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• A simple solvable energy model landscape is presented.
• This model captures a glass transition or crystallization.
• The minimal cooling rate to obtain a glass is related to the thermal history.
• The glass transition temperature has a logarithmic dependence on cooling rate.
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a b s t r a c t

Theminimal cooling speed required to form a glass is obtained for a simple solvable energy
landscapemodel. The model, made from a two-level systemmodified to include the topol-
ogy of the energy landscape, is able to capture either a glass transition or a crystallization
depending on the cooling rate. In this setup, the minimal cooling speed to achieve glass
formation is then found to be related with the crystallization relaxation time, energy bar-
rier and with the thermal history. In particular, we obtain that the thermal history encodes
small fluctuations around the equilibrium population which are exponentially amplified
near the glass transition, which mathematically corresponds to the boundary layer of the
master equation. The change in the glass transition temperature is also found as a function
of the cooling rate. Finally, to verify our analytical results, a kinetic Monte Carlo simulation
was implemented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The importance of glassy materials in our societies is indisputable. It is an essential component of numerous products
that we use on daily basis, most often without noticing it. Even though the glass formation process has been extensively
studied using different approaches, it remains an open and puzzling problem, and this far our best understanding of the
process is barely limited at the phenomenological level [1–12]. The reason behind this situation is that glass formation is
mainly a non-equilibrium process [13].
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From a fundamental and technological point of view, the most important variable for glass formation is the cooling
speed [10,14]. Indeed, the industrial use of metallic glasses has been hampered for a while due to the high cooling speed
required in order to form glasses [15–17]. However, by chemical modification, the cooling process of metallic glasses
has been improved a lot [18], and very recently it was possible to form a monocomponent metallic glass, achieved by
hyperquenching [19]. Regarding the relationship between chemical composition and minimal cooling speed, Phillips [20]
observed that for several chalcogenides, this minimal speed is a function of the rigidity. His initial observation was the
starting point for an extensive investigation on the rigidity of glasses, yet this observation has not been quantitatively
obtained in glass models although it is related with the energy landscape topology when the rigidity is taken into
account [21–24].

As the cooling rate effects on glass formation are poorly understood, one would expect that in any sensible model of
glass transition, the phase transition to the crystal should be included for low cooling rates. However, this point has been
overlooked in several theories of glass formation, even though phase change materials have a paramount importance for
information storage technologies. For example, recently it has been possible to access the full temperature range of the
crystallization process, including the full supercooled liquid regime, for the chalcogenide-based materials used to store
information in rewritable DVDs [25]. On the other hand, the energy landscape has been a useful picture to understand glass
transition [9] but, due to its complicate high dimensional topology, it is difficult to understand how cooling rates are related
with the topological sampling.

Simple models of glass transition have been introduced trying to capture the physical properties of this phenomenon
(see for instance [26,27]). In particular, in a previous paper, a minimal simple solvable model of landscape that can display
either a crystalline phase or a glass transition depending on the cooling rate was presented by one of us [28]. Such model,
a refinement of a two-level system (TLS) model previously studied [29–33], included the most basic ingredients for a glass
formation process: metastable states and the landscape topology [28]. As a result, the model was able to produce either a
true phase transition or a glass transition in the thermodynamic limit [28]. Nonetheless, there were important questions
that were not tackled in our previous publication. In particular, it was not clear how to define a critical cooling speed that
separates the transition either to a glass or to a crystal, and how this critical speed depends upon the physical characteristics
of the system like relaxation times, energy barriers and the thermal history. In this study, we answer these open questions
by obtaining analytical expressions to all these quantities. To verify these analytic calculations, a kinetic Monte Carlo is
performed showing an excellent agreement.

This article is organized as follows: Section 2 is devoted to recall the model and its features, as well as to obtain the
system’s behavior and an analytical expression of the glassy state when a given cooling protocol is applied [28]. In Section 3,
we derive the characteristic relaxation time of our system. In Section 4 we obtain the relation between themetastable state,
the cooling rate, the characteristic relaxation time and the thermal history of our system; herewe also obtain the expression
which relates the glass transition temperature with the energy barrier and the cooling rate. In Section 5 we compare our
results with kinetic Monte Carlo simulation. Finally, in Section 6 we summarize and discuss our findings.

2. Revisiting a solvable energy landscape model: glass transition and crystallization

The model is defined as follows: topologically there are many basins in the energy landscape, each corresponding to a
possible state of the system [28]. However, there are only two energetic levels (see Fig. 1). One of these levels has energy
E0 = 0, while the other has energy E1 = Nϵ1, where N corresponds to the number of particles in the system and ϵ1 gives
the energy scale. Within the model, the crystalline state is the one with zero energy, while there are g1 glassy states with
energy E1. It turns out that g1 = exp(N lnΩ), where Ω is just the complexity of the energy-landscape [9], taken as Ω = 2
for simplicity. Finally, the model assumes that the energy barriers that separates each of the g1 states among them are the
same, while the barriers that separate each of the glassy states from the crystal are also equal and given by V (see Fig. 1).

When the system is in equilibrium at a certain temperature T , the canonical partition function1 reads:

Z (T ,N) = 1 + g1e−E1/T , (1)

and the equilibrium probability p0(T ) of the system having energy E1 is given by the usual ensemble average:

p0(T ) =
g1e−E1/T

1 + g1e−E1/T
. (2)

As shown in Ref. [28], for this equilibrium population the system experiences a phase transition associated with
crystallization when the temperature crosses the critical value Tc = ϵ1/ log(2).

To study the systemout of equilibrium, one observes that due to the simple landscape topology, all transition probabilities
per time between metastable states are the same. The transition probability per time from each metastable state to the
ground state is also equal for all metastable states [28]. In this setup, the probability p(t) of finding the system with energy
E1 at time t obeys the following master equation:

ṗ(t) = −Γ10p (t) + Γ01g1 (1 − p (t)) , (3)

1 From now on Boltzmann’s constant kB = 1.
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Fig. 1. The two level system energy landscape, showing the barrier height V and the asymmetry E1 between the two levels. The population of the upper
well is p(t) [28].

Fig. 2. p(T ) in equilibrium (dashed lines) and non-equilibrium (solid lines) with a hyperbolic cooling protocol. The parameterswere fixed at T0 = 5Tc , V =

0.5, R = 20 and Γ0 = 1.

where Γ10 corresponds to the transition probability per time of going from a state with energy E1 to the ground state 0 and
Γ01 for the reverse transition. The detailed balance condition yields:

Γ01

Γ10
= e−E1/T (4)

and Γ10 = Γ0e−V/T , where V is the height of the barrier wall between state 1 and state 0, and Γ0 is a small frequency of
oscillation at the bottom of the walls which sets the timescale.

Now we are interested in the process of arresting the system in one of the higher energy states by a rapid cooling, as
it happens with glasses. In particular, we are interested in studying the system as the temperature goes from T > Tc to
T = 0 by a cooling rate determined by a given protocol T (t). Notice that since T = T (t), the population described by Eq.
(3) will be denoted at times by p(T ), not to be confused with the equilibrium probability p0(T ). Experimentally, a linear
cooling is usually used. However, for the purposes of the model, it is much simpler to use a hyperbolic cooling protocol
T (t) = T0/(1 + Rt), where T0 is the initial temperature at which the system is in equilibrium and R is the cooling rate. The
results using both protocols are similar since basically the equations can be approximated using the boundary layer theory
of differential equations [32,28]. By boundary layer, we mean that in Eq. (3), the time derivative can be neglected above Tc
and the system behaves as an equilibrated system. However, as T → Tc , the derivative cannot be longer neglected, since
its order is similar to the other terms. A similar situation happens with the Navier–Stokes equations in fluids, which are
reduced to Euler equations far from the boundary, but near the boundary the full equation is needed, producing effects like
turbulence.

The solution to the master equation (3) given the cooling protocol is:

P (x, δ) = e
1
δ


x+g1

xµ+1
µ+1

 
P(0, δ) −

g1
δ

 x

0
dyyµe

−
1
δ


y+g1

yµ+1
µ+1


, (5)

where p(t) = P (x(t), δ) with x(t) = exp(−V/T (t)), δ = RV/Γ0T0 is the dimensionless cooling rate, and the parameter
µ = E1/V measures the asymmetry of the well.

According to Eqs. (2) and (5), and as we can appreciate in Fig. 2 for different number of particles N , when the system is
cooled down to T = 0 there is a residual population, i.e., p(T = 0) ≠ 0 (P(x = 0, δ) ≠ 0) indicative of a glassy behavior due
to the trapping of the system in a metastable state [31,28]. In fact, we can obtain an analytical expression for P(x = 0, δ) as
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Fig. 3. p(T = 0) for different barrier heights. The parameters were fixed at T0 = 5Tc , N = 500 and Γ0 = 1.

follows: From Eq. (5), we may write P(0, δ) as a function of the rest of the terms, i.e.

P(0, δ) = P(x, δ)e
−

1
δ


x+g1

xµ+1
µ+1


+

g1
δ

 x

0
dyyµe

−
1
δ


y+g1

yµ+1
µ+1


. (6)

Now, notice that in the context of the process inwhichwe are interested, P(0, δ) is the final configuration of the systemwhile
P(x, δ) is the initial condition. Let us assume that the initial condition is such that the system is in thermal equilibrium at
T0 > Tc before being cooled, and we denote x0 = e−V/T0 . Thus we use Eq. (2) to express P(x0, δ) andwe obtain the following
expression:

P (0, δ) =
g1x

µ

0

1 + g1x
µ

0
e
−

1
δ


x0+g1

xµ+1
0
µ+1


+

g1
δ

 x0

0
dyyµe

−
1
δ


y+g1

yµ+1
µ+1


. (7)

As we can see in Fig. 3, the residual population given by Eq. (7) has a strong dependence of the barrier height and the cooling
rate. We will come back to this point on Section 4.

3. Characteristic relaxation times of the model

Let us now focus on quantifying the dependence of this residual population on the energy landscape. In particular we
would like to have a criterion to discern how fast one should cool the system down to obtain a residual population.

Clearly, in order to trap the system the cooling must be such that the system does not have enough time to reach
equilibrium, so let us first determine the characteristic relaxation time of the system. To do so, we take the parameters
of the model to be fixed but the system is not in equilibrium, i.e., the temperature is fixed and the system is perturbed
in such a way that at t = 0, the population is p(t = 0) = ρ, where ρ takes values between 0 and 1. Looking from the
master equation (3) and the detailed balance condition (4) how the system relaxes towards p0(T ), we obtain an exponential
decay:

p(t) = p0(T ) + (ρ − p0(T )) exp(−t/τ(T )), (8)

from which we define the characteristic relaxation time τ(T ) = 1/(Γ10 + Γ01g1).
Notice that for N ≫ 1 the characteristic relaxation time (8) goes as ∼ (g1Γ01)

−1 for T > Tc , while for T < Tc goes as
∼ (Γ10)

−1 (see Fig. 4). In particular, when T crosses the critical temperature Tc , τ(T ) has a jump of height (see Fig. 4),

1τ(Tc) ≈ Γ −1
10 − (g1Γ01)

−1. (9)

However, since the relaxation time for T < Tc is much bigger than the corresponding time for T > Tc , we can identify
the jump with the relaxation time at Tc taken by approaching the discontinuity from the left, i.e., from T < Tc . Thus
τL(Tc) ≈ 1τ(Tc) from where it follows,

τL(Tc) ≈ Γ −1
0 exp(V/Tc). (10)

Hence, when T > Tc and the system has energy 0, the transition time is virtually zero, whereas when T < Tc and the
system has energy E1, the transition time grows exponentially with V/T .
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Fig. 4. Characteristic relaxation time τ(T ) as a function of the number of particles N , with fixed parameters V = 0.5, ϵ1 = 1, Γ0 = 1. Notice the jump 1τ

of the relaxation time at Tc .

Fig. 5. Here we plot P(0, δ) (continuous lines) and ∂P(0,δ)
∂δ

(dashed lines) as a function of δ for different number of particles N . We fixed the parameters at
T0 = 5Tc , Γ0 = 1, V = 0.5, ϵ1 = 1.

4. Critical cooling rate and glass transition

As we have seen above, for a certain cooling rate R there is a non-zero probability of finding the system in state 1 at
T = 0, and the time needed for the system to transition from state 1 to state 0 goes as exp(V/T ) when T < Tc . We would
like now to have simple criterion that relates the cooling rate and a substantial residual population indicative of a glassy
behavior. Noticing that Eq. (7) is continuous and reaches zero only when δ = 0, we then take as a criterion the inflection
point of p(0, δ) (as shown in Fig. 5). Thus by denoting δG the cooling rate at the inflection point, we can associate a strong
glass forming tendency (SGFT) for δ > δG.

To find the dependence of δG as a function of the parameters of the model we proceed as follows. We write Eq. (7) as
P(0; δ, µ,N) = I1 + I2, where:

I1 =
g1x

µ

0

1 + g1x
µ

0
exp


−

1
δ


x0 + g1

xµ+1
0

µ + 1


,

I2 =
g1
δ

 x0

0
dyyµ exp


−

1
δ


y + g1

yµ+1

µ + 1


.

(11)

Integrating the expression of I2 in Eq. (11) by parts leads to

I2 = 1 − e
−

1
δ


x0+g1

xµ+1
0
µ+1


−

 x0

0

dy
δ
e−

y
δ


1+g1

yµ
µ+1


. (12)

Let us denote xc = x(Tc). In the thermodynamic limit where N ≫ 1, for y < xc we have that g1
yµ

µ+1 ≃ 0, whereas if y > xc
results in g1

yµ

µ+1 ≫ 1. Thus, we may approximate the last term in expression (12) as:

−

 x0

0

dy
δ
e−

y
δ


1+g1

yµ
µ+1


≃ e−y/δ

xc
0

. (13)
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Fig. 6. Comparison between Eqs. (15) and (7) as a function of δ. The parameters were fixed at V = 0.5, ϵ1 = 1, T0 = 5Tc , Γ0 = 1.

Thus, substituting Eqs. (12) and (13) in Eq. (7) yields:

P (0, δ) ≃ −
1

1+g1x
µ
0
e
−

1
δ


x0+g1

xµ+1
0
µ+1


+ exp


−

xc
δ


. (14)

Since x0 > xc , then Eq. (14) can be approximated as:

P (0, δ) ≃ exp

−

xc
δ


. (15)

Finally, writing Eq. (15) in terms of R yields:

p(T = 0) ≈ exp


−
T0Γ c

10

RV


, (16)

where

Γ c
10 = Γ0e−V/Tc . (17)

We may also approximate equation (5) in the thermodynamic limit and obtain

P(x, δ) =


1, x ≥ xc

exp


−
1
δ
(xc − x)


, x ≤ xc .

(18)

In Fig. 6 we have compared the exact result and the approximation of P(0, δ) (Eqs. (7) and (15)). We can clearly appreciate
how the exact results become close to our approximation Eq. (16) as N increases. Notice that expression (16) relates the
residual population with the cooling rate R and the characteristic time τ in a very simple and intuitive manner. This result
tells us that trapping the system in the metastable state ultimately depends on the cooling rate solely applied in a region
close to the phase transition zone [34], although there is a catch.

Suppose that we cool the system starting from T1 with a cooling rate R1, and we repeat the process starting from T2 ≠ T1
with a cooling rate R2 ≠ R1. The residual population p(0) may be the same in both cases provided T1/R1 = T2/R2. This
implies that if T1 > T2 then R1 > R2, i.e., to trap the system in state 1 starting from T1 we would need a cooling rate R1
bigger than the one needed if the cooling started at T2 < T1. Thus, we would be compelled to assume that the ‘‘best’’ way
to trap the system in our model would be to set the initial temperature T0 as close as possible to Tc . However, in our model
T0 is the initial temperature in which the system is in thermodynamical equilibrium. Fig. 2 illustrates this idea, i.e., even
though the transition occurs in Tc the non-equilibrium system’s path differs from the equilibrium system’s path even before
reaching Tc , therefore there is a lower bound for T0. This means that the thermal history encodes small fluctuations around
the equilibrium population which are exponentially amplified near the glass transition. This region of the glass transition
corresponds precisely to the boundary layer limit.

Finally, we can get the critical dimensionless cooling rate for obtaining glasses by calculating the inflection point of the
approximation given by Eq. (15). As a result, the inflection point of P(0, δ) as a function of δ is given by,

δG = xc/2. (19)
Evaluating δG in our approximation (Eq. (15)) gives always the same population at the inflection point P(0, δG) = e−2

≈

0.13. This means that below δG there is a probability of a residual population lower than ∼0.13.
Now, in terms of the T -parameters, Eq. (19) yields the critical cooling rate RG:

RG = e−V/Tc Γ0T0
2V

(20)

which is the minimal R required to get a glass.
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Notice that from Eq. (20), when V is small (V ≃ 0), the cooling rate for a SGFT goes as ∼V−1, that is, the critical cooling
rate grows as the barrier height diminishes. When the barrier height is large, the necessary cooling rate is small for a SGFT,
as can be seen in Fig. 3.

To interpret such result, let us write RG in terms of the characteristic relaxation time to crystallization at Tc , given by Eq.
(10), the initial temperature in equilibrium T0 and the barrier height, i.e.,

RG =
T0

2VτL(Tc)
. (21)

The previous result confirms the intuitive perception of the glass transition, i.e., that the cooling rate must be faster than
the crystallization time, while the barrier height also plays a role. In other words, the system gets stuck in a glassy state due
to a lack of time for exploring the landscape. However, Eq. (21) indicates the importance of the initial conditions through
T0. Within this model, the absence of a crystal is indicative of an infinite crystallization time as happens in some systems
which never crystallize unless pressure is applied.

Themodel also provides a relationship between the glass transition temperature Tg and the cooling rate. Experimentally,
Tg is obtained from a peak in the specific heat. In our model, the heat capacity per particle is given by ϵ1

∂p(T )

∂T . Thus, the glass
transition temperature Tg occurs when the specific heat capacity derivative is a maximum, i.e.,

ϵ1
∂3p(T )

∂3T


Tg

= 0. (22)

This leads to the following transcendental equation that relates Tg with the parameters of the model,

T 2
0 V

R2T 6
g


1

τ(Tg)

2

+
3T0
RT 2

g


−2V
T 3
g

+
V 2

T 4
g


1

τ(Tg)
−

6V
T 4
g

−
6V 2

T 5
g

+
V 3

T 6
g

= 0, (23)

where τ(Tg) is the characteristic relaxation time at the glass transition temperature, i.e., τ(Tg) = Γ −1
0 eV/Tg . This relaxation

time at Tg is exactly the same as the one obtained in Ref. [35] using different kind of arguments.
It is worth mentioning that this equation indicates that in general Tg depends on the cooling rate R, as observed

experimentally and in other models of glass formation [35]. In forthcoming papers, we will explore the rich behavior in
the parameter space of Eq. (23). Yet, it is possible to get the experimentally observed logarithm change with the cooling rate
of Tg by adapting the approach used by Trachenko and Brazhkin [35]. To do so, it is important to observe that our cooling
protocol is not linear, as in the case studied by Trachenko et al. [35]. Here the characteristic relaxation time at Tg is given by,

τ

Tg


=
T0
R


T−1
2 − T−1

1


(24)

where T2 and T1 are the two temperatures which define the temperature range of the transformation (with T1 > T2). This
result can be combined with τ(Tg) = Γ −1

0 eV/Tg to get,

Tg =
V

ln


1T
T0


− ln


Γ −1
0 R

 (25)

where 1T is defined as a reduced temperature range,

1T =
T 2
0

T2T1
(T1 − T2) . (26)

Eq. (25) predicts a logarithm change of Tg with the cooling rate, as observed experimentally, and coincides with the
expression obtained by Trachenko et al. [35].

5. Kinetic Monte Carlo simulation

To assess the validity of our mathematical analysis we have compared our analytic results with a Kinetic Monte Carlo
(KMC) simulation. The simulation was done in a standard way (see for instance [34]). The (residence) time 1tij the system
spends in state i (i, j = {0, 1}, i ≠ j), given the frozen state condition is not fulfilled [34], is determined by the relation:

− log(x) =

 t+1tij

t
dt ′Wij(t ′), (27)

with

W10(t) = Γ10(t),
W01(t) = g1Γ01(t),

(28)
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Fig. 7. KMC transition times (Eqs. (29) and (30)) for a cooling rate R = 0.01 (continuous lines) and characteristic relaxation time τ obtained from Eq. (8)
(dashed line). We have fixed the parameters to T0 = 5Tc , V = 0.5, ϵ1 = 1,N = 100.

and x a uniformly distributed random number between 0 and 1. Thus, from relation (27) and expressions (28) we obtain:

1t10 = −
T0
VR

log

1 +

log(x)VR
Γ0T0

eV (1+Rt)/T0


, (29)

1t01 = −
T0

(V + E1)R
log


1 +

log(x)(V + E1)R
Γ0T0

exp (−N log(2) + (V + E1)(1 + Rt)/T0)


. (30)

In Fig. 7wehave plotted expressions (29) and (30) for x = e−1 and a small cooling rateR, i.e., a quasi-equilibriumcooling rate,
and we have compared it with the characteristic relaxation time τ as a function of T . Notice that when T > Tc , 1t10 > 1t01,
whereas when T < Tc results in 1t10 < 1t01. Furthermore, when T > Tc the residence time 1t01 corresponds to the
system’s characteristic relaxation time,whilewhen T < Tc the residence time1t10 correspond to the system’s characteristic
relaxation time.

In Fig. 8 we have compared p(T ), the exact form (Eq. (5) as a function of T (t)) (left) and the approximation form (Eq.
(18)) (right), with our KMC simulation for different cooling rates. As for Fig. 9, we have compared the approximation to the
residual population (Eq. (15)) with our KMC simulation. The match between our exact results and the KMC simulation, and
also our approximations and the KMC simulation is outstanding. We should stress the fact that the computational cost by
the KMC simulation is much less than the numerical evaluation of p(T ) for large N .

Following [34], given that the system is initially in state i, the probability that it will remain frozen in this state forever
is exp(−s(∞)

i ) with:

s(∞)
i ≡ lim

t→∞

 t

0
dt ′Wij(t ′). (31)

In our model this implies that

exp

−s(∞)

1


= exp


−

x0
δ


, (32)

exp

−s(∞)

0


= exp


−

g1x
µ+1
0

δ(µ + 1)


. (33)

Notice that at T0 = Tc , the expression (32) is the same as our approximation of P(0; δ) given by Eq. (15). Therefore,
trapping the system in state 1 ultimately depends on doing so at the transition point, although the system’s path towards
that transition point is relevant. Hence, the system has thermal history.

6. Conclusions

Using a simple energy landscape model that shows a phase transition and a glass transition depending on the cooling
rate, we found a relation between the residual population, the characteristic relaxation times, the cooling rate and the
thermal history. In particular, the residual population, which is ameasure of the glass forming tendency, turns out to have an
inflection point as a function of the cooling rate. This allows to define a critical cooling rate in the sense that higher cooling
speeds than the critical one results in an increased glass forming tendency. The critical rate depends upon the relaxation time
for crystallization, the phase transition temperature and the thermal history. Interestingly, the thermal history produces
small fluctuations around the equilibrium population which are exponentially amplified near the glass transition, which
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Fig. 8. p(T ). Left: Comparison between our exact solution (Eq. (5)) (continuous line) and our KMC simulation (points), for different cooling rates R and
number of particles N = 10. Right: Comparison between our approximation of p(T ) (Eq. (18)) (continuous line) and our KMC simulation (points), for
different cooling rates R and number of particles N = 104 . The KMC simulation was done with an ensemble of 105 systems. The rest of the parameters
were fixed at T0 = 5Tc , V = 0.5, Γ0 = 1.

Fig. 9. p(0). Comparison between our exact and approximate expressions (continuous line) and our KMC simulation (points) for different cooling rates
R and the following choice of parameters: N = 10, T0 = 5Tc , V = 0.5, Γ0 = 1. The KMC simulation was done with an ensemble of 105 systems and
N = {10, 104

}.

in fact corresponds to the region of the master equation boundary layer. In other words, the thermal history encodes the
sensibility to the initial conditions of the system, as happens with turbulence inside the boundary layer.

We have also obtained a widely observed logarithmic increase of the glass transition temperature with the cooling rate
also obtained in Ref. [35] by a different approach.

Finally, a kinetic Monte Carlo simulation was performed to check the analytically obtained residual populations and the
relaxation times. An excellent agreementwas foundbetweenbothmethods. In fact, the relaxation time is a nice interpolation
of the residence times obtained from the Monte Carlo. All these results could be used for more realistic energy landscapes,
by using connectivity maps [36–38].
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