually important in order to understand the

connection between the two models discussed in this chapter. Concerning the escape dynamics, it

has been observed the fact that the phase space escape flow follows an exponential law connected to

chaotic dynamics, whereas in non-chaotic dynamics the phase space escape follows a power law. Us-

ing simple arguments, Zhao et al. (74) obtained the exponential law, which they then compared suc-

cesfully with their simulations in the case of chaotic dynamics, with a small threshold energy. Bauer

and Bertsch (76) also obtained the exponential law before Zhao et al. Furthermore, from a heuristic

and retrospective approach they obtained the power law. Here we show that there is the crossover

between exponentially decaying law and power law which is not seen in (74) because they consider

smaller threshold energies and short times.

The next section treats the simple solvable two-level glass forming model under a quench. In

section 2.3 we present the soften-Hénon-Heiles model, its features and results. Finally, in section 2.4

we summarize and conclude this chapter.
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2.2 Simple solvable two-level model

2.2.1 Glass transition two-level model

Let us, in a brief manner, define the model to be used for the glass transition (for a detailed description

see (59)). As seen in Fig. 2.2, the energy landscape is composed of g1 wells with energy E1 = Nε > 0

which we denote as the meta-stable states for N atoms in total, and g0(¿ g1) wells with energy E0 = 0

which we denote as ground states. All wells are interconnected, and any two wells have an in-between

wall of height V .

Now, given this simple topology, we assume that transition probabilities between the wells in the

metastable state are all the same, in like manner transition probabilities between the wells in the

ground state are all the same. The transition probability from each well in the metastable state to any

of the wells in the ground state are all the same as well as the transition probability from each well in

the ground state to any of the wells in the metastable state. The probability p(t ) of finding the system

in the metastable state satisfies the following master equation(59):

ṗ(t ) =−Γ10g0p (t )+Γ01g1
(
1−p (t )

)
, (2.1)

where Γ10 corresponds to the transition probability per time for going from the state with energy

E1 to the ground state, i.e., state with energy 0, and Γ01 for the reverse transition. Now, let us use

Kramers’ theory to take into account in a proper way contribution from the curvature of the basin. To

do this, we consider that the square well model must be replaced by a smooth potential. Since the

square well model can be reduced to a model of two levels with degeneracy, then the model with the

smooth potential can be translated into a landscape with the shape shown in Fig. 2.3 with the same

degeneracy as in the original square model.

According to Kramers’ first passage time formulation in the overdamped scenario (36; 77; 78) (see

Appendix A for details in the derivation), one finds that
Γ10(T ) = ω1ωc

2πγ e−V /T ,

Γ01(T ) = ω0ωc
2πγ e−(V +E1)/T ,

(2.2)

where ω2
1 ≡ V ′′(x1)/M is the squared angular frequency inside the metastable minimum at position

x = x1 and M is the mass of the system. V ′′(x) denotes the second derivative of the potential at x.

ω2
0 ≡ V ′′(x0)/M is the squared angular frequency inside the global minimum at position x = x0 and
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(a)

(b)

Figure 2.2: (upper panel) The two level system energy landscape, showing the barrier height V and the asymmetry E1

between the two levels and the low energy E0 = 0. There are g1 wells with energy E1, associated with metastable states,

and g0 ground states with energy E0 = 0. The population of the upper well is p(t ) (59). (lower panel) The double well

embedded with the specified parameters in the model.

ω2
c ≡ |V ′′(xc )|/M is the squared angular frequency at the transitional state at position x = xc (see Fig.

2.2 (b)). Also, the energy potential barrier height that appears in Eq. (2.2) is given by V , which is
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Figure 2.3: Sketch of a double well potential with a barrier of height V , showing the frequencies associated with each

well and transition barriers. The transition rates between wells are also shown with arrows.

defined as V =V (xc )−E1. Here we denote the dissipation coefficient as γ and is fixed at γ= 1.

For real glasses, ω1 and ω0 depend upon the normal modes frequencies at the energy minima

(55; 23; 60). Here is important to remark that in general, the potential barrier height V can be cor-

related with the surrounding energy minima. In this sense, the normal modes frequencies and the

energy minima of the energy landscape is known for a variety of interaction potentials (79; 80). Also,

the energy barriers distribution (81) and the Hessian index (82) as function of temperature has been

obtained for Lennard-Jones supercooled liquids. As was mentioned, the topology of the energy land-

scape changes with temperature, in addition to its topological complexity. In this sense, perhaps the

use of tools such as the ones provided by catastrophe theory might be useful, as pointed out by Wales

in (83). Nonetheless, the relation between the transition barrier heights and the frequencies is still

an open issue, but certainly they can be correlated (84). Throughout this section, V is treated as an

independent parameter that may or may not be correlated with the frequency ω at the bottom of the

adjacent wells. Here we only need the maximum value of V (x), identified with V , and a finite V ′′(x)

at such point. In that sense, our model describes a general situation of an energy barrier and two

adjacent minima. In reality, one needs to include many energy minima and barriers between them

as well as correlations between energy minima, barrier height and curvature, and the fact that in real

glasses, there is a distribution of energy barriers, energy minima and curvatures that are needed to be

overimposed on our minimal picture of the landscape.

It is worthwhile mentioning that the transition rates shown in Eq. (2.2) satisfy the detailed balance

condition,

Γ01

Γ10
= ω0

ω1
e−E1/T , (2.3)
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Also, it is important to observe that the stationary solution to our master Eq. (2.1) is:

p0(T ) =
g1ω0
g0ω1

e−E1/T

1+ g1ω0
g0ω1

e−E1/T
. (2.4)

In general, the degeneracies g0 and g1 depend upon the landscape complexity, which increases as

∼ N !exp(N ) (49; 85; 86). Here we assume g0 = exp
(
N log(Ω0)

)
and g1 = exp

(
N log(Ω1)

)
where Ω1 >

Ω0 = 1. Therefore, in the thermodynamic limit, when T < Tc then p0(T ) = 0, while when T > Tc then

p0(T ) = 1, where Tc is the first order transition temperature and is defined by the equality 1

Tc = ε

log(Ω1/Ω0)
. (2.5)

In equilibrium, the system at T < Tc is in the crystalline state while when T > Tc it represents the

liquid. When the system experiences a quench, the system may be arrested in metastable states. This

will be presented in the following.

2.2.2 Cooling speed and residual population

Let us study our model under cooling. In that case, a cooling protocol, i.e. the temperature as a func-

tion of time, T (t ), needs to be specified. Experimentally, a linear cooling is usually used. For obtaining

analytical results, an hyperbolic quench is more appropriate. Both cooling protocols produce similar

results, except for the size of the glass transition region, associated with the boundary layer of the dif-

ferential equation (87; 59). This boundary layer decrease as N increases. For the hyperbolic quench,

T (t ) = T0/(1+Rt ) where T0 is the initial temperature at which the system is in thermal equilibrium

and R is the cooling rate. In particular, we are interested in the system’s dependence with ω1 when a

rapid quench is applied.

Notice that care must be taken with our notation. Here T = T (t ), and as a result, the population

described by Eq. (2.1) will be denoted at times by p(T ), which should not be confused with the equi-

librium probability p0(T ). Having said this, let us write Eq. (2.1) as follows:

ṗ(t ) =− ωc

2πγ

(
ω1g0e− V

T (t ) +ω0g1e− (V +E1)
T (t )

)
p(t )+ ω0ωc

2πγ
g1e−V +E1

T (t ) . (2.6)

The solution to this first order non-homogeneous ordinary differential equation is obtained in a

1Here and on, when taken the thermodynamic limit we will assumeΩ1/Ω0 > 1.
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straightforward manner yielding the following:

p(t ) = exp

ωc T0e− V
T (t )

2πγR

ω1g0

V
+ ω0g1e− E1

T (t )

V +E1


×

p(∞)−
∫ ∞

t
d t ′

ω0ωc

2πγ
g1e−(V +E1)/T (t ′) exp

−ωc T0e− V
T (t )

2πγR

ω1g0

V
+ ω0g1e− E1

T (t )

V +E1

 . (2.7)

(a) (b)

Figure 2.4: Temperature dependent distribution in equilibrium (dashed lines) and under fast cooling (continuous lines).

We parametrize the time dependent probability with temperature, i.e., p(t (T )). Given the cooling protocol, the system may

be arrested in a metastable state. In (a), the size of the system is changed for a given cooling ratio. The parameters were

fixed at (a) V = 1, γ= 1, R = 1, ωc = 1, ω0 = 1, ω1 = 1, ε= 1,Ω0 = 1, Ω1 = 2, since we are solely interested in the dependence

with N and the change in behavior when a cooling speed is taken into account. In panel (b), the size and cooling rate is

fixed, while the oscillation frequency of the metastable energy basin is modified. Observe that the glass forming ability

increases as the oscillation frequency ω1 of the metastable states goes to zero. The reason is that the system probes the

energy barrier less frequently. The parameters are V = 1, γ= 1, R = 1, ωc = 1, ω0 = 1, N = 8, ε= 1,Ω0 = 1, Ω1 = 2., since we

are only interested in the effect of the frequency ω1 has in the glass forming tendency.

Now, in order to find the residual population p(∞) corresponding to t →∞ which gives the prob-

ability of arresting the system in the metastable states as T → 0, we first assume that the system is

initially in thermal equilibrium at a temperature T0 such that T0 > Tc . Hence we write:

p(∞) = p0(T0)exp

−ωc T0e
− V

T0

2πγR

ω1g0

V
+ ω0g1e

− E1
T0

V +E1


+

∫ ∞

0
d t ′

ω0ωc

2πγ
g1e−(V +E1)/T (t ′) exp

−ωc T0e− V
T (t )

2πγR

ω1g0

V
+ ω0g1e− E1

T (t )

V +E1

 . (2.8)
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In Fig. 2.4 we have plotted p given by Eqs. (2.4) and (2.7) as function of T , while in Fig. 2.5 we

have plotted p(∞) given by Eq. (2.8). Notice, from the lower panels in both figures, how the residual

population increases as ω1 decreases, i.e., as the metastable wells become broader. This agrees with

the first passage time of a non-drifting Brownian particle (see Ref. (88) for instance). Notice that asω1

tends to zero, the well becomes flat. Hence, the system can be thought of as a one-dimensional free

Brownian particle. In this scenario, at long times, the first passage time distribution goes as ∼ t−3/2.

Thus, the mean first passage time diverges, which means the particle takes an infinite time in going

from the metastable state to the ground state. This is what the lower panels in Figs. 2.4 and 2.5 are

suggesting.

As previously mentioned, prior to the glass transition, the characteristic relaxation time increases.

When this time is of the order of the observation time, then the supercooled liquid is not able to

remain in equilibrium and the glass is formed. This characteristic relaxation time is obtained in the

following.

(a) (b)

Figure 2.5: Final state quenched distribution as a function of the cooling rate as obtained from Eq. (2.8). In panel (a),

the size of the system is changed. The parameters were fixed at (a) V = 1, γ = 1, T0 = Tc , ωc = 1, ω0 = 1, ω1 = 1.1, ε =
1,Ω0 = 1, Ω1 = 2, since we are solely interested in the dependence with N . In panel (b), the oscillation frequency of the

metastable energy basin is modified. Observe how as the frequency ω1 → 0, the glass forming ability increases for a given

cooling rate R. Again, the reason is the decreasing probing of the energy barrier. The parameters are V = 1, γ = 1, T0 =
Tc , ωc = 1, ω0 = 1, N = 4, ε= 1, Ω0 = 1, Ω1 = 2, since we are solely interested in the dependence with the frequency ω1.
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2.2.3 Characteristic relaxation time

Glass formation happens as a dynamical transition, i.e., glasses appear because the system is not able

to relax into the energy minimum. In this simple model we can test this idea in a simple way. To

determine the characteristic relaxation time, let us assume that at any fixed given temperature T , the

initial condition is p(t = 0) = ρ, where 0 ≤ ρ ≤ 1. Now, because of detailed balance, we know that for a

fixed temperature p(t →∞) = p0(T ). Hence, we formally write:
ṗ(t ) =−Γ10(T )g0p(t )+Γ01g1

(
1−p(t )

)
p(t = 0) = ρ

p(t →∞) = p0(T )

. (2.9)

By simple inspection, one is able to write the solution,

p(t ) = p0(T )+ (
ρ−p0(T )

)
e−t/τ . (2.10)

where the characteristic relaxation time τ is:

τ= 1

Γ10g0 +Γ01g1
= 2πγ

ωcω1

1

e−(V /T+F /T )
, (2.11)

where F is the free energy, i.e.,

F =−T log
(
g0 + g1ω0 exp(−E1/T )/ω1

)
. (2.12)

Notice that in Eq. (2.11), in the thermodynamical limite τ is proportional to the oscillation period

multiplied by the inverse conditional probability P (V +E1|E1). Before continuing, let us stress the

following. When γÀ 1 the system is strongly coupled with the heat bath, thus it dissipates energy at a

very high rate. On the contrary, when γ→ 0 the system is weakly coupled with the heat bath, which are

responsible for the fluctuations in the system which in turn are responsible for the barrier crossing.

However, Eq. (2.11) does not apply for the latter case. Instead, one may use Kramers’ transition state

theory in the underdamped regime (see for instance (78; 36; 89))

In the thermodynamical limit, the characteristic relaxation time below the critical temperature

goes as 2πγ/
(
ωcω1Ω

N
0

)
exp(V /T ). Despite stating the obvious, notice that as ω1 decreases, the char-

acteristic relaxation time increases. As stated earlier, when ω1 tends to zero, the energy landscape

changes in such a way that the available phase space increases. Hence, it takes longer for the par-

ticle to visit the "summit" or probe the energy barrier . Therefore, the characteristic relaxation time

increases as ω1 tends to zero. In this limit, such a degree of freedom becomes a floppy mode. As we

discuss in the following, this affects the critical cooling rate for glass formation.
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2.2.4 Thermodynamic limits and critical cooling rate

Let us first consider the thermodynamical limit N → ∞ for expressions p(∞) and p(t ). In this sce-

nario, from Eq. (2.8) we obtain for p(∞) the following expression:

p(∞) = exp

(
−Γ10(Tc )T0

RV

)
. (2.13)

Arguing the same way, one obtains from Eq. (2.7) for p(t ) the following result:

p (T (t )) =


1, T (t ) ≥ Tc

exp
(
Γ(T (t ))T0

RV

(
1−eV Tc−T (t )

Tc T (t )

))
, T (t ) ≤ Tc ,

We define the critical cooling rate as the cooling rate for which the residual population has an inflec-

tion point, to obtain the following relation:

Rcrit = ω1ωc T0

4πγV
e−V /Tc . (2.14)

This equation relates the cooling rate with the short-time dynamics in the model which is one the

main result of this work. In the following section, we will discuss its properties and validity.

Notice that Eqs. (2.11) and (2.14) provide a link between long and short-time dynamics for a simple

landscape. Let us know discuss some important points concerning its application in real systems.

The first is to observe that in Eq. (2.14), Rcrit is linear on ω1. As ω1 → 0, the relaxation time grows.

The reason is simple to understand. As the energy well flattens, the time spent by the system close to

the dividing energy barrier goes to zero and the probability of escape decreases. In other words, the

frequency of oscillation is roughly the inverse of the time between collisions with the energy barrier.

Up to our knowledge this observation has not been taken into account for the dynamical analysis of

glasses.

We believe this issue has been overlooked due to other effects that also modify the relaxation. All

of them play a role. Here we isolated one of the ingredients, the basin oscillation frequency. Other

ingredients are the correlation between the barrier heights and basin oscillation frequency, as well as

the existence of a distribution of basins (79; 81; 82; 80) .

Such effects have also been found from empirical arguments in rigidity theory of glasses (14). A

simple and intuitive way to understand this is as follows. According to Dyre (13), the energy barriers

are related with the molecules’ mean-square displacement, 〈u2〉, by,

∆E =λ1kB T
a2

〈u2〉 , (2.15)
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with a being the lattice parameter and λ1 a factor of order unity. But the mean-square displacement

in a basin can be written as (14; 60),

〈u2〉 = 3T

〈M〉
∫ ∞

0

ρ(ω)

ω2
dω , (2.16)

where ρ(ω) is the density of vibrational states. Observe that the previous equation holds for the super-

cooled liquid close to the glass transition as long as one performs its computation in a distribution of

basins and by using a cut-off for small frequencies (55). Combining the previous equations we obtain

an estimate of the energy barriers,

∆E =λ1
a2〈M〉

3
∫ ∞

0
ρ(ω)
ω2 dω

. (2.17)

Assuming the model presented in Ref. (14) for the density of states (DOS) of floppy systems, i.e.,

g (ω) = (1− f )gR (ω)+ f δ(ω−ω f ) , (2.18)

where, f denotes the fraction of floppy modes, while gR (ω) denotes Debye’s DOS, we obtain the fol-

lowing:

∆E = λ1a2〈M〉
3

[(
1− f

) VωD

2π2c33N
+ f

ω2
f

]−1

≈
λ1a2〈M〉ω2

f

3 f

(
1−

VωDω
2
f

2π2c33N

(
1− f

)
f

)
. (2.19)

Thus, energy barriers decrease when the oscillation frequency goes to zero. Interestingly, this suggest

a feedback mechanism on energy barriers and floppy modes, as has been made in the temperature-

dependent constraint theory (90).

From the previous considerations, in our model we may assume a more general form of Eq. (2.14),

by explicitly taking into account the correlation between V and ω1,

Rcrit = ω1ωc T0

4πγV (ω1)
e−V (ω1)/Tc . (2.20)

Here V (ω1) denotes such possible correlation. Obviously, its actual form depends upon the partic-

ular potential form. However, in its more crude approximation one can extend the harmonic approx-

imation around the closer metastable minima to estimate the height of the barrier. For this harmonic

approximation, the transition barrier, which goes as ∼ ω2
1, is an overestimation proportional to the

separation between the barrier and the minimum, as discussed by Dyre (13). In the case of a quartic

double well, the transition barrier also goes as ∼ ω2
1. For the sake of the argument, let us assume in
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general that the energy landscape can be written in such a way that V (ω1) ∼ω
1+q
1 where q > 0. Then

the critical cooling rate is now,

Rcrit ∼ 1

ω
q
1

exp(−ω1+q
1 /Tc ) . (2.21)

Notice that this last expression diverges asω1 tends to zero. Also, in Fig. 2.6, we have plotted the char-

acteristic relaxation time taking into account this dependence between V and ω1 for different values

of q . Notice how there always exists a temperature in which the characteristic relaxation time for

broader wells is always smaller than that for narrower wells, although this can happen at a tempera-

ture much lower than Tc . In any case, from Eq. (2.21) is clear that the long-time relaxation depends on

the short-time relaxation factor ω1. However, its actual functional form depends upon the correlation

between energy barrier and short-time oscillation frequency.

(a) (b)

Figure 2.6: Characteristic relaxation times as a function of the temperature using different oscillation frequencies of the

metastable state, as obtained from Eq. (2.11) considering V (ω1) ∼ω1+q
1 . In panel (a), the energy barrier has q = 0.2 while

in panel (b) q = 1. The parameters were fixed at: N = 1000, γ = 1, ω0 = 1, ωc = 1, ε = 1,Ω0 = 1, Ω1 = 2, since we are only

interested in the low frequency effect of the relaxation.

Finally, it is worthwhile mentioning that the model reproduces the experimentally observed loga-

rithm change with the cooling rate of the glass transition temperature Tg . First we observe that Tg is

the temperature for which the specific heat has a peak as a function of T . From this, one can adapt

the approach used by Trachenko et al. (50), to put the relaxation time Eq. (2.11) at Tg into the cooling

protocol T = T (t ), to obtain that,

Tg = V

log
(
∆T
T0

)
− log

(
2πγR
ωcω1

) . (2.22)

Here∆T = T 2
0 (T1 −T2)/T1T2 is defined as a reduced temperature range between the two temperatures
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T1 and T2(< T1) related by the glass transition relaxation time when the hyperbolic quench is applied.

Notice, from Eq. (2.22), that 2πγ/ωcω1 is the Debye vibrational period, which is of the order of flow

time events (50).

As mentioned already, one of the features this model lacks of is the correlation between energy

barriers and vibrational modes. While in this model we have assumed no correlation and we tune the

parameters independently at will, it is important to realize that this is not the case in real systems.

Nevertheless, it is precisely because of the independence between vibrational modes and energy bar-

rier in our model that we are able to understand and pinpoint the role of vibrational modes when it

comes to relaxation properties. Now, let us turn to a non-linear, zero temperature model to study the

relaxation properties.

2.3 Soften Hénon-Heiles Model

2.3.1 Soften Hénon-Heiles model

In the previous section we considered a simple solvable model where each of the ingredients neces-

sary for the glass transition are uncoupled. Yet, in real glasses this is not the case and, as has been

already pointed out, non-linear effects play a crucial role. Perhaps an obvious next step for the two-

level model would be to consider more vibrational modes following the work of Landauer for the

generalization of Kramers’ transition state theory (see Ref. (91)). However, we went in a different di-

rection by considering a non-linear model. Given the caveats when dealing with non-linear models,

we decided to neglect the thermal bath. In the end, it is possible, in principle, to regard the energy

landscape topology as a memory kernel function in a Langevin Equation (see Refs. (92; 36) ).

Let us consider a chain consisting of 3 masses joined by non-linear springs and periodic condi-

tions as shown in Fig. 2.7. Thus, the Hamiltonian is

H =
3∑

i=1

1

2m
~P 2

i +
1

2
ki+1,i

(
∆Qi+1,i

)2 + χ

3

(
∆Qi+1,i

)3 , (2.23)

where ∆Qi+1,i =Qi+1−Qi denotes the distance between mass i and mass i +1 and ki+1,i is the spring

stiffness between masses i and i+1. We useχ to denote the coefficient of the non-linear force between

the masses. Furthermore, let us introduce the control parameters α and β in the stiffness such that

k21 = k, k21β= k13, and k32 =αk21.

As we show in detail in the Appendix B, one of the eigenvalues of dynamic matrix D is always zero
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Figure 2.7: Sketch of the three masses joined by three springs.

and corresponds to the center of mass motion, while the other two depend upon δ andβ. However, as

was stated in the introduction, we are interested in studying the low vibrational dynamics relaxation

process. In this sense, it happens that one of the eigenvalues, which we denote as ω2
x , becomes zero

only when δ=β= 0 while the other one, denoted as ω2
y becomes 2. There is an additional eigenvalue

we denote as ω2
z which is always zero and corresponds to the motion of the center of mass. Thus,

here on we consider δ=β and without loss in generality we assume k = 1. Therefore, the eigenvalues

become

ω2
x = 3β , ω2

y = 2+β . (2.24)

Finally, by expressing the non-linear term in terms of the normal coordinates and momenta we

obtain

H = 1

2

(
p2

x +p2
y

)
+ 1

2

(
ω2

x x2 +ω2
y y2

)
− 3γ

21/2

(
1

3
y3 −x2 y

)
, (2.25)

which corresponds to two particles interacting via a Hénon-Heiles-type potential (73).

Furthermore, let us do the following rescalings:

y → 21/2

γ
y , x → 21/2

γ
x ,

t → t/31/2 , H → 6

γ2
H . (2.26)

This gives the scaled Hamiltonian:

H = 1

2

(
p2

x +p2
y

)
+ 1

6

(
(3β)2x2 + (2+β)2 y2)−(

1

3
y3 −x2 y

)
, (2.27)
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and the Hamilton Eqs. are

ẋi (t ) = pi (t ) , xi = {x, y, z}

ṗx(t ) = −x(t )
(
β+2y(t )

)
,

ṗy (t ) = −1

3

(
2+β)

y(t )+ (
y(t )

)2 − (x(t ))2 .

(2.28)

The resulting model is a softened Hénon-Heiles system, since by making β→ 0, ωx goes to zero,

resulting in a floppy mode. Thus, β is a control parameter that allows us to reduce the stiffness of the

low frequency vibrational modes. This results in a lowering of two saddle points height. In the left

panel of figure 2.8 we have depicted the isopotential for a fixed β and different energies. We also show

the three saddle points P1, P2, and P3 (red dots) and the local minimum for the potential (black dot)

where the potential energy is zero. In the right panel of figure 2.8 we may appreciate how the height of

the saddle points P1 and P2 are the same and smaller than P3. Moreover, in figure 2.9 we have plotted

the saddle points’ height V vs β. When β= 0 the potential barriers located at P1 and P2 drop to zero,

while the other barrier drops to ' 0.05 (see fig. 2.9).

In the case for which β= 1, all saddle points have the same height. This Hamiltonian corresponds

to the model used by Hénon and Heiles to study the motion of a star in a galaxy with cylindrical sym-

metry (69). For a certain choice of parameters it has been proven to be an integrable problem (70),

but it is not in general. Moreover, numerical results suggest that when the energy of the system is

E < 1/12, the system is non-chaotic and non-ergodic, yet above this energy the region with chaotic

behavior in phase space increases with the energy up until E = 1/6 where the whole phase space is

chaotic and, which is also, saddle point’s height (74; 73).

In this way, it seems that as the energy increases the dynamics become chaotic and ergodicity

is established. However, in this work we show that this is not always the case for the softened model.

Actually, as the energy increases, there are certain islets in the phase space for which quasi-periodicity

is established. This is done in the following section.

2.3.2 Relaxation properties of the softened Hénon-Heiles model

In this section we present the results obtained from solving numerically the Hamiltonian Eqs. (Eqs.

(2.28)). We first fix β and the energy, ∆E , above the lower saddle points height (see fig. 2.8), then

we took N = 16000 uniformly random chosen initial conditions, i.e., linear moment orientation and
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Figure 2.8: Energy landscape showing an isopotential with β= 0.4. left panel The dashed line correspond to the isopo-

tential with energy, ∆E = 0.07, above the lower saddle points height (yellow) while the inner soften triangle corresponds

to∆E = 0. Each line of the red triangle goes through a saddle point and has the direction of the eigenvector corresponding

to the positive eigenvalue of the Hessian matrix in the corresponding saddle point. right panel Here we show a 3D plot of

the potential. The transversal plane corresponds to ∆E = 0.07.

Figure 2.9: Plot of the saddle point heights as a function of β. The blue dashed curve corresponds to the saddle point

height at P1 and P2, while the red continuous curve corresponds to the saddle point height at P3 (see fig. 2.8)
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position, given the fixed energy. Then we let them evolve and we study the distribution of their escape

time, i.e., the time taken to escape the well through any of the exit channels denoted as P1,P2 and P3

(see figure 2.8). We do this for different values of the parameters β and ∆E , which we present in figure

2.10. The blue line in figure 2.10 corresponds to the energy difference between the upper saddle point

and the lower saddle points, i.e., for a given fixed βwhen∆E is under the blue curve there are two exit

channels, namely, P1 and P2; while when ∆E is above the blue curve, there are three exit channels.

Figure 2.10: Sets of parameters (β,∆E) used in our simulations to study relaxation. Points of the same color have the

same energy ∆E above the lowest saddle points. The blue curve corresponds to the energy difference between the high

and low saddle points, i.e., for ∆E under the blue curve there are two exit channels, namely, P1 and P2 and for ∆E above

the blue curve, there are three exit channels.

In figures 2.11, 2.12, 2.13 and 2.14 we present the population N (t ) inside the well as a function of

time in Linear-Log and Log-Log plots. We also present the potential contour corresponding to each

of the values for ∆E for a fixed β. Rather than using legends in each of the plots, we used instead the

same colors, i.e., the red curves in the potential contour plot and in the N(t) vs t correspond to the

same value of ∆E which we show in figure 2.10. The first thing one may notice is that, in general, the

escape flow at a given time follows an exponential decay. However, there are some values of β and ∆E

for which the escape flow at a given time has a crossover into a second exponential decay and sticky

states appear, but we will come back to this later.

Notice that for small t it seems that N (t ) ∼ exp(−αt ). In figure 2.15 we present the values of α as
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Figure 2.11: For β= 0.8: (left panel) The population in the potential at time t in a Log-Linear plot, for different energies

as indicated in the color code of figure 2.10 . (right panel) The population in the potential at time t in Log-Log. (Inset)

The isopotential for different values of ∆E(see fig. 2.10).

Figure 2.12: For β = 0.6: (left panel) The population in the potential at time t in Log-Linear, for different energies as

indicated in the color code of figure 2.10 . (right panel) The population in the potential at time t in Log-Log. (Inset) The

isopotential for different values of ∆E(see fig. 2.10).
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Figure 2.13: For β = 0.4: (left panel) The population in the potential at time t in Log-Linear, for different energies as

indicated in the color code of figure 2.10 . (right panel) The population in the potential at time t in Log-Log. (Inset) The

isopotential for different values of ∆E(see fig. 2.10).

Figure 2.14: For β = 0.2: (left panel) The population in the potential at time t in Log-Linear, for different energies

as indicated in the code of figure 2.10 . (right panel) The population in the potential at time t in Log-Log. (Inset) The

isopotential for different values of ∆E (see fig. 2.10).
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a function of β and ∆E , obtained by fitting the curves in figures 2.11, 2.12, 2.13 and 2.14 in the short-

time regime (see Appendix B). The dashed line divides the scenario in which there are only two exit

channels (which correspond to the two lower saddle points) from the scenario where there are three

exit channels (see fig. 2.8).

To understand this exponential decay behavior for the unsoften Hénon-Heiles model (β = 1), first

Bauer and Bertsch and then Zhao et al. (74; 76) used rather simple arguments. They considered that

all initial conditions contained in the energy landscape well would flow out and assumed that the

population change rate equals the flux with momentum orientation between −π/2 and π/2 relative

to the normals of the exit channels line. Hence

d N (t )

d t
=−N (t )ρ

∫ π/2

−π/2
dφ

∫ r1

r0

dl |~v(x, y)|cosφ , (2.29)

where ρ = 1/2πS(∆E) is the distribution of the variables (x, y,θ), ~v(x, y) is the velocity field, dl goes

over the channels’ entrance and S(∆E) is the area of the well. The integral goes over the opened exit

channel lines and, the points r0 and r1 correspond to the classical return points at these opened exit

channel lines. In the case where β = 1, all exit channels are identical. Then, integrating over the exit

channel P3 and multiplying by 3 yields

d N (t )

d t
=−

p
3∆E

S(∆E)
N (t ) . (2.30)

Hence, N (t ) ∼ e−αt , with α=p
3∆E/S(∆E).

In the softened Hénon-Heiles model, the exit channels P1 and P2 are identical and different from

P3. Following this same idea, we determined α(β,∆E) by estimating the escaping flux numerically

from Eq. (2.29), but evaluated for the open channels for a given energy where

|v(x, y)| =
[

2

(
∆E + 1

12
β2(1+β) (2.31)

− 1

6

(
3βx2 + (

2+β)
y2)+(

1

3
y3 −x2 y

))]1/2

.

The first two terms on the right hand side of Eq. (2.31) are simply the energy above the lower saddle

points and the lower saddle points energy height.The third term in the right hand side of Eq. (2.31)

is the softened Hénon-Heiles potential. The classical returning points as well as the area of the wells,

S(∆E), were also determined numerically for different values of ∆E .

These results can be compared with the actual fitting of α obtained from the numerical results of

log N (t ) for small t , as obtained in figures 2.11, 2.12, 2.13 and 2.14. In figure 2.16 we compare both
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methods, namely, the blue points correspond to the fitting methods while the orange curves corre-

spond to the numerical flux estimation method. The discontinuity around ∆E ≈ 0.05 corresponds to

the threshold energy where the exit channel P3 is available. We should clarify that the orange curves

were obtained by interpolating numerical results, i.e., no analytical Eq. was obtained. One may ap-

preciate how this heuristic approach works quite well for small ∆E , not so much for when the flow

may come out through the upper channel, i.e., P3. This has to do with the fact that in this regime, not

all initial conditions in configurational space flow out of the basin, as we will show later.

Figure 2.15: α(β,∆E) obtained numerically by solving the Hamilton Eqs. (2.28). The dashed line separates the region

where the exit channel corresponding to the saddle point P3 is forbidden (left) and the region where it is accessible (right).

From figures 2.15 and 2.16 is clear that the relaxation time 1/α decreases as the stiffness of the

model is reduced, since in general α grows as β is reduced for a fixed energy. This is explained in

general by two effects. The first is a reduction of the energy barrier heights along the softened normal

modes (see fig. 2.9), and the second is a widening of the opening channels.

2.3.3 Dynamical heterogeneity and sticky states

To have a better grip and to qualitatively differentiate which conditions flow out following an expo-

nential decay from the region which flows out following a power law, we fixed β = 0.4 and ∆E = 0.02
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Figure 2.16: α(β,∆E) obtained from numerically solving the Hamilton Eqs. (2.28) (blue dots) and by considering the

initial conditions escape flux (see Eq. (2.29)) (yellow lines). The regime change around ∆E ≈ 0.05 corresponds to the

threshold where the exit channel P3 is available.

and solved numerically the Hamilton Eqs. (2.28) for N ' 5 ·104 different uniformly randomly chosen

initial conditions, i.e., (x, y,θ). In the left panel of figure 2.17 we have plotted ∼ 50% of the studied

initial positions which flow out first , i.e., we plot the configurational space region that corresponds

to the exponential decay regime of N (t ), and we have colored each point according to their initial

momentum orientation. We also did this for the initial conditions which flow out the slowest, corre-

sponding to the power law regime of N (t ), and we show this in the right panel of figure 2.17. There are

several features we can extract from this. First, notice that the conditions that flow out first are those

with an initial momentum oriented towards the exits. Yet, there are some initial positions which de-

fine two regions, namely, region I and region II (see upper panel in figure 2.17), which does not flow

out during the exponential decay regime no matter what their initial moment orientation is. This is

further verified in the right panel of figure 2.17 from which we may qualitatively appreciate a density

gradient in the y direction for y > 0 and in the −y direction for y < 0.

Also notice that the bulk of the initial positions which flow out slowly is concentrated in a vicinity

of x ' 0. However, there is clearly an overlap in this vicinity with the initial positions that exit quite

fast. For this reason, in figure 2.18 we have plotted in the left panel the initial condition coordinate
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x and the initial momentum orientation θ with respect to the horizontal line for 50% for the initial

conditions that flows out first, while in the right panel of figure 2.18 we plotted the initial condition

coordinate y and the initial moment orientation θ of the slowest flowing initial conditions. In both

plots the color is a function of the exit time, i.e., red corresponds to the smallest exiting time while

navy blue corresponds to the largest exiting time. Notice that from the left panel of figure 2.18 one

may appreciate fairly well that the configurational space region that flows out first is the one next to

the left (right) exit channel and have initial moment orientation between 2.3 and 3π/2 (4.5 and 2π+1),

then the initial conditions region that follows has an initial momentum orientation contained in these

intervals but with smaller absolute value of the initial position coordinate x, in other words, the initial

moment orientation still corresponds to that directed towards one of the exits channels. Now, the

initial conditions region that follows has an initial moment orientation in the vicinity of π/2 and is

distributed around x ±0.3. This means that this initial conditions region collides with the potential

barrier before being able to flow out.

Now, from the right panel in figure 2.18 we may appreciate that the initial conditions region which

takes the longest to flow out is distributed all over the classically permitted interval in the y axis but

with either π/2 or 3π/2 as the value of the initial moment orientation. All this suggests that the region

that takes the longest to flow out corresponds to oscillating trajectories in the y direction and in a

quasiperiodic manner with x(t ) ' 0, i.e., sticky orbits appear.

Going one step further, in figure 2.19 we show a Poincaré section for one of the initial conditions

which takes a long time to flow out, obtained in the case of β = 0.4 and ∆E = 0.02. Clearly, this type

of section corresponds to a quasi-periodic trajectory. Eventually, the small deviations amplify and the

trajectory escapes the well.

2.3.4 Application to glasses

The previous results can be put in many ways into the context of glasses. First, the softening of the

energy barriers due to flexible modes observed in the previous model can be generalized for glasses.

To this end, consider N atoms described by a pairwise potential, say, V ({xi }) where {xi } is the set

of generalized normal coordinates expanded around a meta-stable state with i = 1, ...,3N and let us

assume that V ({0}) = 0, hence

V ({xi }) = 1

2

3N∑
i=1

ω2
i x2

i +VN L({xi }) . (2.32)
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Figure 2.17: Escape decay regime as a function of the initial position forβ= 0.4 and∆E = 0.02. The coloring corresponds

to the initial momentum orientation with respect to the horizontal (see legend). (left panel) Particles which escape under

the exponential decay regime. The black dashed lines are an eye-guidelines to indicate the cone-like regions of particles

with initial momentum orientation directed towards one of the exits, and also indicate the regions I and II where particles

there take longer to escape no matter what their initial moment orientation is. (right panel) Particles which escape under

the power law regime as a function of the initial positions. The isopotential curve is indicated in blue while the exits of the

potential basin is indicated by lines.

Figure 2.18: Decay regime as a function of the initial position x and initial moment orientation θ in the case of β= 0.4

and ∆E = 0.02. (left panel) Particles which escape under the exponential decay regime. (right panel) Particles which

escape under the power law regime. The coloring corresponds to the time taken to escape, such that red is short exit times

and navy blue is for large exit times (see legend in Fig. 2.17).
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Figure 2.19: Poincaré map for β = 0.2,∆E = 0.04 and some initial condition for which the particle takes a long time to

exit the basin, corresponding to a sticky state.

Here VN L({xi }) denotes the non-linear part of the potential. In general, floppy modes occur by lower-

ing interactions, usually by more than an order of magnitude. In chalcogenide glasses, stiffness can

be increased by adding cross-linking modifiers like Ge which add stronger interactions (18). Floppy

modes can also be produced by reducing sizes of some atoms when using Lennard-Jones potentials

(23; 60). Thus, if we were to loosen the stiffness of a fraction f of the normal modes, i.e., decrease ω j

with j = 1, ...,3N f , in general, one would expect a variation in the non-linear part of the potential in

the sense that it will ultimately depend on the kind of potential that describes a given supercooled

liquid and the physical way in which one modifies the stiffness of the normal modes. Since the details

depend upon the particular potential, here we adopt a worst case scenario, i.e., we may assume that

the non-linear part of the potential is kept fixed when the stiffness is loosen. Therefore, we denote the

potential with a fraction f of floppy modes as VF ({xi }), such that

VF ({xi }) = 1

2

3N (1− f )∑
i=1

ω2
i x2

i +
1

2

3N f∑
j=1

(
λ jω

2
j x2

j +VN L({x j })
)

. (2.33)
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where we have denoted the frequency of floppy normal modes as
√
λ jω j and 0 <λ j < 1. Then, notice

that

VF ({xi }) =V ({xi })− 1

2

3N f∑
j=1

(
1−λ j

)
ω2

j x2
j . (2.34)

which implies that

VF ({xi }) ≤V ({xi }) , (2.35)

since the second term in Eq. (2.34) is always positive. Thus, in general the energy barrier height de-

creases in the direction of floppy modes in comparison to rigid modes, and one expects relaxation

in the direction of floppy modes. It is clear that this general behavior is what lies in our soft Hénon-

Heiles model, which is the extreme case of two degrees of freedom (fixing the center of mass). Yet even

this two degrees of freedom model can be used to understand some features of glass relaxation.

For example, recently there has been a lot of theoretical interest in the β-relaxation (not to be mis-

taken with the β parameter in our model) or Johari-Goldstein relaxation for glass-forming materials,

since it has been revealed its connection with the glass transition (93). This phenomenon becomes

visible below the melting temperature. Yet, the origin of this has generated controversy (94; 24; 95), but

it seems quite likely that this relaxation is concerned with the small-amplitude rotational jump mo-

tion of molecules (96–98). In Ref. (24), Tanaka proposed a two-order parameter phenomenological

model for rigidity and glass relaxation which is based on local fluctuations of reorientational jumps,

identified with the β-relaxation. These fluctuations are observed within rigid metastable islands. The

relaxation of these rigid islands is also known as the α-relaxation process (not to be mistaken with

the α parameter in our model), which slows down when reaching the glass transition temperature

upon cooling. Hence why the β-relaxation becomes visible below the melting temperature where the

α-relaxation time starts to pick up, and molecules start being caged. The origin of the α-relaxation has

also generated controversy in glass-forming liquids and it seems to be one of the key ingredients of

the glass transition. Both, α and β relaxations seems to be important in the glass transition, since the

first one is associated with a long range ordering while the second one with a short range ordering,

and the competition between these two creates an energetic frustration causing the glass transition.

Now, in most glasses, there happens to be an overlap between the α-relaxation and the β-relaxation.

Much dissent has caused the fact that it is not clear whether this overlap is for the most part the α-

relaxation mode excess wing or the so-called slow-β-relaxation mode. Here lies the main purpose of

Tanaka’s two-order parameter mode (24).
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In this sense, our model may be applied to the Tanaka’s rigidity relaxation model. Within this

model, there are local fluctuations with reorientational jumps (24). Consider three-dimensional asym-

metrical molecules caged by a rigid surrounding metastable island. For each molecule, the rotational

state can be described by two Euler angles coordinates, the polar angle η and the azimuthal angle φ.

We associate the coordinates x and y of our softened Hénon-Heiles model to these angles. Due to the

asymmetry of the molecule, the interactions with the rigid cage will lead to different elastic constants

for each Euler angle, and thus Eq. (2.25) can be used as a model. A reorientational jump will be associ-

ated with an exit of the model’s central basin. Since in our model any given initial condition exits the

basin once the momentum orientation θ points outwards through any of the available exit channels,

then the characteristic β-relaxation time τ is proportional to the mean exit time in our model. In the

case where the flux method applies, the mean time for a reorientational jump is simply the inverse

of α, thus τ ∼ 1/α. The exponential law decay is in agreement with the experimental observed Ar-

rhenius law for relaxation (24) . Yet our results implies that the non-linear part can lead to a complex

dynamics since for some states and glasses, the relaxation can be slowed down in a power law fashion

for an important number of cages, where the molecules stick for certain orientations. It is also known

that this kind of power law also occurs in glasses (24).The regime where this happens for the softened

model and for real glasses is an open problem. Notice that when many rotational traps are present

with different relaxation times, stretched exponential laws with special magic exponents are obtained

(38; 99).

2.4 Discussion

The two-level model shows an Arrhenius behavior. But there is a way to obtain the fragile time re-

laxation. Notice from Eq. (2.11) that the relaxation time is simply the inverse of the sums of all the

transition probabilities per time unit. In fact, this is the way one computes the transition time when

performing a Kinetic Monte Carlo simulation (100; 61). Therefore, let us consider a large number of

energy barriers and distributed by a probability density function P (E) such that the relaxation time τ

may be written as,

τ=
(∫

Γ(E)P (E)dE

)−1

, (2.36)

while Γ(E) ∼ exp(−βE). Notice that in the cases where all energy barriers have the same height E0,

then P (E) = δ(E −E0) and we recover Arrhenius’ Law. Now, since we are merely interested in this
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derivation as a proof of concept, let us assume a Gaussian distribution such that the random variables

E are distributed according to N (E0,σ2). Then, it is straightforward showing that,

τ∼ exp

(
βE0 − σ2β2

2

)(
1+sgn

(
E0 −σ2βp

2σ

)
Erf

(
E0 −σ2βp

2σ

))−1

, (2.37)

with the sign function defined as

sgn(y) =


1, y ≥ 1

−1, y < 0
. (2.38)

Now, let us define x = Tg /T , where Tg is the glass transition temperature. Furthermore, let us define

u = E0/Tg andΩ=σ/Tg . Then, Eq. (2.37) becomes

τ∼ exp

(
x

(
u −Ω

2x

2
− 1

x
ln

[
1+sgn

(
1− Ω2x

up
2Ω/u

)
Erf

(
1− Ω2x

up
2Ω/u

)]))
. (2.39)

Notice that the exponent of Eq. (2.39) is reminiscent of a free energy. Now, we are interested in the

region where x . 1, which is close to the glass transition. Now, let us also assume that Ω
2x
u & 1, which

reduces to σ2 & E0Tg . In that case, it is a feasible task to show that

lnτ∼ Ax −B x2 +C x3 , (2.40)

where 
A = u

(
1− 1p

π

)
− 2

π
Ω+ u2p

2πΩ

B = Ω2

2

(
1− 1p

π

)
+ uΩp

2π

C = Ω3

3
p

2π

. (2.41)

Notice that B > 0, C > 0 for all positive values of u andΩwhile A > 0 in the region of interested. In Fig.

2.20 we have plotted Eq. (2.40) together with Arrhenius’ Law in an Angell-type plot.

2.5 Conclusions

Up to this point we have shown two models to gain insight into how relaxation occurs, as well as, how

complex it is. To summarize:

• We developed a simple solvable two-level model which has a first order phase transition to a

crystal and a dynamical phase transition to a glass when cooled fast enough.
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Figure 2.20: Plot of relaxation time vs x = Tg /T for a strong and fragile glass, modeled by the Arrhenius’ Law and Eq.

(2.40), respectively. This was obtained by assuming a Gaussian distribution of energy barriers. The dispersion considera-

tion allows the fragile behavior. We fixedΩ&
p

u.
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• We solved this model analytically and obtained an equation which relates the relaxation time

with the vibrational modes.

• We showed that as the vibrational mode frequencies tend to zero, the system requires more time

to probe the energy landscape, in this sense, the relaxation time has two contribution, namely,

the exponential weight that takes into account the energy barrier and the vibrational modes

which corresponds to a characteristic probing time of the minimum where the system is found.

• We considered a non-linear, zero temperature model and studied the relaxation as the energy

barriers decrease.

• We showed that this model has dynamical heterogeneity, leading to different relaxation time

scales.

• In this sense, when there’s coupling between the vibrational modes, the relaxation time de-

creases.

In addition to the previous points, we highlight that, i), the dispersion of energy barriers is related with

the fragile behavior, ii), the dispersion of energy barriers is also related with the vibrational modes

and, iii), these vibrational modes contribute to the vibrational entropy. The latter may or may not

play a crucial role in the topology of the energy landscape as we will see in what follows.



Chapter 3

On the rigidity properties of glass forming

systems

3.1 A dynamical approach to rigidity

Understanding how rigidity happens, i.e., how a given system goes from being rigid to be able to flow

and vice versa is a very important problem which impacts fields ranging from solid state, condensed

matter as well as biology (101). The fact that glasses have a dynamical transition makes them the

perfect system to study rigidity, but this does not mean it is an easy task at all. In the journey towards

an understanding of the rigidity transition, it is accurate to say that a milestone was set with Phillips

and Thorpe’s constraint theory of rigidity. This has provided the baseline to understand rigidity and

how this is related with the network topology (18; 52). From there on, a lot of research has been done.

This research allowed the incorporation of thermodynamics in rigidity theory (58; 53; 54; 102; 103; 55;

104) as well as the Boson peak (105–107). Molecular dynamics simulations in realistic systems have

been of invaluable help regarding this point (see for instance (108)). Stochastic models gave similar

results (1; 3). Boolchand and coworkers have made different studies concerning rigidity in melts and

glass aging using optical, mechanical and thermodynamical properties (109; 110).

Basically, our understanding of rigidity relies on Philips and Thorpe’s iconic works. Rigidity is also

very much related with usual thermodynamic phase transitions as any transition involves the devel-

opment of a generalized rigidity to keep phase order against thermal fluctuations (111). However,

our understanding of liquid to crystal phase transition relies on the trade-off between internal en-

ergy and entropy, where below a certain temperature the internal energy has a dominating role over

61
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the free energy. This then justifies the decrease in configurational entropy when crystallization hap-

pens and somehow rigidity is embedded in this process to the point in which we generally assume

that the rigidity transition is necessarily accompanied by a thermodynamical phase transition. Yet, in

glasses this is not that case, as well as in 2D systems. Hence, the rigidity transition is not well under-

stood. Furthermore, since the glass transition is a dynamical transition and glasses fail to fit this idea

of liquid-to-solid transition, then one may ponder that the origin of rigidity comes from a dynamical

transition rather than a thermodynamical one. In addition, this would have great impact on biologi-

cal processes, which are generally assumed as out-of-equilibrium processes, and present liquid-solid

phase transitions (112; 113).

The way in which rigidity is conventionally measured is by using the relative concentration as a

coordination number proxy(18). Although this is a clear defined protocol in a solid, in a liquid it is

more difficult to have such a picture, given the non-periodicity and, hence, the inability to use mean

field approaches in many cases. As a central idea of this thesis, we propose using the tools from

viscoelastic theory, in particular, the visco-elastic response in space and time. In fact, the lack of

elastic behavior against shear stress turns out to be the main defining feature of a Newtonian fluid.

However, elasticity of liquids depends upon the time and spatial scales in which the system is probed

or perturbed. Thus, viscoelasticity will contain very valuable information concerning the rigidity of

dense liquids close to a glass transition.

As previously mentioned, the main feature that defines a rigid system is the resistance to shear-

stress. Rigidity is related to the propagation of transversal waves. Thus, a natural starting point is

to look at wave propagation, which involves a frequency ω and a wavevector k . Therefore, rigidity

of liquids involves time and space density-density and velocity-velocity fluctuations, which are well

described by the dynamical structure factor. Here we are concerned with the transversal part of the

dynamical structure factor, defined as (114),

S(k,ω) =
∫ ∞

0
d te−ıωtCT (k, t ) . (3.1)

where CT (k, t ) is the transversal current density-density correlation function,

CT (k, t ) = 〈J∗T (k , t )JT (k ,0)〉 , (3.2)

and the brackets 〈...〉 represent an ensemble average as well as an average over the different directions

of k . JT (k , t ) is the transversal density current:

JT (k , t ) = 1p
2N k

N∑
i=1

k ×vi (t )exp(ık · ri (t )) . (3.3)
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Here, vi (t ) and ri (t ) are the velocity and position of the i th particle of a given system at time t . The

1/
p

2 factor takes into account the two transverse currents in three-dimensional systems. This factor

is replaced by one in two dimensions.

The resulting correlation functions can also be used to find the complex susceptibility ξ(k, z)

(where z = ω+ iε) when an external field probe F (t ) is appplied to the system. It can be proved that

the susceptibility is given by (114),

ξ(k, z) = i zβS(k, z)−βCT (k,0) (3.4)

whereβ= 1/kB T with T the temperature and kB the Boltzmann constant. In the next section we apply

such ideas to test them.

3.1.1 Testing rigidity in glass-forming systems: Hard-disks model

Let us now apply the previous ideas to hard disks. This model is able to produce glasses and crys-

tals. Here we consider a monodisperse and a bidispersive mixture of hard disks. In the monodis-

perse hard-disk system, the diameter of the disks is σ, while in the bidisperse case there are two kinds

of disks, A and B, each with diameters σA and σB , respectively. For the monodisperse system,

the packing fraction is given by η = Nπσ2/A where A is the total area. For the bidisperse system

η= [Nπ(xσ2
A
+ (1− x)σ2

B
]/A, where x is the relative concentration of disks A . In our simulation, we

take x = 1/2 and σA = 1.4σB . The monodisperse hard-disk system is interesting in many senses as

crystallization takes place by two phase transitions. First the liquid goes into coexistence at η ≈ 0.70

with the hexatic phase at η≈ 0.7175. This is captured by the orientational order parameter, such that

in the hexatic phase orientational order appears and the transition is characterized by the Mayer-

Wood loop in the P − v diagram (116). As the packing fraction increases, a second order transition

from hexatic to solid is observed at η≈ 0.72 (116; 115). While the hexatic phase has short range posi-

tional order and quasi-long-range orientational order, the solid has quasi-long range positional order

and long-range orientational order. In this regard, positional order parameter is used to distinguigh

between the hexatic and solid phase (116). Recently it has been observed that a small polydisper-

sity destroys the hexatic phase (115). Moreover, the bidisperse system at x = 1/2 is able to generate a

glass (117; 115; 118). In fact, there is a nice correlation between disk’s mismatch, glass forming ability,

configurational and vibrational entropy (118).

Additionally, we should mention that the ideas of the glass transition in 3D do not extrapolate to
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Figure 3.1: Pressure vs packing fraction in the studied region for monodisperse hard-disks (blue curve)

and bidisperse hard-disks (red curve) as shown in the plot legend. For the case of monodisperse hard-

disks, below η≈ 0.7 the system is in the fluid phase (colored pink), between η≈ 0.7 and η≈ 0.7175 the

fluid coexist with the hexatic phase (colored green). Above η≈ 0.7175 the system is in a hexatic phase

(colored yellow). At η ≈ 0.72, a second order phase transition from hexatic to solid occurs (marked

with a dashed line), and above η ≈ 0.72 the system is in the solid phase (colored purple) (115). This

plot was obtained from a simulation with N = 2500 hard-disks.
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Figure 3.2: Contour plot of the normalized transversal dynamical structure factor S(k,ω)/(maxS(k,ω))

for N = 2500 in the case of (Upper panel) monodisperse hard-disk system with packing fraction is

η = 0.68 and (Lower panel) polydisperse hard-disk system with packing fraction is η = 0.73 . The

red dots are the observed maxima. The dotted curve allows to compare with the indicated functional

form. Notice the presence of a dynamical gap at k < 2kmi n in both cases (although at different packing

fractions).
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Figure 3.3: Dynamical gap vs packing fraction η. The data points correspond to the simulations while

the dashed lines corresponds to fits (see legends). For N = {400,2500} in the case of monodisperse

disks, the critical packing fraction for which kc = 0 is ηm = 0.7 while for polydisperse disks ηp = 0.75.

The error bars correspond to the resolution given by 2π/
p

A, where A is the total area of the system.

Figure 3.4: Plot of the dynamical gap vs reduced packing fraction
(
∆η/ηγ

)α, where γ = {m, p}. The

data points correspond to the simulations while the dashed lines corresponds to fits (see legends).

The computations were made for systems with N = 2500 disks,
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Figure 3.5: The transverse density current correlation function as a function of ω for different

wavenumbers. This was obtained for polydisperse hard-disks at a packing fraction 0.73. Notice that

for all curves where for k < 3kmi n , the maximum is located at ω= 0. For k > 3kmi n , the peak moves to

higher frequencies as k increases, indicating transversal wave propagation although with an increased

damping.
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2D glasses. Recent research in this direction provide a view on these differences (119–121). Hence,

care must be taken and, in fact, these long range fluctuations have an effect on the size-dependence

of the melting point (122). The results were obtained from an Event-Driven Molecular Dynamics sim-

ulation with N = 2500 hard-disks. An event driven molecular dynamics simulation called DynamO

(123) was used while, in the case of bidisperse, the initial configuration was generated using the code

developed by Torquato et al. (124). For hard potentials, particles interact only when the distance be-

tween them is equal to the sum of their radius. While this condition is not fulfilled, the velocity of

the particles remain the same. Event-Driven Molecular Dynamics takes advantage of this by locating

the next collision (i.e., the time when the collision will occur and the pair of particles that will col-

lide), evolving the simulation up to that time and implementing the collision dynamics (125). The

hydrostatic pressure is computed from the trace of the pressure tensor and divided by 3. However,

since we are simulating 2D systems, the element Pzz = 0, therefore, we have rescale by 3/2. The way in

which DynamO computes this tensor is from the kinetic and interaction contributions, i.e., the kinetic

contribution is defined as

P ki neti c = 1

V

N∑
i=1

mi vi vi , (3.5)

where V is the volume, N the number of disks, mi = 1 is mass, vi is the velocity of disk i and vi vi is

the dyadic product which yields a matrix. The interaction contribution is defined as

P i nter acti on = σ

V tsi m

event∑
i , j

∆pi ri j , (3.6)

where tsi m is the total time of the simulation, the summation is over each two-particle event (col-

lision), i and j indicate the two particles involved in the event, ∆pi is the momentum impulse on

particle i , and ri j = ri − r j is the separation vector between the interacting particles.

3.1.2 Results

In Figure 3.1 we present the evolution of the compressibility factor P/ρkB T where ρ = N /A as a func-

tion of η, where the pressure was obtained, as previously mentioned, by means of Eqs. (3.5) and (3.6).

This result allows us to confirm that, in the case of monodisperse hard-disks, the system is undegoing

a first order phase transition, while the bidisperse hard-disk system is not. Our aim is now to look at

the viscoelastic response of both systems. In the upper panel of Figure 3.2 we present the transversal

part of the dynamical structure factor S(k,ω) for the monodisperse system near the phase transition.
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Figure 3.6: Half-width of the transverse density current correlation function as a function of the

wavenumber for packing fraction η = 0.68 monodisperse and η = 0.73 polydisperse for 2500 hard

disks. The half-width can be compared with the imaginary part of the dispersion relation in Eq. (3.12)

(see main text for discussion). As k increase, the width becomes larger which is qualitatively consis-

tent with (126; 127).
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The colors here represent the values of S(k,ω) for different wavenumbers k given in terms of the low-

est wavenumber kmi n = 2π/L, where L = √
πη/N 4/σ. As k increases, the peaks in S(k,ω) shift to

larger values of ω. A gap is seen between the peaks for k ≤ 2kmi n . Also, in Figure 3.2 we compare with

the functionω(k) ≈
√

k2 −k2
c , which shows a good agreement with a recent theoretical solid-state ap-

proach to liquids (126; 128; 129) (see Ref. (127) for a recent review on the subject). The lower panel

of Figure 3.2 shows that the bidisperse melt also shows a similar transversal branch with a gap and a

critical kc . Recently, this phenomena has been called the dynamical gap (126).

Figure 3.2 gives a nice glimpse of the viscoelasticity and how a transition from a fluid-like to a

solid-like behavior is revealed by the presence of a dynamical gap. What is most important to us, is

the observation that for k < kc all peaks of S(k,ω) are at ω = 0. Thus, in this region S(k,ω) ≈ δ(ω),

where δ(ω) is the Dirac delta function. Since for k < kc we have ω = 0, we can consider these states,

in terms of rigidity, as floppy, i.e., the system is flexible. Another way to see this result is by observing

that here the rigidity transition will depend upon the time-scale of observation.

To test these ideas, we further follow the behavior of kc as a function of η up to the freezing packing

fraction for the monodisperse case. Figure 3.3 shows the dependence of kc . As expected, kc → 0 as

η→ ηm , where ηm = 0.7 is the packing fraction where the system becomes solid for this system size.

We should stress that for a larger system such as N = 104, kc → 0 at a packing fraction equal to ≈ 0.72

in the case of monodisperse hard-disks, in agreement with the hexatic-to-solid phase transition (115).

This has to do with the long range fluctuations, which have an effect on the size-dependence of the

melting point (122; 119–121). Figure 3.3 also shows the evolution of kc for the bidisperse case. It is

observed that kc → 0 as η→ ηp , where ηp = 0.75.

Thus, Figure 3.3 clearly shows that a rigidity transition will take place as the fluid density increases.

Figure 3.3 has other interesting features. The first is that the bidisperse fluid presents a bigger dynam-

ical gap for the same given packing fraction. From a rigidity point of views this is expected as the

effective number of contacts is reduced. In fact, a previous test in solids showed how one can, by

decreasing the size of some disks in a monodisperse system, create a Boson peak (105–107). Thus,

Figure 3.3 gives a nice alternative to test in a quantitative way the underlying rigidity of the solid.

Another revealing aspect of Figure 3.3 is that the critical kc seems to follow the law,

kc ∼ (ηγ−η)α (3.7)

where γ= m or γ= p depending whether the system is monodisperse (m) or polydisperse (p). As kc

is the inverse of a dynamical length scale, α represents the scaling of this rigidity, suggesting to be a
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critical exponent for the size of rigid clusters. Thus, it is expected to depend upon the dimensionality

of the system (130).

To test this possibility we fitted the curves shown in Fig. 3.3 to the functional form given in Eq.

(3.7). We obtained α= 0.8±0.1 in both cases. We further fitted kc vs (∆η/ηγ)α, where ∆η= ηγ−η. In

Figure 3.4 we show the fits and the legend shows the slope values.

In the hydrodynamic regime, CT (k, t ) (Eq. (3.2)) satisfies the transverse part of the linearized

Navier-Stokes Equation. Under very general arguments, it can be proved that the expression for

S(k,ω) is given by (114),

S(k,ω) = 2v2
0k2Γ(k)/τ(k)(

ω2 −
(
k2Γ(k)− 1

2τ2(k)

))2 +
(
k2Γ(k)− 1

4τ2(k)

)
1

τ2(k)

(3.8)

HereΓ(k) =G∞(k)/ρ, where G∞(k) is the wavenumber-dependent high-frequency shear modulus,

ρ is the density, v2
0 =CT (k, t = 0) and τ(k) is the wavenumber-dependent relaxation time (114).

The condition for shear wave propagation is obtained from equating to zero the derivative of Eq.

(3.8) with respect to ω. The resulting inequality for shear wave propagation is,

k2Γ(k) > 1

2τ2(k)
. (3.9)

As k decreases, Γ(k) decreases much faster than τ(k). Thus, the inequality in (3.9) eventually

breaks at a certain kc , such that

k2
c ≈ 1

2τ2(kc )Γ(kc )
. (3.10)

In fact, Trachenko et at. (126; 127) studied the dynamical gap and provided a variation to the

Navier-Stokes Eq. which in turn leads to the well-known telegraph’s Eq., from that they obtain the

following equationf for ω,

ω2 + i
ω

τ
−V 2

t k2 = 0 . (3.11)

where τ is a relaxation time. Solving for ω yields

ω± =− i

2τ
±Vt

√
k2 −k2

c , (3.12)

the energy dispersion with a damping and a gap determined by kc = 1/2τVt , a result similar to Eq.

3.10 as Vt ≈
√

G∞(k)/ρ for k >> kc . Also notice that when kc = 0 then Vt is the transverse sound of

speed in the medium.

Notice that ω has a finite imaginary part. In Fig. 3.2 the frequency corresponds to the real part.

Now, from linear response theory, it is easy to see that the inverse of the left-hand-side of Eq. (3.11)
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is proportional to the susceptibility, hence, by Eq. (3.4) we would expected the imaginary part being

encoded in the width of the peaks of the transverse density current correlation function. In Fig. 3.5

we have plotted S(k,ω) vs ω for different values of k, while in Fig. 3.6 we have plotted the width of the

transverse density current correlation function vs the wavenumber, for 2500 hard disks with packing

fractions η = 0.68 monodisperse and η = 0.73 polydisperse, respectively. As k increases, the width

becomes larger, which would imply smaller relaxation times, in agreement with Refs. (126; 127; 114).

To test numerically Eq. 3.12 we proceed as follows. Consider for example the case of the polydis-

perse system for η = 0.68. First Vt is obtained from considering k À kc from where ω ≈ Vt k. This is

the slope of the dotted line in Fig. 3.2, from where Vt ≈ 0.24π/kmi n . Next from Fig. 3.6 we obtain

1/(2τ) ≈ 0.68π. Using Eq. 3.12 we find that kc ≈ 2.83kmi n , in good agreement with Fig. 3.2, in which

kc ≈ 2kmi n .

It is worthwhile to remark that our data satisfy Eq. (3.8), which contains the Maxwell relaxation

relationship for viscoelasticity, as it can be proved that in the long wavelength limit, the relaxation

time τ(k) is given by (114),

τ(0) = ν

G∞(0)
(3.13)

where ν is the viscosity. This relation holds for any k dependence of τ(k), even if we make the crude

assumption of taking τ(k) = τ(0) = τ.

Let us now return to investigate the connection of constraint theory with the dynamical gap. As

the fluid is isotropic, we can obtain a relationship between kc and the number of floppy modes as

follows. First we can approximate the behavior for k < kc by a delta function, resulting in a simplified

version of S(k,ω),

S f (k,ω) ≈ δ(ω)Θ(kc −k)+Θ(k −kc )S(k,ω) (3.14)

whereΘ(x) is the Heaviside function. The total number of modes with zero frequency in three dimen-

sions is proportional to the volume of a sphere with radius kc in the k-space,

N f (kc ) ≈ 2
∫ kc

0
4πk2dk = 8π

3
k3

c (3.15)

where the factor 2 comes from the possible transversal waves polarizations. In 2D we have N f (kc ) ≈
πk2

c .

The fraction of floppy modes ( f ) with respect to the total number of modes is obtained by normaliza-

tion,

f3D ≈ 2

3

(
kc

kD

)3

, f2D ≈ 1

2

(
kc

kD

)2

(3.16)
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The normalization factor kD (À kc ) is the Debye wavevector (131) while the subscripts 3D and 2D

refer to the dimensionality of the system. We can conclude that floppy modes are related with the

dynamical gap seen in the viscoelastic properties.

Using Eq. (3.7), one can obtain a relationship between η and f valid for the monodisperse and

polydisperse system,

f2D ∼ 1

2k2
D

(
∆η

ηγ

)2α

(3.17)

In principle, we can go further by relating the previous results to obtain a dynamical average coor-

dination. However, the lattice may have a strong heterogeneous character as floppy regions favor the

maximization of vibrational entropy (58) and care must be taken since it is possible that the system

may gain structure and order (132) as in the case of the network studied in (104) where floppy regions

appear in a given coordination number window above the rigidity threshold. Relaxation is affected by

this heterogeneity (133; 77; 62; 134).

For angular and radial forces are present it is known that the fraction of floppy modes f3D = 2−
5z/6, whereas for solely radial forces f3D = 1− z/6 (52). In 2D , we have for pure radial forces f2D =
1− z/4. Using Eq. (3.16), for pure radial forces and in 2D we have the trend,

z2D ∼ 4

(
1− 1

2k2
D

(
∆η

ηγ

)2α
)

(3.18)

This number can be compared with results obtained from the first-neighbor-counting obtained

from collisions (135). In particular, we observe that for kc = 0 we recover the condition for rigidity,

and as kc grows, the coordination number decreases as expected for a fluid system. Furthermore, it is

known that the coordination number may be obtained integrating the radial distribution function in

a small sphere of radius equal to the distance between two particles. The radial distribution function

is related to the structure factor which in turn may be put in terms of the current density correlation

function (114). Thus, it seems plausible to relate the coordination number with the current density

correlation function and, in particular, with the dynamical gap. The outline is shown in Appendices C

and D, however, we leave that for future work.

The ideas presented in this section is far from being concluded. Nevertheless, we end it by em-

phasizing that the dynamical gap may serve as an order parameter as well as a way to compute the

floppy modes in a seemingly easy manner. In this manner, floppy modes not only affect the relaxation

in glass forming systems but also affect the rigidity.

The last piece of the puzzle is provided in the following, where we show how the vibrational modes

contribute to the vibrational entropy, that when maximized, leads to the formation of floppy mode
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domains. Now, when the right coordination number is tuned, at a certain temperature there is a

phase transition from a heterogeneous phase to a homogeneous phase, which we further relate to the

liquid-liquid transition.

3.2 The intermediate phase and the liquid-liquid transition

3.2.1 Introduction

It is no surprise that a single-component liquid may have multiple liquid phases. In fact, they may

coexist and when this happens, this phase transition is called the liquid-liquid transition (LLT), where

a high-density liquid (HDL) coexist with a low-density liquid (LDL). There is an increasing number

publications in which they provide experimental and numerical support for the LLT in different sys-

tems which what they usually have in common is the internal tetrahedral structure (136–141). Never-

theless, there is still a lack of evidence which makes the LLT subject of much debate. This has to do

with the fact that in some systems, the LLT occurs at high temperatures and high pressures making

it hard to measure it experimentally. In the case of water, however, the LLT occurs in the metastable

supercooled region. In general, this is also true for molecular systems (142–148) which also makes

it difficult to observe it experimentally. Nonetheless, evidence points to the LLT being a first-order

phase transition. In the case of water, for instance, the critical temperature is around Tc ≈ 245K and

a critical pressure Pc ≈ 200 MPa. Furthermore, this coexistence line has a negative Clapeyron slope

(148).

The LLT picture in water seems rather appealing since it may explain certain features such as the

thermodynamical and dynamical anomalies when reaching the supercooled region and, perhaps,

there could be a connection between the LDL and HDL with the low and high density amorphous

ice (143; 147). In the latter case, it is worthwhile mentioning that a few years ago Sellberg et al. were

able to quench droplets of liquid water below the homogeneous ice nucleation temperature and study

the structure factor in an effort to experimentally relate it with the low density amorphous ice (LDA)

(149).

As previously mentioned, one thing where there seems to be consensus is that the LLT is due to

the microscopic tetrahedral geometry. Several theoretical approaches have been used to understand

this LLT (see for instance (144)). The HDL is characterized by low volume and high disorder while the

LDL is characterized by a high volume and low disorder with a structure similar to the LDA (149). In
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a recent work by Kobayashi and Tanaka (146), they propose a two-order parameter model of the LLT

based on the idea of locally-favored structures. In this regard, we propose the vibrational entropy as

the thermodynamical quantity that triggers the liquid-liquid transition, similar to the intermediate

phase transition observed in chalcogenides. In addition, this model shows reversibility and a jump

in the specific heat in correspondence with a first-order phase transition, which is in agreement with

experiments (140; 146; 145).

As has been mentioned previously, in network glasses including chalcogenides, the coordination

may be tuned by changing the chemical compositions. As the coordination number, z, increases,

there is a rigidity transition which is predicted in covalent networks by constraint counting (18; 52)

to occur at zc = 2.4. Interestingly, as the composition is varied, an intermediate phase has been re-

vealed in the vicinity of the rigidity onset (31; 32) where a number of features change dramatically.

For example, it has been shown that glass formers in this intermediate phase are reversible in terms of

heat absorption and release at glass transition, and also become strong in terms of dynamical fragility.

These features are singular with respect to those of the glass formers out of the phase. On the other

hand, the calorimetry experiments imply a first-order phase transition in some strong glass-forming

liquids above the glass transition temperature. In Ref. (104), it was shown how this first order phase

transition is a homogeneous-heterogeneous first-order phase transition triggered by the vibrational

entropy. It was further shown that this phase transition occurs in a coordination number window pro-

portional to the vibrational entropy gain per floppy mode. We propose that this intermediate phase

transition is intrinsically a LLT.

There are many examples of systems where the increase of entropy generates order and hetero-

geneity (132). The ingredients necessary for this type of behavior are two-fold, namely, high configu-

rational degeneracy and the ability of a given system to cluster degrees of freedom carrying the most

part of the entropy. In principle, both are part of the features in liquids. The key idea is understanding

that floppy modes store large amounts of entropy (150).

In network glasses, the material properties relying on structures can be tuned by changing the

chemical compositions that have different abilities to make covalent connections with neighboring

atoms. In chalcogenides GexAsy Se1−x−y , for example, selenium (Se) forms only two bonds while ar-

senic (As) and germanium (Ge) form three and four respectively. First pointed out by Maxwell (151),

a general network will lose rigidity as the network connectivity is reduced to below certain critical
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connectivity when the average number of constraints per atom, n, is equal to the degrees of freedom,

i.e., nc = d in spatial dimension d . This rigidity loss also applies to the chalcogenides when selenium

concentration is high, predicted by Phillips in (29; 30), where he showed that counting both radial and

angular constraints of covalent bonds gives nSe = 2, nAs = 9/2, and nGe = 7, indicating a chalcogenide

glass is marginally rigid at a composition with average number of covalent bonds rc = 2.4. Since then,

more and more works have shown that the thermodynamic and dynamic features of glass-forming

liquids (not limited to chalcogenides) are strongly regulated by the rigidity transition of the micro-

scopic networks (152–155). One of the most interesting discoveries is the intermediate phase (IP)

near rc (156–159), which remains a big puzzle.

The intermediate phase appears to be singularly distinct from the adjacent rigid or floppy phases:

the non-reversible heat, a glass-transition equivalent of the latent heat, vanishes (156); the stress het-

erogeneity disappears (157; 158); the molar volume and fragility are sharply smaller (159). All available

pieces of evidence suggest that the glass undergoes some transitions when entering IP from either

side (159). However, both, Maxwell’s rigidity theorem and the rigidity percolation theory that takes

into account fluctuations of random networks (160–162) predict only a single transition in network

constraint number n. Noticed the interval of the two rigidity transition points in two theories, Thorpe

and his colleagues proposed a self-organized transition scenario, which predicts a rigidity window in

between two transitions – one corresponding to the loss of percolating rigidity as in the rigidity per-

colation theory and the other corresponding to the loss of ability to relax stress as in the Maxwell’s

theorem (163; 164). This stress-free rigidity window relies on a subtle balance between the fluctua-

tion or entropy facilitating the rigidity percolation and the energy eliminating the stress throughout

the range, which is, however, fragile to the ubiquitous perturbations such as Van der Waals (VdW)

forces and temperature (165). Despite in a more recent paper (166), Kirchner and Mauro provide a

robust approach of computing the constraint number to determine IP in the presence of finite tem-

perature, the heterogeneous nature captured by a diverging correlation length at n = nc (167), in fact,

still contradicts the observations of a homogeneous IP.

An alternative set of theoretical insights on IP is from the molecular dynamics simulations (168–

170), where a similar intermediate range of homogeneous structures is revealed by continuously tun-

ing the pressure instead of composition. In the simulation, as the pressure gradually increases, the

amorphous structure undergoes a liquid-liquid transition (LLT) from a more structured low-modulus

low-density amorphous phase to a more homogeneous rigid high-density phase (171). When the



3.2. THE INTERMEDIATE PHASE AND THE LIQUID-LIQUID TRANSITION 77

composition is varied, the transition pressure shows a non-monotonic pattern with a lower value

in an intermediate range near rc , same as the pattern of the stress percolation pressure in chalco-

genides (157). In addition, in experiments, a transition between two thermodynamically different

liquids is indicated by a lambda peak in specific heat at a temperature above the glass transition in

some strong glass-formers close to the rigidity threshold, including silica (SiO2) (172–174; 139). These

materials imply that the glass in IP may be in a rather different thermodynamic phase resulted from a

transition above the glass transition, and the transitions to IP directly reflect such liquid-liquid tran-

sitions. So what are the two different liquid phases in network glass?

In Ref (175) it was shown, with a network model, that the vibrational entropy facilitates the rigid-

floppy separated heterogeneous network structures close to the rigidity transition nc as floppy modes

store large amounts of vibrational entropy (150), while cost little configurational entropy in marginally

rigid networks. On the opposite, the elastic energy is lower in homogeneous structures with stresses

evenly distributed (165). So under cooling, a network near nc inevitably undergoes a first-order transi-

tion from an entropy-dominated heterogeneous phase to an energy-dominated homogeneous phase.

The interplay between the glass transition temperature Tg and the LLT temperature TLLT would then

be key in determining in which liquid phase the material is frozen at the glass transition and all

the consequential features. Here, we investigate the transition separating the two liquid phases by

studying the thermodynamics of the same network model. We show that the network undergoes a

first-order phase transition where the free energy crosses over, the associated energy and the entropy

are discontinuous, and the specific heat jumps in the thermodynamic limit. Finally, we discuss how

this liquid-liquid transition could be probed in experiments in order to understand the intermediate

phase.

3.2.2 Model

We consider a two-dimensional triangular lattice of N particles with periodic boundary conditions (165;

176; 175), where a small deformation of the lattice is imposed to avoid non-generic singular modes,

yet this deformation is periodic for reproducibility between simulation samples. We model all radial

and angular constraints of covalent interactions by Ns = N n linear springs of stiffness k, connecting

the nearest neighbors on a triangular lattice, as shown in Fig. 3.7. We incorporate quenched disorder

of glassy energy landscape by setting mismatches between the springs’ rest length and the fixed lattice

bond lengths: lγ = lγ,0+εγ for spring γ. Mismatches {εγ} are independent identically distributed (i.i.d.)
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random Gaussian variables with mean zero and variance ε2. By setting kB = 1, kε2 = 1 defines the unit

of, both, energy and temperature. Furthermore, we include also the weak VdW interactions by adding

weak fixed springs of stiffness kw ¿ k connecting any particle to all its six next-nearest neighbors as

shown in Fig. 3.7. The mean-field effect of these weak long-range nonspecific interactions can be

captured by a control parameter α= kw /k ¿ 1 (155; 176).

Figure 3.7: Sketch of the model. The black circles represent the particles, the purple springs represent

the strong interaction between nearest neighbors while the blue lines represent the VdW interactions

between next nearest neighbors. We color one of the particles in red with bold blue lines for illustra-

tion purposes.

In the model, the microscopic configuration depends on how the network is connected or which

lattice bonds are occupied by strong springs, denoted by Γ≡ {γ↔ (i , j )}, for particle i and j connected

by spring γ. Given Γ, when particles deviate from the mechanical equilibrium by |δR〉, the elastic

energy potential to the linear order is,

V (Γ, |R〉) = H(Γ)+ 1

2
〈δR|M (Γ)|δR〉, (3.19)
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where H is the energy of the inherent structure of configuration Γ and the second term corresponds

to the vibration from equilibrium with M being the Hessian matrix of energy H . We thus perform a

Metropolis Monte Carlo simulation (177) to sample the configurations according to their Boltzmann

weight e−F (Γ)/T with free energy,

F (Γ) = H(Γ)−T Svib(Γ), (3.20)

with the volume of thermal vibrations counted in the vibrational entropy,

Svib(Γ) = nc N lnT − 1

2
lndetM =−∑

ω

lnω(Γ)+ c, (3.21)

whereω2 are the eigenvalues of the Hessian matrix M and nc is the critical constraint number, which

is equal to 2 in two dimensions.

Without loss of generality, we assume the independence of mismatch εγ on the particle distances

of the distorted lattice ri j so that the Hessian matrix becomes only a function of the occupation {σ},

where σi j = 1 if particle i and j are connected by a spring and σi j = 0 otherwise. The stress energy of

the network at mechanical equilibrium can thus be computed by,

H(Γ) = 1

2
〈ε|K −K S M−1S T K |ε〉 , (3.22)

where K is the diagonal spring stiffness matrix and S is the structural matrix, both depending only

on occupation {σ}. The detailed derivations and expressions of these matrices and the numerical

implementation are documented in the Appendix E.

3.2.3 Results

Network structures

As proven in Ref. (150; 175) and directly inferred by Eq. 3.21, vibrational entropy is large for floppy

modes with a vanishing ω. When the total number of constraints is fixed, the total entropy can gain

from additional floppy modes in a phase separation of a very rigid subnetwork where the springs

cluster and a very floppy counterpart where floppy modes cluster. This phase separation is shown in

the snapshot of a system of 576 particles at high temperature in the upper panel of Fig. 3.8. On the

contrary, networks with constraints homogeneously distributed store lower elastic energy than other

configurations given the number of springs, as shown in Ref. (165). At low temperature, when elastic

energy dominates, homogeneous microscopic structures with no rigid-floppy phase separation will
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(a)

(b)

Figure 3.8: Snapshot of the system above (a) and below (b) the critical temperature for a system of 576

particles with the constraint number n = 2.06 > nc . The purple lines represent the springs. a) Het-

erogeneuous structure: At high temperature T = 10, the entropy dominates over the internal stress

energy, in particular, the vibrational entropy maximizes by phase separating into rigid and floppy re-

gions. b) Homogeneous structure: At low temperature T = 0.001 the energy of the inherent structures

dominates over the internal energy, this energy minimizes by a homogeneous distribution of con-

straints.
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be sampled, as shown in the lower panel of Fig. 3.8. In the following, we will show that these het-

erogeneous and homogeneous structures correspond to two distinct thermodynamic liquid phases

that are separated by a first-order liquid-liquid transition at a critical temperature TLLT . We will fur-

ther argue that depending on the relation between TLLT and the glass transition temperature Tg , the

liquid can be frozen into different thermodynamic phases, which could be the origin of the singular

intermediate phase in network glass.

Thermodynamics

The numerical results of thermodynamics of the model are shown in Fig. 3.9 together with the theo-

retical predictions of both heterogeneous and homogeneous phases. In the upper left panel of Fig. 3.9,

for a given connectivity n = 2.06, we find the total free energy of the networks equilibrated at given

temperature T can be perfectly fitted by the theoretical predictions of heterogeneous networks at

high temperature end (in red) and of homogeneous networks at low temperature end (in blue). More-

over, the numerics and the free energy prediction of heterogeneous networks are consistently lower

than the prediction of the homogeneous phase when the temperature is higher than certain transition

temperature TLLT ≈ 0.2. At the free energy crossover TLLT , marked in Fig. 3.9(b)(c)(d), we are also ob-

serving the convergence to discontinuous jumps at the transition in the thermodynamic limit N →∞
from a higher value in high temperature heterogeneous phase to a lower value in the low temperature

homogeneous phase in stress energy, vibrational entropy, and the specific heat. This result demon-

strates that the heterogeneous and homogeneous structures are thermodynamical phases, separated

by a first-order phase transition where, both, energy and entropy are discontinuous.

In Fig. 3.9, the data points of energy E = H
T

in the upper right panel of Fig. 3.9 and vibrational

entropy Sv = Svib
T

in the lower left panel of Fig. 3.9 are averages of Eqs. (3.21) and (3.22) over the

Monte Carlo courses at given temperature T . The specific heat C in the lower right panel of Fig. 3.9 is

obtained from the mean energy fluctuation over the Monte Carlo courses normalized by temperature

squared, C = (H 2
T −E 2)/T 2. Finally, the main numerical result of free energy F in the upper left panel

of Fig. 3.9 combines both direct measurement of energy E and the inferred total entropy S = Sv +Sc

by integrating over the specific heat C ,

S(T ) = S(∞)−
∫ ∞

T

C (T )

T
dT, (3.23)

as F = E−T S. The theory derivations and the way we consistently fit parameters are fully documented
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(a) (b)

(c) (d)

Figure 3.9: Thermodynamics of the network model near the rigidity transition n = 2.06. The ther-

modynamics is characterized by the basic thermodynamic quantities, including free energy, internal

energy, entropy, and specific heat, shown versus temperature as symbols for simulation results and

as solid lines for analytical predictions. The simulations are done for different system sizes N (see

legends) and the analytical predictions are obtained in the thermodynamic limit N →∞ for homo-

geneous networks in blue and heterogeneous networks in red (see Appendix E for detailed descrip-

tions). a) The numerical results of free energy follow the prediction of a homogeneous network at low

temperatures until the homogeneous-heterogeneous first order phase transition around T ≈ 0.2 and

then cross over to the prediction of a heterogeneous network. The yellow star in the inset marks this

crossover. b) Data points follow the homogeneous and heterogeneous predictions in the same low

and high temperature ranges corresponding to the free energy, while separated by a discrete transi-

tion that the numeric result is converging to in the thermodynamic limit. c) Similarly, the vibrational

entropy results also converge to a discrete jump at the crossover of free energy. d) At the phase transi-

tion, the specific heat is also characterized by has a jump, seen in the largest system size.
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in the Appendix E or see Ref. (176) for homogeneous networks and Ref. (175) for heterogeneous net-

works.

Spatial and temporal correlations

We have shown the existence of two distinct thermodynamic liquid phases of networks with the basic

thermodynamic quantities. Among these quantities, the specific heat is a good experimental indi-

cator to detect the two liquid phases and the transition: one can look for a lambda divergence or a

peak in specific heat above glass transition Tg , as found in certain strong-type glass-forming liquids

and water (172–174; 139). Here we present also the spatial and temporal correlation profiles of the

two phases that could be directly measured in experiment to probe the transition. The spatial and

temporal correlations are investigated by the structure factor and the time autocorrelation function

as shown in Fig. 3.10. They are defined by the occupation {σ} as,

S f (k) = 1

3N (3N −1)

∑
i j 6=kl

(σi j − σ̄)(σkl − σ̄)e i kri j ,kl , (3.24)

G(t ) = 1

Ttot − t

∑
τ

1

3N

∑
i j

[σi j (τ)− σ̄][σi j (τ+ t )− σ̄], (3.25)

where σ̄= n/3 and ri j ,kl denotes the distance from the center point between node i and node j and

the center point between node k and node l .

For temperatures higher than the transition temperature TLLT ≈ 0.2, we observe a plateau to finite

correlation in the time range scanned in simulation and a strong signal in structure factor averaged

over that time scale, which reflects the heterogeneous phase as in the snapshot in the left panel of

Fig. 3.8. On the contrary, for temperatures lower than TLLT , we observe normal homogeneous liquid,

where the correlation quickly relaxes to zero with no special structure in wave vector space after av-

eraged over time, as in the snapshot in the right panel of Fig. 3.8. In the left panel of Fig. 3.10, we also

notice that the systems in the heterogeneous phase yield two relaxation times: the system first relaxes

to a plateau rapidly, yet in this plateau, the system is also relaxing but with a much larger character-

istic time. It implies that the rigid and floppy clusters are not held fixed in a given position and the

structural features in S f (k) will also vanish when averaged at the time longer than the second relax-

ation as in liquids. These features of spatial and temporal correlations emerging at an intermediate

time scale should be looked for in distinguishing the two liquid phases and detecting the transition.
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(a)

(b)

Figure 3.10: a) Spatial correlation function and b) time correlation function for N = 576. Red curves

correspond to temperatures T (m) = 10/2m with m = {0, ...,5} and blue curves correspond to tempera-

tures T (m) with m = {6, ...,16}. The blue open symbols correspond to temperatures T . α, i.e. of the

order of the weak interactions. The wavenumber k has been averaged over three different directions.

The time correlation function was computed using samples taken every 103 Monte Carlo steps.
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(a)

(b)

Figure 3.11: a) Liquid-liquid transition temperature vs number of constraints, predicted by theory

(blue line) and measured numerically for the network model for N = 256 (data points). Details of the

theory and numerical extraction of TLLT are documented in Appendix E. The error bars correspond

to the peak size of the heat capacity when the phase transition occurs. b) Illustration of different

dependence of TLLT and the glass transition Tg on the number of constraints n. When n is close to nc

where TLLT becomes greater than Tg , the liquid is frozen in a homogeneous intermediate phase at Tg .
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Dependence on network topology

Finally, we derive the liquid-liquid transition temperature TLLT for varying constraint number n but

close to nc where a heterogeneous phase exists at high temperature, shown in Fig. 3.11(a) 1. Un-

like the glass transition temperature Tg , which increases monotonically with n, TLLT varies non-

monotonically and is maximal at n = nc , which is also consistently shown by numerical results of

the model as data points in Fig. 3.11(a). This result implies that for certain range of parameters, the

networks undergo LLT to a thermodynamic homogeneous phase before they are dynamically trapped

in glass, when TLLT (n) > Tg (n) or n f < n < nr , which is likely to occur in the vicinity of the rigidity

threshold nc due to the different dependences of TLLT and Tg on n. The liquids frozen in homoge-

neous networks become glass in the IP, while the network glass out of the IP is then frozen in the

heterogeneous network structures as the glass transition happens first under cooling, as illustrated in

Fig. 3.11(b). The transitions to the IP are thus transitions between different frozen thermodynamic

liquid phases in this picture.

PCA and unsupervised learning

As a proof a concept we applied Principal Component Analysis to the model to gain structure infor-

mation. This approach is also known as unsupervised learning (181; 182), however, we believe this is

rather misleading. We should also point out that PCA is a vast field and what we present here is solely

a small part of the overwhelming literature concerning PCA. The nice thing of this approach is that it

is fairly simple to apply and, in principle, no previous insight regarding the model is necessary. In Ref.

(181) this method was applied to the 2D Ising model to obtain the order parameter that differentiates

the ferromagnetic and paramagnetic phases.

The outline of the method is simple and straightforward, we construct the covariance matrix of the

spring sites in our model. Then we compute the eigenvalues of the covariance matrix. This is shown

in Fig. 3.12. Notice that the first two eigenvalues have more weight that the rest of the eigenvalues.

This means that the eigenvectors associated with the first two eigenvalues contain most of the infor-

1Notice that the temperature predicted here is in the unit of covalent bond bending and stretching energy. For instance,

in the case of silica with an average constraint number nSiO2 = 3.67, the liquid-liquid phase transition temperature has

been experimentally reported at TLLT ≈ 1820K (178; 179) and glass transition at Tg ≈ 1425K . The bond energy is estimated

at 621.7k J/mol (180), and the bond bending/stretching energy can be estimated by Lindemann’s criterion with kε2 =
2×0.32 ×621.7 ≈ 112k J/mol . We then have TLLT ≈ 0.14 and Tg ≈ 0.11 in the unit of kε2 for silica.
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mation of the covariance matrix, which means that contain most of the information of the model as

the temperature decreases.

In Fig. 3.13 we have plotted the first two eigenvector while coloring each tuple, form by one ele-

ment from each eigenvector, according to the temperature. In this sense, bright red corresponds to

T = 10 while blue corresponds to T ≈ 0. Notice there is a small cluster in the upper right corner of

the plot, which corresponds to the heterogeneous phase. The spatial separation between this cluster

and the rest of the plot points suggests a phase transition (but, of course, is not a proof of a phase

transition). This results also suggests that a linear combination of the two eigenvectors could serve as

an order parameter. However, this method does not provide physical information. Hence, we are not

able to determine the relationship between these eigenvectors and the physical observables.

For instance, if this same approach is applied to the Ising model, the eigenvector associated to the

largest eigenvalue is the magnetization itself (see Ref. (181) and Appendix F). In this case we know that

it is the magnetization because we know from different methods that this is a good order parameter

as well as its dependence with temperature.

In any case, this approach gives a hint on the question Is there an order parameter for this phase

transition?.

3.2.4 Discussion

Relying on how and where Tg and TLLT intersect with each other, this new picture of the intermediate

phase is potent to explain some of the material features in the experiments. First, depending on the

relative strength of the Van der Waals forces, the constraint numbers where Tg and TLLT intersect vary,

which leads to different widths and locations of the intermediate phase when changing the chemical

compositions (156; 175). Second, as the dynamics have shown to be much less fragile in a liquid with

homogeneous structures, the liquid-liquid transition from the high-temperature heterogeneous to

low-temperature homogeneous phase implies the dynamics of a liquid in the intermediate phase po-

tentially undergoes a fragile to strong transition under cooling as observed in water (174) and in-silico

silica (179; 183). Finally, as a byproduct of our theory, the disappearance of heterogeneous phases

at very high and very low n may explain the transitions beyond the intermediate phase far from the

rigidity threshold (159), as depicted in Fig. 3.11(b).

To test this picture of the intermediate phase experimentally, one could look for direct signals of

the liquid-liquid transition, including a lambda peak in the specific heat and loss of structural features
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(a)

(b)

Figure 3.12: Ranking of the eigenvalues of the covariance matrix of the spring occupation sites in a

Linear-Log plot. a) All eigenvalues. b) First 15 eigenvalues. Notice that there is a jump between the

second a third eigenvalue, which means the first to eigenvalues have more weight than the rest.
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Figure 3.13: First two eigenvectors plotted. The coloring maps the temperature where the highest

temperature is colored red and the lowest one is represented by blue. Notice that the upper right cor-

ner contains a small cluster which corresponds to the heterogeneous phase transition. The existance

a the cluster, i.e., the spatial separation suggests a phase transition.

from the scattering experiments under cooling. The direct evidence should be most likely to be found

in compounds close to the boundaries of the intermediate phase, where the liquid-liquid transition

temperature is comparable to the glass transition temperature. As the glass transition reflects the

dynamic aspect while the liquid-liquid transition reflects the thermodynamic aspect of the material,

one could also tune one of the transitions by increasing the cooling rate, or adding a small amount of

impurities, or exerting a certain amount of pressure to check if the range of the intermediate phase

can be perturbed in a predictable way.

3.3 Conclusions

In conclusion, here we observed that for simple dense fluids near a glass or a crystal phase transition

there is a dynamical gap and above a certain critical wavevector, kc , there are transversal propagating

modes although with strong damping. Modes with k below to kc have zero frequency. This critical

kc goes to zero as a power law with exponent close to 0.8 as the fluid goes into a solid in the vicinity

where this phase transition occurs.

In fact, this sole observation opens new avenues for future research. For example, quite recently
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it was shown that the hexatic-to-solid phase transition in the case of monodisperse hard-disks, as

well as with a small concentration of bidispersity, is a KT transition (115). This was proven on the

basis of a prediction made within the KTHNY-theory framework, in which the elastic constant, K ,

should be zero in the hexatic phase and have a jump to 16π in the solid (184). This elastic constant K

may be expressed in terms of the transverse and longitudinal speed of sound denoted as V 2
t and V 2

l ,

respectively, which yields

K = 4ρV 2
t

(
1− V 2

t

V 2
l

)
. (3.26)

When kc goes to zero, shear waves propagate in the system as a whole and the transverse speed

of sound changes from zero to some finite value. Hence, in the case of monodisperse hard-disks, we

speculate that kc may serve as an order parameter for the hexatic-to-solid transition.

An even more interesting aspect is that, although the hexatic phase disappears for even a small

concentration of small hard-disks , the KT transition should still happen theoretically (184; 115). In

this sense, the dynamical-gap may serve as a tool to locate it.

Also, by assuming isotropy of the liquid, one can count zero frequency modes to assign a number

of floppy modes to the fluid. Thus, a dynamical average coordination number and a certain number

of broken constraints can be defined from this count. Our study suggest that viscoelasticity can serve

as a powerful tool to characterize rigidity in the fluid phase.

These floppy modes may appear through vibrational entropy maximization as shown with the

elastic network model. This feature is related the fact that the microscopic structure of a network

glass undergoes a liquid-liquid transition from an entropy-dominated heterogeneous phase to an

energy-dominated homogeneous phase under cooling. At this first-order transition, the specific heat

diverges, structural features disappear, and relaxation plateau vanishes. The transition temperature

scales as the average frustration energy stored in covalent bonds and varies non-monotonically on

the network connectivity. As the glass transition temperature scales positively with the connectivity,

the two transition temperatures could cross at two constraint numbers. Inside the two constraint

numbers, we would observe the liquid-liquid transition first under cooling and obtain homogeneous

network glass at glass transition as in the intermediate phase.



Chapter 4

Conclusions

In this Thesis we have provided an answer on how relaxation and rigidity are related by putting the

accent on the floppy modes, namely:

• We showed how vibrational modes are related with relaxation times by means of a simple solv-

able degenerate two-level system which has a first order transition to a crystal while, under a

quench, it presents a dynamical transition to a glass.

• We also showed by means of a non-linear and zero temperature model the relation between vi-

brational modes and energy barriers. This non-linearities give rise to a wide range of relaxation

times, i.e., dynamical heterogeneity.

• We then used viscoelasticity theory to characterized rigidity. Through this theory we used the

dynamical gap to characterize rigidity and showed that this may serve as an order parameter for

rigidity by testing it in hard disks simulations. Furthermore, it may serve as an order parameter

for the KT-transition.

• From the dynamical gap we propose a way to count floppy modes which differs from the local

mean field approach in rigidity theory.

• We also showed that when vibrational entropy is maximized, floppy mode domains appear.

• When the coordination number is in a window around the rigidity threshold coordination num-

ber, there is a first order phase transition to a homogeneous phase at a fixed temperature.

• We showed that this homogeneous-heterogeneous phase transition is the same as the liquid-

liquid transition

91
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The previous points provide a picture to understand the rigidity and relaxation in the case of glass

forming systems. The message is that, to understand relaxation in glass forming systems, it’s impor-

tant to study the vibrational modes which contribute to the vibrational entropy. On the other hand,

there is in general a competition between internal energy and entropy to minimize the free energy.

When this minimization comes from the maximization of vibrational entropy, floppy-mode domains

appear. The competition between internal energy and entropy, however, depends on external pa-

rameters such as temperature and pressure. All things considered, the vibrational entropy will be

maximized provided the coordination number is well-tuned to a value around the rigidity threshold

coordination number. Rigidity theory says the coordination number is the important ingredient to

characterize rigidity while proposes that it may be tuned by changing concentrations in glass formers.

However, when vibrational entropy is maximized, floppy domains appear as well as overconstrained

domains, which implies the coexistance of two coordination numbers. In this sense, the tools pro-

vided by rigidity theory may fail. Another approach is to use viscoelasticity theory, from which one

may use the dynamical gap to characterize rigidity and, furthermore, count the number of floppy

modes. The latter is yet to be proven. In this way, one should use this method in real systems, such as

chalcogenide glass melts. One may also use the density current correlation function to compute the

coordination number.

The glass transition has been the subject of many works for many years, yet a complete under-

standing is still lacking. Hence, some may say that the glass transition is a dead end. Traditionally,

glassy dynamics has been reduced to supercooled liquids. However, for the past few years glassy dy-

namics has been extended to so many problems and fields, ranging from biology to (lately) machine

learning (101; 185). On the other hand, in recent times the importation of tools, such as, dynamical

mean field theory or holography has been proposed to understand glassy dynamics (127; 186). It is

accurate to say that glass transition is, without doubt, a very busy field where so many ideas con-

verge. A complete glass theory should then be able to shed light on all of these new phenomena in all

these different fields. Moreover, as glassy dynamics emerge in different fields, the glass theory gains

additional constraints which should ultimately drive research in the correct direction.
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Appendix A

First passage time and transition rate (Kramer)

The Kramer problem is to find the rate at which a Brownian particle escapes from a potential well

over a potential barrier. One way to tackle this is through mean of the first passage time theory. Let us

recall this by assuming we have the following problem:

∂c(r,t )
∂t =Dc(r, t )

c(a,0) = δ(a−a0) , ∀a ∈V

c(a, t ) = 0 , ∀a ∈ ∂V ,

(A.1)

where D is an operator (which we already assume it corresponds to the Smoluchowsky Diffusion Eq.).

The formal operator solution as an initial value problem is

c(a, t ) = e tDδ(a−a0) . (A.2)

Now, the survival probability is defined as

S(t ,a0) =
∫

V
dac(a, t ) , (A.3)

which for long times is zero. Now, we may define the first passage probability f (t ,a0) as through

means of the survival probability, i.e.,

S(t ,a) = 1−
∫ t

0
d t ′ f (t ′,a0) . (A.4)

Hence, differentiating the last Eq. with respect to t , we obtain

f (t ,a0) =−dS(a0, t )

d t
. (A.5)
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The mean first passage time is the first moment of t ,

τ(a0) =
∫ ∞

0
d t t f (t ,a0) (A.6)

= −
∫ ∞

0
d t t

dS(a0, t )

d t

=
∫ ∞

0
d tS(a0, t )

=
∫ ∞

0
d t

∫
V

dae tDδ(a−a0)

=
∫ ∞

0
d t

∫
V

daδ(a−a0)
(
e tD+

1
)

=
∫ ∞

0
d t

(
e tD+

1
)

.

Now, let us apply the adjoint operator,

D+τ =
∫ ∞

0
d tD+e tD+

1

=
∫ ∞

0
d t

d

d t
e tD+

1

= −1 (A.7)

In the case of the Smoluchowsky Eq., the above yields

τ(x) = 1

D

∫ b

x
d yeU (y)/kT

∫ y

a
d ze−U (z)/kT , (A.8)

here the absorbing barrier is at b and a could be, in principle, ±∞.

In the case of the duffing oscillator we are interested in the first passage time to the maximum given

the particle is initially in the left well. Therefore, Eq. (A.8) takes the following form

τ(x) = 1

D

∫ 0

x
d yeU (y)/kT

∫ y

−∞
d ze−U (z)/kT (A.9)

Now, when kT ¿ 1, then we may extend the upper limit of integration to ∞.

The integral over y is practically independent of x as long as x is near the potential minimum, so the

lower limit can be replaced by −∞. Thus

τ(x) = 1

D

∫ 0

−∞
d yeU (y)/kT

∫ ∞

−∞
d ze−U (z)/kT , (A.10)



Appendix B

Soft Henon-Heiles: Eigenvectors and Fits

B.1 Eigenvectors

In this section we obtain the eigenvectors and eigenvalues of the dynamical matrix. For this purpose,

we introduce the ansatz Q j (t ) = q j e−ıωt in the corresponding Hamiltonian Eqs. , neglecting the non-

linear terms, which yield (
D−ω2I

)
~q =~0 , (B.1)

where D is the dynamic matrix given by

D = k


1+β −1 −β
−1 1+α −α
−β −α α+β

 .

The eigenvalues of the dynamical matrix D are,
ω0/k = 0,

ωx/k = 1+α+β+√
1−α+α2 −β−αβ+β2} ,

ωy /k = 1+α+β−√
1−α+α2 −β−αβ+β2}

. (B.2)

Let us determine the eigenvectors. To do so, notice that since there are no fixed endpoints, the

first eigenvalue corresponds to the center mass movement. Hence, one of the normal modes is,

|0〉 = 1p
3


1

1

1

 . (B.3)
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The remaining two eigenvectors must be orthonormal. Therefore, one way to tackle this is by consid-

ering two generic eigenvectors in the X Y plane, i.e.,

|1,0〉 =


sinχ

−cosχ

0

 . (B.4)

|2,0〉 =


cosχ

sinχ

0

 . (B.5)

We rotate these vectors using the same rotation matrices which transforms vector (0,0,1) into

(1,1,1)/
p

3, i.e., first we rotate an angle θx such that cosθx = 1/
p

3 around the X axis clockwise, and

then we rotate an angle θz =π/4 around the Z axis clockwise. Thus

Rx(θx) =


1 0 0

0 cosθx −sinθx

0 sinθx cosθx

 ,

Rx(θx) =


cosθz −sinθz 0

sinθz cosθz 0

0 0 1

 ,

|1〉 ≡ Rz(θz)Rx(θx)|1,0〉 =


−cosχp

6
+ sinχp

2

−cosχp
6
− sinχp

2√
2
3 cosχ

 . (B.6)

|2〉 ≡ Rz(θz)Rx(θx)|2,0〉 =


cosχp

2
+ sinχp

6

−cosχp
2
+ sinχp

6

−
√

2
3 sinχ

 , (B.7)

Now, notice that both eigenvectors must fulfill the characteristic equation for D, from which we

obtain, using |2〉 that

tanχ=p
3

2+α−ω2−
3α−ω2−

. (B.8)

Before moving on, notice that when α = β = 1 the eigenvalues become {0,3} being the last one

degenerate. Also notice that making χ→χ−π/2 in |2〉 gives |1〉.
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Now that we have the eigenvectors, we diagonalize D. We define |i c〉 as the canonical base with

i = {1,2,3} and the matrix A, which diagonalizes the interaction, i.e., D0 = ADAT . Then A is

A = |1c〉〈1|+ |2c〉〈2|+ |3c〉〈0| (B.9)

=


−cosχp

6
+ sinχp

2
−cosχp

6
− sinχp

2

√
2
3 cosχ

cosχp
2
+ sinχp

6
−cosχp

2
+ sinχp

6
−

√
2
3 sinχ

1/
p

3 1/
p

3 1/
p

3

 . (B.10)

Therefore, the normal (canonical) coordinates are

~x = A~Q , (B.11)

~p = A~P . (B.12)

Hence, in our Hamiltonian we make the following substitutions:

Qi =
∑

At
i j x j , (B.13)

Pi =
∑

At
i j y j . (B.14)

Substituting these last Eqs. in the Hamiltonian, we obtain the diagonalized Hamiltonian, i.e.,

H = 1

2

(
p2

x +p2
y +p2

z

)
+ 1

2

(
ω2

x x2 +ω2
y y2

)
. (B.15)

Notice that pz is a constant since z is a cyclic coordinate.

Consider the cubic interaction term, i.e.,

γ

3

(
(Q1 −Q2)3 + (Q2 −Q3)3 + (Q3 −Q1)3) , (B.16)

and let us apply the transformation Qi → xi . This last operation yields

3γp
2

(
−ξ2

(
ξ2

2

3
−ξ2

3

)
cos3χ+ξ3

(
ξ2

3

3
−ξ2

2

)
sin3χ

)
. (B.17)

In the case where α = β, let us examine what happens to the angle θ. Notice that the matrix D

becomes

D =


1+β −1 −β
−1 1+β −β
−β −β 2β

 ,
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with eigenvalues ω2
y = 2+β and ω2

x = 3β. When fixing the angle θ for which the secular Eq. is fulfilled,

we may use

−β
(√

2

3
sinχ

)
−

(
2β−ω2

x,y

)√
2

3
sinχ= 0 , (B.18)

which is the last Eq. of
(
D−ω2

2,3I
)
|2〉 = 0. Now, if we plug in the eigenvalue 3β in Eq. (B.18) we obtain

the trivial solution. On the contrary, when we plug in the eigenvalue 2+β in Eq. (B.18), this tells us

that χ= nπ, with n = 0,1,2, .... We diagonalize the matrix D by obtaining the following diagonal matrix

D0:

D0 = ADAT =


d11(χ) 0 0

0 d22(χ) 0

0 0 d33(χ)

 . (B.19)

For χ= nπ, according to Eq. (B.18) we should expect that d11(χ) =ω2
x , d22(χ) =ω2

y and d33(χ) = 0. The

last case occurs because, as previously mentioned, the eigenvector |2〉 becomes |1〉, and conversely

|1〉→ |2〉
Hence, when α=β, χ= nπ and the corresponding eigenvectors becomes

|2+β〉 = 1p
2


(−1)n

(−1)n+1

0

 . (B.20)

|3β〉 = 1p
6


(−1)n+1

(−1)n+1

2(−1)n

 . (B.21)

Finally, the Hamiltonian in terms of the normal coordinates and momenta is

H = 1

2

(
p2

x +p2
y +p2

z

)
+ 1

2

(
ω2

x x2 +ω2
y y2

)
+ 3γ

21/2
ν

(
1

3
y3 −x2 y

)
, (B.22)

where ν= {−1,1}.

B.2 Fits

In figures B.1, B.2, B.3 and B.4 we show the curves of log N (t )/N (0) vs t for times corresponding to the

exponential decay regime and their linear fit for each of the combinations ofβ and∆E shown in figure

3. The time intervals t f i t used in the fitting process for each of the curves were selected following two
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criteria. The remaining population after t f i t should be below 50%, which ensures that the regime

in that time interval corresponds to the exponential decay. The fitting curve should go over the real

data for the most part, such that the absolute value of the slope of the fitting curve, i.e., α will be

smaller than or equal to the absolute value of the slope of the real data. In this sense, these α values

correspond to lower bounds. Notice from figure 9 that the α obtained from the fitting method almost

always goes over the α obtained by the flux method. Thus, if one were to improve the fit by choosing

a smaller time interval, the divergence between both methods would grow.
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Figure B.1: β = 0.8. log N (t )/N (0) vs t (blue curve) and their linear fit (red curve) for different ∆E (see insets). The α

parameter shown in the inset is the slope absolute value of the fit. The fit was done in a time interval t f i t such that after

that time the remaining population is the one shown in the inset.
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Figure B.2: β = 0.6. log N (t )/N (0) vs t (blue curve) and their linear fit (red curve) for different ∆E (see insets). The α

parameter shown in the inset is the slope absolute value of the fit. The fit was done in a time interval t f i t such that after

that time the remaining population is the one shown in the inset.
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Figure B.3: β = 0.4. log N (t )/N (0) vs t (blue curve) and their linear fit (red curve) for different ∆E (see insets). The α

parameter shown in the inset is the slope absolute value of the fit. The fit was done in a time interval t f i t such that after

that time the remaining population is the one shown in the inset.
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Figure B.4: β = 0.2. log N (t )/N (0) vs t (blue curve) and their linear fit (red curve) for different ∆E (see insets). The α

parameter shown in the inset is the slope absolute value of the fit. The fit was done in a time interval t f i t such that after

that time the remaining population is the one shown in the inset.
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Appendix C

Transversal current correlation function

(TCCF)

A vector field, J (r , t ), may be expressed expressed as a longitudinal and a transversal part, i.e.,

J (r , t ) = JL(r , t )+ JT (r , t ) , (C.1)

which usually JL(r , t ) is related to a gradient while JT (r , t ) is related to a rotational. Thus,
JL(r , t ) =−∇φ ,

JT (r , t ) =∇× A(r , t ) .
(C.2)

Now, using Helmholtz decomposition theorem we find the relation between J (r , t ) and A(r , t ).

In three dimensions and considering an unbounded volume, we have

A(r , t ) = 1

4π

∫
all space

d 3r ′∇′× J (r ′, t )

|r − r ′| . (C.3)

Now, we are interested in the Fourier transform of J (r , t ). We know that

JT (k , t ) = ık × A(k , t ) . (C.4)

Furthermore, notice that Eq. (C.3) is a convolution in space between J (r , t ) and 1/|r |, hence denoting

the Fourier transform operator as F , we may equate

A(k , t ) = 1

4π
ık × J (k , t )F {1/|r |} (k) . (C.5)
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Now, to determine the Fourier transform of 1/|r | we do the following:∫
d 3r

e−λ|r |

|r | e−ık ·r = 2π
∫ π

0
dθ

∫ ∞

0
dr r 2 sinθ

e−λr−ıkr cosθ

r

= 2π

ık

∫ ∞

0
dr e−λr

(
e ıkr −e−ıkr

)
= 2π

ık

(
e ıkr−λr

ık −λ + e−ıkr−λr

ık +λ
)∣∣∣∣∞

0

= 2π

ık

(
− 1

ık −λ − 1

ık +λ
)

= −2π

ık

(
1

ık +λ − 1

λ− ık

)
= −2π

ık

(
λ− ık − ık −λ

k2 +λ2

)
= −2π

ık

−2ık

k2 +λ2

= 4π

k2 +λ2
−→ 4π

k2
. (C.6)

Therefore, we have

JT (k , t ) = ık ×
(

1

4π
ık × J (k , t )

4π

k2

)
= − 1

k2
k × (k × J (k , t )) . (C.7)

There is a vectorial identity that yields

A × (B ×C ) = (A ·C )B − (A ·B )C . (C.8)

Hence, we may write

JT (k , t ) = 1

k2

(
k2 J (k , t )− (k · J (k , t ))k

)
. (C.9)

The TCCF is defined by

CT (k, t ) = 〈JT (k , t )J∗T (k ,0)〉 . (C.10)

Here t is time, k is the wave vector, 〈...〉 is an average over the ensemble (including the different direc-

tions of k). Hence,

CT (k, t ) = 〈J (k , t ) · J∗(k ,0)− (
k̂ · J (k , t )

)(
k̂ · J∗(k ,0)

)〉 . (C.11)

Now, let us denote the initial value as J (k,0) = v2
0 .

The function CT (k, t ) satisfies the linearized Navier-Stokes Eq., i.e.,

∂CT (k, t )

∂t
=−νk2CT (k, t ) . (C.12)
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Using Laplace Transform, the previous Eq. yields

CT (k, s) = v2
0

s +νk2
(C.13)

Now, given the parity of CT (k, t ), the Fourier Transform of will only have real part. Furthermore, notice

that

CT (k,ω) = 2Re
[∫ ∞

0
d te−ıωtCT (k, t )

]
= 2Re

[∫ ∞

0
d te−stCT (k, t )|s=ıω

]
= 2Re [CT (k, s)|s=ıω] . (C.14)

Hence, the TCCF in Fourier space is

CT (k,ω) = 2v2
0νk2

ω2 + (νk2)2
. (C.15)

This simple result tells us that the correlation function decays as a simple exponential, i.e., CT (k, t ) ∼
exp(−νk2|t |). Here, ν = η/nM is the kinematic viscosity. We immediately notice the characteristic

time τ(k) = 1/νk2.

The previous sketch has been taken from ref. (114). The result arrived in Eq. (C.15) is telling us that,

although there are some transversal density fluctuations happening at ω 6= 0, the prominent ones

happen at ω = 0. This agrees with the fact that in liquids shear stress is unsustainable, at least at

small k and long times. There is (or at least, should be) a kc where above this threshold the liquid is

able to sustain shear wave propagation. Yip and Boon argue that for k ≥ 2π/l the TCCF behaves as a

Gaussian, i.e.,

C k≥
T (k, t ) = 2v2

0

p
2π

kv0
e
− 1

2

(
ω

kv0

)2

. (C.16)

Notice that the second moment is

ω2 =
(
kv2

0

)2

nM
G∞(k) . (C.17)

Thus, what would be really swell is to appropriately determine the TCCF that works for any k value as

well as ω and actually captures this crossover between viscous and elastic behavior. This viscoelastic

behavior is usually modeled by an interpolation between solid and liquid behavior. The problem with

this approach is that it oversimplifies matters. Perhaps a rather ad hoc approach would be to consider

a memory kernel in Eq. (C.12), i.e.,

∂CT (k, t )

∂t
=−k2

∫ t

0
d t ′Q(k, t − t ′)CT (k, t ′) . (C.18)

There are some conditions this memory kernel must fulfill, namely, from Eq. (C.17) it is easy to see

that

Q(k, t = 0) = 1

nM
G∞(k) . (C.19)
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We might as well think of a characteristic time, say, τ such that for t À τ the main contribution occurs

at t ′ = t , then J (k, t ′) → J (k, t ) and (This can be proved mathematically by changing variable u = t − t ′

and then doing a Taylor expansion to order zeroth around u = 0 of J (k, t −u).)

lim
k→0

∫ ∞

0
d t ′Q(k, t ′) = ν . (C.20)

Then, the TCCF will have the same form as in Eq. (C.15), i.e.,

CT (k,ω) = 2Re

[
v2

0

ıω+k2Q(k, ıω)

]
. (C.21)

Here Q(k, ıω) is the Laplace Transform of the kernel memory function Q(k, t ) with s → ıω. Now, in

general Q(k, ıω) =Q ′(k,ω)+ ıQ ′′(k,ω), where Q ′(k,ω) and Q ′′(k,ω) are both real functions. Thus, the

previous Eq. may be expressed as

CT (k,ω) = 2
v2

0k2Q ′(k,ω)(
ω+k2Q ′′(k,ω)

)2 + (
k2Q ′(k, ıω)

)2 . (C.22)

Yip and Boon go on trying different memory kernel function, for instance, they tried a simple expo-

nential which they analyze in detail, as well as a Gaussian and the sum of two simple exponential

functions. In the case of the simple exponential they find the Maxwell relation, i.e., τ(k) = η/G∞(0).

They also find an inequality which if fulfilled the liquid is able to sustain shear wave propagation. This

condition is

k2Q(k,0) > 1

2τ2(k)
(C.23)

Although Yip and Boon’s results give a picture of the liquid behavior for different length and time

scales, the model is perhaps oversimplified. It has been long before argued that there are several

characteristic times in liquids (as well as in other complex systems) which give place to dynamical

heterogeneity. Therefore, the kernel memory should depend on various characteristic times. In order

to take this into account one might be tempted to consider a stretched exponential, and I believe it is

something worth looking at later. But for now, let us consider a kernel memory given by

Q(k, t ) =Q(k,0)
N∏

i=1

∫ t

0
d ti Qi (ti )δ

(
t −∑

i
ti

)
. (C.24)

Then, in Laplace time,

Q(k, s) =Q(k,0)
N∏

i=1
Qi (s) . (C.25)

Let us consider N = 2 and Qi (t ) = exp(t/τi ). Then,

Q(k,ω) =Q(k,0)

(
τ1τ2(1−ω2τ1τ2)

(1+ω2τ2
1)(1+ω2τ2

2)
− ı

τ1τ2(τ1 +τ2)ω

(1+ω2τ2
1)(1+ω2τ2

2)

)
(C.26)
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Making the substitution in Eq. (C.22) and some algebra we obtain

CT (k,ω) = 2v2
0k2Q(k,0)

τ1τ2(1−ω2τ1τ2)(1+ω2(τ2
1 +τ2

2)+ω4τ2
1τ

2
2)

k4Q2(k,0)τ2
1τ

2
2(1−ω2τ1τ2)2 +ω2

(
1+ω2(τ2

1 +τ2
2)+ω4τ2

1τ
2
2 −k2Q2(k,0)τ1τ2(τ1 +τ2)

)2

(C.27)

Notice that even for N = 2, the TCCF explicit form is a bit overwhelming and little insight would be

gained from further exploration. Yet, this provides a picture on how the characteristic time scale affect

the TCCF.
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Appendix D

Radial distribution function and structure

factor

Here we relate the (static) coordination number with the current density correlation function. Let us

denote as g (r ) ≡ g (r ) the radial distribution function. The probability for a particle to have a particle

located between r and r +dr is proportional to∝ g (r )d 3r . In general (187), we may consider a system

of N particles such that the Hamiltonian yields

H = 1

2m

∑
i
〈p2

i 〉+〈VN ({r })〉

= 3

2
N kT + 1

2
〈∑

i j
φ(ri j )〉

= 3

2
N kT + 1

2
Nρ

∫
d 3rφ(r )g (r ) (D.1)

Where we have used

ρg (r ) = 1

N
〈∑

i j
δ

(
r − ri j

)〉 (D.2)

Notice that integrating the previous Eq. over all accessible volume yields

N −1 = ρ
∫

d 3r g (r ) . (D.3)

Now, under certain conditions (isotropic, homogeneous??...), this function relates to the structure

factor S(k) by

S(k) = 1+ρ
∫

d 3r
(
g (r )−1

)
e−ık ·r . (D.4)

Thus,

ρg (r ) = ρ+ 1

(2π)3

∫
d 3ke ık ·r (S(k)−1) (D.5)
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The relation between the structure factor and the longitudinal current correlation function is given by

CL(k , t ) = ω2

k2
S(k ,ω) . (D.6)

Lastly, the LCCF and the TCCF are related by

J (k , t ) · J (k ,0) =CL(k , t )+CT (k , t ) . (D.7)

Then, we may write

N −1 =
∫

d 3r
(
ρ+ 1

(2π)3

∫
d 3ke ık ·r (S(k)−1)

)
= N −1+S(k = 0) (D.8)

Now, let us relate the coordination number with the structure factor and so on. Thus, we integrate

over a volume δV ,

z =
∫
δV

d 3r
(
ρ+ 1

(2π)3

∫
d 3ke ık ·r (S(k)−1)

)
= NδV

V
−1+ 1

(2π)3

∫
δV

d 3r
∫

d 3kS(k)e ık ·r . (D.9)

Hence,

z +1− NδV

V
= 1

(2π)3

∫
δV

d 3r
∫

d 3kS(k)e ık ·r

= 1

(2π)3

∫
δV

d 3r
∫

d 3k
∫

dωS(k ,ω)e ık ·r

= 1

(2π)3

∫
δV

d 3r
∫

d 3k
∫

dω
k2

ω2
CL(k ,ω)e ık ·r . (D.10)

Notice that

CL(k,ω) = JL(k ,ω) · J∗L (k ,0) . (D.11)

Then,

CL(r ,ω) =
∫

d 3r ′JL(r + r ′,ω) · JL(r ′,0) . (D.12)

Hence, notice the following:∫
d 3r∇2CL(r ,ω)e−ık ·r =

∫
d 3r {∇2

(
CL(r ,ω)e−ık ·r

)
−∇2

(
e−ık ·r

)
CL(r ,ω)}

=
∫

d 3r∇2
(
CL(r ,ω)e−ık ·r

)
+k2 JL(k ,ω) · J∗L (k ,0)

=
∫

dS∇
(
CL(r ,ω)e−ık ·r

)
· n̂ +k2 JL(k ,ω) · J∗L (k ,0)

= k2 JL(k ,ω) · J∗L (k ,0) . (D.13)



131

Therefore,

z +1− NδV

V
= 1

(2π)3

∫
δV

d 3r
∫

d 3k
∫

dω
1

ω2

∫
d 3ξ∇2CL(ξ,ω)e−ık ·ξe ık ·r . (D.14)

The previous result relates the coordination number with the longitudinal current correlation

function. Further manipulations to relate the coordination number with the transversal current cor-

relation function requires being able to relate the TCCF with its counter part using a different Eq. than

the actual definition (Eq. (D)). This will depend on the isotropy of the given system.
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Appendix E

Liquid-Liquid transition network glass model

E.1 Linear Approximation

In this note we derive Eq. (4) of the main work. For this, let us consider a two-dimensional triangular

lattice of N particles connected by Ns springs. Now, we denote an infinitesimal displacement field of

the particles by |δR〉, while the change of length in the springs we denote them as |δr 〉. In the case

of small displacements, the following equality |δr 〉 = S |δR〉 holds. Here S is a Ns ×d N matrix, that

relates particle displacements with spring deformation. To simplify notation, we write S as a Ns×d N

matrix of components of dimension d which gives Sγ,i = ∂rγ/∂Ri = δγ,i nγ, where δγ,i is 1 when spring

γ is connected with particle i and is zero otherwise. nγ is a unit vector in the direction of the spring γ

and pointing to the particle i . Using the bra-ket notation, we may rewrite S =∑
〈i j 〉≡γ |γ〉nγ

(〈i |−〈 j |),

where the sum is over all springs in the network. Note, that the transpose of S , S t , relates the set

of contact forces | f 〉 to the set of unbalanced forces |F 〉 on the particles, namely, |F 〉 = S t | f 〉, which

simply follows from the gact that Fi =∑
γδγ,i fγnγ =∑

γ fγSγ,i . (188)

On the other hand, the dynamic matrix M̃ is a linear operator connecting external forces with the

displacements, i.e., M̃ |δR〉 = |F 〉. Let us denote as K the Ns ×Ns diagonal matrix whose components

are the springs’ stiffnessess, that means, Kγγ = kγ ≡ k. Thus, for harmonic springs, we have | f 〉 =
K |δr 〉. Applying S t to the previous equality yields |F 〉 =S t K S |δR〉. Therefore, the dynamic matrix

may be expressed as

M̃ =S tK S . (E.1)

Since in our model we are considering strong and weak interactions, we make this explicit by ex-

pressing the previous Eq. as M̃ = k
(
S t S + kw

k S t
wSw

)
, where S t

w is a projection of S t to the weak-
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springs-interaction subspace. Now, let us consider the mean-field limit of weak interactions together

with the limit of weak interactions, such that the coordination number for weak interactions zw →∞
while the stiffness of weak interactions kw → 0 in a way that α ≡ zw kw /zk = const > 0. Under these

considerations, the weak springs lead to an effective interaction between each particle and the center

of mass of the system, so that,

M̃ ≈ k
(
S tS +αI

)
. (E.2)

where I is the d N ×d N identity matrix.

Let us assume that starting from a configuration where all springs are at rest, the rest lengths of the

springs are changed by some amount |y〉. This will generate an unbalanced force field |F 〉 =S t K |y〉
on the particles, which will lead to a displacement |δR〉 =M−1S tK |y〉. The elastic energy H = 1

2〈y =
δr |K |y −δr 〉 is minimal for this displacement and the corresponding energy H is:

H
(|y〉)= 1

2
〈y |K −K S M−1S t K |y〉 . (E.3)

In our model, yγ = 0 for weak springs and yγ = εσγ for strong springs, where εγ is a Gaussian variable

and, hence we obtain Eq. (3) of the main text. Introducing the dimensionless dynamic matrix M =
M̃ /k and the restriction S t

s of the operator S t on the subspace of strong springs of dimension Ns ,

i.e., S t
s |σ〉 ≡S t |y〉. Thus, Eq. E.3 becomes

H ({σi }) = 1

2
〈σ|G |σ〉 . (E.4)

Where the matrix G has the following form:

G =I −SsM
−1S t

s . (E.5)

Now, let us express S t
s Ss in an eigenvalue decomposition, i.e.,

S t
s Ss =

∑
ω

ω2|δRω〉〈δRω| , (E.6)

where |δRω〉 are the vibrational modes in the elastic network without weak interactions. Thus, let us

derive the explicit form of G . First, notice that

M−1 ' (
S t

sSs +αI
)−1 = (

S t
s Ss

)−1
(
I +α(

S t
s Ss

)−1
)−1

= (
S t

s Ss
)−1

(
I −α(

S t
s Ss

)−1 +α2 (
S t

s Ss
)−2 −α3 (

S t
s Ss

)−3 + ...
)

= ∑
ω

1

ω2
|δRω〉〈δRω|−

∑
ω

α(
ω2

)2 |δRω〉〈δR |+∑
ω

α2(
ω2

)3 |δR〉〈δRω| (E.7)

−∑
ω

α3(
ω2

)4 |δRω〉〈δRω|+ ... (E.8)
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Now, let us denote as |δrω〉 the orthonormal eigenvectors in contact space, hence |δrω〉 = St |δRω〉/ω.

Hence,

SsM
−1S t

s = ∑
ω

|δrω〉〈δrω|−
∑
ω

α

ω2
|δrω〉〈δrω|+

∑
ω

α2(
ω2

)2 |δrω〉〈δrω| (E.9)

−∑
ω

α3(
ω2

)3 |δrω〉〈δrω|+ ... (E.10)

Thus,

G =I −∑
ω

|δrω〉〈δrω|+
∑
ω

α

ω2
|δrω〉〈δrω|−

∑
ω

α2(
ω2

)2 |δrω〉〈δrω|+
∑
ω

α3(
ω2

)3 |δrω〉〈δrω|+ ... (E.11)

Now, let us define δz = z − zc , where z is the coordination number and zc is the critical coordination

number equal to 4. When δz < 0, the relation |δr 〉 = St |δRω〉/ω defines all contact space. On the

contrary, when δz > 0 there will be a number of eigenvectors in contact space undefined, i.e.,
∑
ω |δrω〉〈δrω| =I , for δz < 0∑
ω |δrω〉〈δrω|+∑δzN /2

p |δrp〉〈δrp | =I for δz > 0 .
(E.12)

Taking into account these considerations, we finally obtain

G =
δzN /2∑

p
|δrp〉〈δrp |+

∑
ω

α

ω2
|δrω〉〈δrω|−

∑
ω

α2(
ω2

)2 |δrω〉〈δrω|+
∑
ω

α3(
ω2

)3 |δrω〉〈δrω|+ ...

=
δzN /2∑

p
|δrp〉〈δrp |+

∑
ω

α

α+ω2
|δrω〉〈δrω| . (E.13)

Thus, the Hamiltonian becomes

H ({σi }) = 1

2

δzN /2∑
p=1

|〈σ|δrp〉|2 + 1

2

∑
ω

α

α+ω2
|〈σ|δrω〉|2 . (E.14)

From here we may now compute the annealed free energy.

E.2 Vibrational Entropy

In this note we obtain the Eq. (3) of the main work. Let us take into consideration the previous deriva-

tions. We further denote as Xp = 〈σ|rp〉 and Xω = 〈σ|rω〉 and treat them as Gaussian variables such as

to consider annealed disorder. Thus, the partition function will have the following form:

Z =
(

N z

2

)
!︸ ︷︷ ︸

config. entropy contribution

Ï
e−H({Xp ,Xω})/T

δzN /2∏
p=1

e−X 2
p /2

p
2π

d Xp
∏
ω

e−X 2
ω/2

p
2π

d Xω︸ ︷︷ ︸
averaged stored energy contribution

·
∫

d d N p
∫

d{δR}e−p2/2mT e−〈δR|M |δR〉/2T︸ ︷︷ ︸
vibrational energy contribution

. (E.15)
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The prefactor in the partition function corresponds to the configurational entropy which we as-

sume that way momentarily. The integrals over phase space are being weight with Gaussian distribu-

tion with mean value and standard deviation equal to 0 and 1, respectively. The last term contains the

vibrations in the network and, therefore, is the term that contributes to the vibrational entropy. It is

feasible to reduce the partition function in Eq. (E.15) to,

Z =
(

N z

2

)
!

[(
1+ 1

T

)−1/2
]δzN /2 ∏

ω

(
1+ α

T (α+ω2)

)−1/2

· (2πT )N d/2 det(M )−1/2 . (E.16)

The free energy is obtained from the partition function as usual. Then, the vibrational entropy, Svi b(Γ),

reads

Svi b(Γ) = N nc ln(2πT )− 1

2
lndet(M ) . (E.17)

E.3 Thermodynamics in the Homogeneous phase

In this note, we obtain the thermodynamic quantities in the homogeneous phase, used to fit the sim-

ulation results. Let us take into account the previous derivations. Now, we define the number of re-

dundant directions as R, which satisfy the relation R =F +Ns −N d where F is the number of floppy

modes. Let us denote the number of constraints as nr = R/N .

Since for a fixed value of z, nr can take different values, the partition function will rather be ex-

pressed as

Z̄ = exp

[
1

T

(
N dT ln(2πT )− T

2

∑
ω>0

ln

(
1+ α

T (α+ω2)

)
− T

2

∑
ω

ln
(
ω2 +α))]

(E.18)

∑
nr

exp

(
−N

2

(
nr ln(1+1/T )+

(
nr − δz

z

)
ln(α)−2sc (nr )

))
. (E.19)

Here we have replaced ln
(N z

2 !
) → Ns s(nr ). Treating redundant constraints as defects, one may

show that the configurational entropy (per spring) is similar to that of an ideal gas (176), i.e.,

sc (nex) ≈ s(0)−nex ln
nex

en0(z)
. (E.20)

Here nex is the excess number of redundant constraints which is defined as

nex = 1

Ns

(
R − Nδz

2
Θ (δz)

)
, (E.21)
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where n0(z) = nex(z,T →∞) and s(0) is the entropy density for a minimal number of redundant con-

straints. Now, introducing Eq. (E.20) as the configurational entropy in the partition function (Eq.

(E.19)) and using the saddle point method, we find that
n0

ex = n0(z) (α(1+1/T ))−1/2 ,

n0
r = n0

ex + δz
z Θ (δz) .

(E.22)

From the partition function we obtain the free energy per spring, f , which yields

fhom(T ) = T

(
n0

r

2n
ln(1+1/T )+ 1

2Ns

∑
ω>0

ln

(
1+ α

T (α+ω2)

)

+ 1

2Ns

∑
ω

ln
(
ω2 +α)+ 1

n

(
nr − δz

z

)
ln(

p
α)− sc

(
n0

ex

)
n

− zc

z
ln(2πT )

)
. (E.23)

From the free energy we may compute the rest of the thermodynamical quantities of interest. Be-

fore doing so, let us discuss Eq. (E.23). The first two terms come from the inherent structures energy

and, hence, will contribute to the internal energy and the specific heat. In particular, the second term

will gain relevance at low temperatures when T ∼ α where the weak interactions are physically rele-

vant in our model. The third and fourth terms are key for the homogeneous-to-heterogeneous phase

transition since they contribute to the vibrational entropy. The fifth term corresponds to the configu-

rational entropy while the last term contributes a constant in heat capacity, which is the constant in a

solid, thus here on we will neglect. Also, in the following we will refer to thermodynamical quantities

per spring as thermodynamical quantities and all thermodynamical quantities are divided by Ns .

The entropy (S(T )), internal energy (E(T )) and the heat capacity (C (T )) are obtained from Eq.

(E.23) and yield

Shom(T ) = − f (T )

T
+ 1

2

n0
r (T )/n

T +1
+ 1

2Ns

∑
ω>0

1

1+ (
1+ω2/α

)
T

. (E.24)

Ehom(T ) = T

2(1+T )

(
n0(z)/np
α(1+1/T )

+ δz

z
Θ (δz)

)
+ 1

2Ns

∑
ω>0

T

1+ (
1+ω2/α

)
T

. (E.25)

Chom(T ) = 1

2(1+T )2

(
3
2 n0(z)/np
α(1+1/T )

+ δz

z
Θ(δz)

)

+ 1

2Ns

∑
ω>0

1(
1+ (

1+ω2/α
)

T
)2 . (E.26)
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The vibrational entropy, Sv
hom , as was mentioned previously, is

Sv
hom =− f

2n
ln(α)− 1

2Ns

∑
ω>0

ln(ω2 +α) ≈− n0(z)/n

2
p
α(1+1/T )

ln(α)+Σv
hom . (E.27)

The approximation is done assuming α/ω2 ¿ 1.

E.4 Thermodynamics of the heterogeneous phase

In this note, we show and highlight the steps to obtain the thermodynamic quantities in the hetero-

geneous phase, used to fit the simulation results. We start by considering a floppy and a rigid domain

in the network. With this in minds, let us denote as N f the number of particles in the floppy domain

and Nr the number of particles in the rigid domain. Let us also denote as V f = N f /N and Vr = Nr /N .

Furthermore, n is the mean constraint number, while Ns is the number of springs, F is the number

of springs in the floppy phase while R is the number of springs in the rigid phase. Finally, n f is the

number of constraints per particle in the floppy domain while nr is the number of constraints per

particle in the rigid domain. These quantities satisfy the following Equations:

V f +Vr = 1 , (E.28)

n f V f +nr Vr = n , (E.29)

F +Ns −N nc = R . (E.30)

Here nc = 2 is the critical constraint number. From these Eqs. we obtain

n f = N f nc −F

N f
, (E.31)

nc = Nr nc +R

Nr
. (E.32)

From here, it is straightforward to obtain the configurational entropy, i.e., it is simply the logarithm

of the number of ways one may allocate N f n f springs in the floppy domain( which has N f nm allo-

cation places) times the number of ways to allocate Nr nr springs in the rigid domain (that has Nr nm

allocation spots). Using Stirling’s approximation, we obtain

Sc
het (T ) = Σc

0 +
Vr

n

(
nr log

nm

nr
+ (nm −nr ) log

nm

nm −nr

)
+V f

n

(
n f log

nm

n f
+ (

nm −n f
)

log
nm

nm −n f

)
. (E.33)



E.4. THERMODYNAMICS OF THE HETEROGENEOUS PHASE 139

Here Σc
het is the configurational entropy associated to the boundary which goes roughly as ∼ N 2/3,

thus in the thermodynamical limit is negligible. Moreover, nm = 3 is the maximum number of con-

traints per particle. As was shown in (175), the gain in vibrational entropy when a floppy mode is in-

troduced to the system, under certain conditions, may well be approximated by a constant λ. Hence,

the vibrational entropy is simply

Sv
het =Σv

het +
V f

n

(
nc −n f

)
λ . (E.34)

By maximizing the entropy, subject to the constraints given by Eqs. (E.28) and (E.29) through Lagrange

multipliers, we obtain the following Equations:

nm−nr
nr

= eβ ,

nm−n f

n f
e−β = eλ ,

n f

nm
= 1−exp

(
λnc−µ

nm

)
,

1− nr
nm

= e−µ/nm ,

(E.35)

where µ and β are Lagrange multipliers.

From the previous Eqs. we obtain the following:

nr

nm
= e−λnc /nm −1

e−λ−1
, (E.36)

n f

nm
= eλnc /nm −1

eλ−1
. (E.37)

From the constraints (Eqs. (E.28) and (E.29)) we also obtain

Vr =
n −n f

nr −n f
. (E.38)

By taking into account the duality between self-stressed states and floppy modes (175), we replace

λ→λ−1/2ln(1+1/T ). Thus, Eqs. (E.36), (E.37) and (E.38) become

nr (T )

nm
= e−λnc /nm (1+1/T )nc /2nm −1

e−λ(1+1/T )1/2 −1
, (E.39)

n f (T )

nm
= eλnc /nm (1+1/T )−nc /2nm −1

eλ(1+1/T )−1/2 −1
. (E.40)

V f (T ) = nr (T )−n

nr (T )−n f (T )
. (E.41)
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The vibrational entropy, Eq. (E.34), becomes

Sv
het =Σv

het +
1

n
V f (T )

(
nc −n f (T )

)
λ . (E.42)

One shall be able to fit the vibrational entropy with two parameters sv
0 and λ. One shall also be able to

compute the heat capacity from the free energy,

fhet (T ) = T

2n
(1−V f (T ))(nr (T )−nc ) log

(
1+ 1

T

)
−T Sv

het (T )−T Sc
het (T ) (E.43)

and the specific heat, Chet (T ), which is computed from the relation

Chet (T ) =−T
∂2 fhet (T )

∂T 2
. (E.44)

The first term in Eq. (E.43) corresponds to the inherent structures’ energy.

E.5 Fits

In this note we describe the way in which we fit the simulation results consistently with the Eqs. de-

rived in the previous notes. Notice that the entropy gain when a floppy mode appears relates with the

weak interaction approximately as λ∼ ln
p
α (175). Throughout our simulations α= 3×10−4, thus we

expect λ ≈ 4. The first thing we fit is the vibrational entropy and we do this by noticing that at low

temperatures (T ¿ 1) working Eq. E.27 it is feasible to obtain

ln
(
Sv

hom −Σv
hom

)≈ ln
(
n0(z)eλλ

)
+ 1

2
lnT . (E.45)

Therefore, we tune the value of Σv
hom such that the fit of ln

(
Sv

hom −Σv
hom

)
vs lnT gives a straight line

y = mx +b with slope m = 1/2. Then,

n0(z) = n
eb−λ

λ
. (E.46)

However, care must be taken since the λ parameter is no necessarily the same in the homogeneous

and the heterogeneous. Thus we denote them as λhom and λhet .

In the case of the heterogeneous phase, we have two fitting parameters left, namely, Σv
het and

Σc
het which appear in the entropy (see Eqs. (E.33) and (E.42)) and the free energy (Eq. (E.43)). Thus,

technically is, actually, one fitting parameter.

In the homogeneous phase, however, we must be cautious when T ' α. Here, we follow the

same path as in Ref. (155), which consists in replacing
∑
ω>0 → Ns

∫
dωD(ω) for δz ≤ 0 and

∑
ω>0 →
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N d
∫

dωD(ω) for δz > 0. This approximation works better as we approach the thermodynamic limit,

i.e., N → ∞. Here, D(ω) is the vibrational density of states of random elastic networks. It is known

that there are two frequency scales, namely, ω∗ ∼ δz, above which a plateau of soft modes exists and

a cutoff frequency, ωc ' 1 . Thus, we approximate D(ω) as

D(ω) =


1

ωc−ω∗ , ω∗ ≤ω≤ωc , δz ≤ 0

1
ωc

, 0 ≤ω≤ωc , δz > 0
. (E.47)

In order to simplify expressions, let us define the variable x =ω/
p
α. Similarly, xc =ωc /

p
α and x∗ =

|δz|
zc

xc . Thus, the Eqs. (E.23), (E.25) and (E.26) transform to,

fhom(T ) = T

(
1

2

(
n0(z)eλ

n
p

1+1/T
+ δz

z
Θ(δz)

)
ln(1+1/T )

+ 1

nxc

x ln

(
1+ 1

T (1+x2)

)
+2

pT +1arctan
[ p

T xp
T+1

]
p

T
−arctan

[p
x
]∣∣∣∣xc

χ(δz)

− n0(z)eλλ

n
p

1+1/T
ln

(
eλλp

1+1/T

)
−Σv

hom −Σc
hom

)
. (E.48)

Ehom(T ) = T

2(1+T )

(
n0(z)eλ

n
p

1+1/T
+ δz

z
Θ (δz)

)

+ 1

nxc

p
T arctan

[ p
T xp

T+1

]
p

T +1

∣∣∣∣xc

χ(δz)
. (E.49)

Chom(T ) = 1

2(1+T )2

(
3
2 n0(z)eλ

n
p

1+1/T
+ δz

z
Θ(δz)

)

+ 1

2nxc

 x

(T +1)
(
1+T +T x2

) + arctan
[ p

T xp
T+1

]
p

T (T +1)3/2

∣∣∣∣xc

χ(δz)
. (E.50)

where χ(δz) is defined as

χ(δz) =


0 , δz > 0

x∗ , δz ≤ 0
. (E.51)

As mentioned in the main work, the specific heat C is obtained from the mean energy fluctuation

over the course of the Monte Carlo simulation, normalized by the temperature squared. Then, the
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free energy is obtained in the Monte Carlo simulations from the direct measurement of the internal

energy E and inferred total entropy S = Sv +Sc by integrating over the specific heat,

S(T ) = S(∞)−
∫ ∞

T

C (T )

T
. (E.52)

In Fig. 3 of the main work we show the main results. In Table E.5 we show the values of the fitting

parameters in the case of n = 2.06.

Figure E.1: Entropy S(T ) vs T for different system sizes (see legend). This was obtained from the

Monte Carlo simulation, by integrating the specific heat (see text and main work for details). We fixed

S(T = 10) = 1.235.

m n0(z) λhom Σv
hom Σc

hom xc λhet Σv
het +Σc

het

0.49±0.01 8.5×10−3 3.5 3.4×10−2 0.892 280 3.0 0.04

Table E.1: Fitting parameters in the case of n = 2.06.

E.6 Liquid-Liquid transition temperature prediction

In this note we show how the TLLT dependence on n was obtained. Similar to the previous notes,

we compute a free energy for the heterogeneous and the homogeneous phase. Let us denote the

free energy, in the homogeneous phase and in the heterogeneous phase as Fhm and Fht , respectively.

Hence, we have for the homogeneous phase

Fhm(T )/T = n −2

2n
ln

(
1+ 1

T

)
−Sv(n,λ)− ln

(nm

n

)
− nm −n

n
ln

(
nm

nm −n

)
, (E.53)
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and, with the help of Eqs. (E.39), (E.40) and (E.41), the heterogeneous phase free energy is expressed

as

Fht (T )/T = 1

2n
(1−V f (T ))(nr (T )−nc ) log

(
1+ 1

T

)
−Vr (T )

n

(
nr (T ) log

nm

nr (T )
+ (nm −nr (T )) log

nm

nm −nr (T )

)
−V f (T )

n

(
n f (T ) log

nm

n f (T )
+ (

nm −n f (T )
)

log
nm

nm −n f (T )

)
−(

1−V f (T )
)

Sv(nr (T ),λ)−V f (T )Sv(n f (T ),λ) . (E.54)

The first term in the r.h.s. of Eq. (E.53) corresponds to the internal energy while the second term

corresponds to the vibrational entropy. The two last terms accounts for the configurational entropy.

The heterogeneous phase free energy in Eq. (E.54) is obtained in an analogous way, however, assum-

ing a floppy and rigid regions. The first line in the r.h.s. corresponds to the internal energy, while

the second and third to the configurational entropy in the rigid and floppy regions, respectively. The

fourth line corresponds to the vibrational entropy. The crux of the derivation relies in the computation

of the vibrational entropy.

Figure E.2: Specific heat vs T for different constraint numbers n for 256 particles. The data points

corresponds to the specific heat measured in the Monte Carlo simulation. The continuous curves are

spline functions, obtained for each of the data sets (see legend). The yellow stars mark the spot where

the TLLT (n) is located for a given n.

As was discussed in the previous notes, in the thermodynamical limit
∑
ω>0 → Ns

∫
dωD(ω) for
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δz ≤ 0 and
∑
ω>0 → N d

∫
dωD(ω) for δz > 0. Thus, it is not difficult to show that,

Sv(n,λ) =



− 1
2n

(
−4+2ne−λarccot

(
e−λ)−2ne−λarctan

(
(n−2)eλ

n

)
+n ln

(
1+e2λ

)
− (n −2)ln

(
4+n(n+ne−2λ−4)

n2e−2λ

))
, δn > 0 ,

−λn−2
n − 1

2n

(
−2n +2ne−λarctan

(
2eλ

n

)
+2ne−λarctan

(
(n−2)eλ

n

)
−2n ln(n)

+2nλ+2ln
(
4+n2e−2λ

)− (n −2)ln
(
4+n(n +ne−2λ−4)

)
, δn ≤ 0 ,

.

(E.55)

The transition temperature TLLT (n) shown in Fig. 5a is obtained by equating the free energies from

Eqs. (E.53) and (E.54). We tune the λ parameter to ≈ 2.67, which is where TLLT = 0.2 when n = 2.06,

in agreement with the results shown in Fig. 3 of the main work. From the Monte Carlo simulations,

TLLT (n) was obtained from the first peak of the specific heat when lowering the temperature, while

the error bars correspond to the size of the peaks. Since the measurements in the simulations were at

the same set of temperatures, we obtained the peak by first applying the spline method to our data.

In Fig. E.2 we show the specific heat data together with the spline functions and the TLLT (n) marked

with yellow stars, for different values of n.



Appendix F

Principal Component Analysis applied to the

2D Ising Model

Let us imagine that we have N (À 1) degrees of freedom (say, a lattice of spins) which have some one-

on-one interaction. One may wonder if there is a way to reduce those N degrees of freedom to some

number, say, M ≥ 1. This is perhaps the holy grail in Physics and tools ranging from the central limit

theorem to renormalization group are used in this sense. Principal Component Analysis is another

way to computationally study the possibility of a given set of variables may be reduced to a much

smaller set.

To schematically see how PCA work, let us consider the following matrix

A =


1+ε 0 1−ε

0 ε 0

1−ε 0 1+ε

 (F.1)

and suppose that ε¿ 1. The spectral decomposition of A is

A = 2|2〉〈2|+2ε|2ε〉〈2ε|+ε|ε〉〈ε| (F.2)

145
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where

|2〉 = 1p
2


1

0

1

 (F.3)

|2ε〉 = 1p
2


1

0

−1

 (F.4)

|ε〉 =


0

ε

0

 (F.5)

Now, say, A acts on the ket |x〉 defined as

|x〉 = 1p
3


1

1

1

=
√

2

3
|2〉+ 1p

3
|ε〉 . (F.6)

Then,

A|x〉 = 2

√
2

3
|2〉+ εp

3
|ε〉 = 1p

3


2
p

2

ε

2
p

2

≈


2
p

2

0

2
p

2

 (F.7)

But this result would be obtained by approximating or, to better say, by keeping the principal compo-

nent in A, i.e.,

A ≈ 2|2〉〈2| . (F.8)

Now, let us apply these ideas to a bigger system, namely, a spin lattice. To this end, we follow Ref.

(181). Consider N = 402 spins σi = {−1,1} interacting via the following Hamiltonian:

H =−J
N∑

〈i , j 〉=1
σiσ j . (F.9)

It is known that in two dimensions there is a second order phase transition at temperature T ≈ 2.26

(temperature is in energy units). Thus, we generate an array M×N , where M = 1400. We generate each

row by fixing the temperature and sampling the spins 100 times, then we vary the temperature 0.1 and

we sample the spins 100 times. We start at T = 1.6 and finish at T = 2.9 in steps of 0.1. The Monte Carlo

algorithm we used is not a Metropolis type (189). Instead we used a cluster-based algorithm (190).
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Let us skip the details and go straight to the data, which may be found at:

https://raw.githubusercontent.com/jquetzalcoatl/Test/master/IsingData.dat

We use the latin letters, say, i to tag the spin and we use greek subscripts, say, tγ to denote the

sample, such that γ= {1, ..., M }.

So, let us denote our data as X . Then:

X =



σ1(t1) σ2(t1) . . . σN (t1)

σ1(t2) σ2(t2) . . . σN (t2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ1(tM ) σ2(tM ) . . . σN (tM )

 . (F.10)

Now, we are interested in applying PCA to the covariance matrix M. Thus, we first subtract the

mean value in each column of matrix X and denote this new matrix as ∆X , namely,

∆X =



σ1(t1)− 1
M

∑M
γ=1σ1(tγ) σ2(t1)− 1

M

∑M
γ=1σ2(tγ) . . . σN (t1)− 1

M

∑M
γ=1σN (tγ)

σ1(t2)− 1
M

∑M
γ=1σ1(tγ) σ2(t2)− 1

M

∑M
γ=1σ2(tγ) . . . σN (t2)− 1

M

∑M
γ=1σN (tγ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ1(tM )− 1
M

∑M
γ=1σ1(tγ) σ2(tM )− 1

m

∑M
γ=1σ2(tγ) . . . σN (tM )− 1

M

∑M
i=1σN (tγ)

 (F.11)

To shorten notation, we define the time average over M of i th spin as σ̃i , that is,

σ̃i = 1

M

M∑
γ=1

σi (tγ) . (F.12)

Then,

∆X =
N∑

i=1

M∑
γ=1

(
σi (tγ)− σ̃i

) |eγ〉〈ei | (F.13)

Then,

∆X T =
N∑

i=1

M∑
γ=1

(
σi (tγ)− σ̃i

) |ei 〉〈eγ| (F.14)

Then, the covariance matrixM is given by

M = 1

M −1
∆X T∆X = 1

M −1

N∑
i , j=1

M∑
γ,η=1

(
σi (tγ)− σ̃i

)(
σ j (tη)− σ̃ j

) |ei 〉〈eγ||eη〉〈e j | (F.15)

= 1

M −1

N∑
i , j=1

M∑
γ=1

(
σi (tγ)− σ̃i

)(
σ j (tγ)− σ̃ j

) |ei 〉〈e j | (F.16)

=
N∑

i , j=1
|ei 〉Mi , j 〈e j | (F.17)
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where

Mi , j = 1

M −1

M∑
γ=1

(
σi (tγ)− σ̃i

)(
σ j (tγ)− σ̃ j

)
. (F.18)

The non-diagonal elements of matrixM corresponds to the covariance between two spins over "time"

(well, we mean MC-steps) while the diagonal elements correspond to the variance over "time". Now,

we are interested in knowing if this model is in any way strongly correlated. Hence, let us compute the

eigenvalues and eigenvectors. In Fig. F.1 (left) we have plotted the 15 first eigenvalues.

Now take the two eigenvectors |λ1〉 and |λ2〉 corresponding to the two highest eigenvalues λ1 and

λ2. Then, compute |x1〉 = ∆X |λ1〉 and |x2〉 = ∆X |λ2〉. Then, plot the kets |x1〉 and |x2〉. Notice that

|xi 〉 has M = 1400 components, i.e., each component corresponds to a temperature. You can color

the plot starting from blue to red in a continuous way, as we show in Fig. F.1 (right). These results

show the direction where most of the variation occur in the space where the covariance matrix live. In

plain and simple terms, the eigenvector associated to the largest eigenvalue corresponds to the order

parameter of the system.
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Figure F.1: (left) Eigenvalues.(right) First two eigenkets plotted. The color blue stand for low tem-

perature and the color red for high temperature. Green represents the temperature where the phase

transition occurs. Notice that this cluster-based Monte Carlo algorithm (190) is able to capture these

fluctuations.
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