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Abstract

The effects of one impurity in the spectrum of the Harper equation is studied. The results indicate that the spectral statistics
changes by reducing the clustering tendency of the energy levels, and a reduction of the fractal dimension of the spectrum is
observed. This can be explained as an induced transition in the localization, since many localized states appear all over the
original spectrum, as a consequence of the self-similar structure of the spectrum.
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1. Introduction tigate the effect of disorder in a fractal spectrum as
a possible explanation for this fact, since we observe
that the effect of disorder is much bigger than in a ran-

trum of quasiperiodic Hamiltonians has been the fo- dom or periodic system. To do this, we first calculate

cus of a very active research in order to understand thethe statistical distri_buti_on of energy levels. This field
electronic properties of quasiperiodic potentials [2— Nas been very active in the last years [12-14]. Now
8]. In particular, the Harper model has been a very is well established that in disordered insulators, the

useful tool to investigate the transition from localized €i9enstates of the Schrodinger equation are localized,
to extended eigenstates, as the spectrum pass fronfid the distribution of energy-levels spacing follows
pure point to continuous [2,9,10]. Between both limits, a Poisson statistics [12], due to the space localization

there is a new type of spectrum which is known as sin- of the eigenfungtions. Disord_ered metals present ex-
gular continuous and is a fractal like set [9]. The corre- tended states with a correlation between levels, since

sponding eigenstates are called critical and show self- (N€re is a repulsion between them. These systems are
similar properties. Other systems, like the Fibonacci characterl_zed by the Wigner distribution, which e_llso is
chain, share many of these characteristics [3]. How- o_bserved in .quantum systems tha@ show. chaaotic clas-
ever, until now, many of the properties predicted for Sical dynamics [12]. In systems with a singular con-
these kind of models are not observed in most of the tiNUOUS Spectrum, a new type of spectral statistics has

real systems like quasicrystals [11]. Here we inves- P€en found [15], since Machida et al. observed that
for certain parameters of the Harper equation, the dis-

tribution of level spacings follows an inverse power
E-mail address. naumis@fisica.unam.mx (G.G. Naumis). law [15]. This tendency was explained as a level clus-

After the discovery of quasicrystals [1], the spec-
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tering [16]. More recently, it has been argued that the
clustering regimen of the distribution of level spacings
was an artifice of an inappropriate way of making the
unfolding [17].

Another parameter which serves to characterize pint(G) =

the spectrum, specially for the case of fractal or

471

To do the gap statistics, we define an integrated
level-spacing distribution as follows [16],

oo

/p(G’)dG’

G

®)

Cantor like spectrums, is the fractal dimension of \hose derivativep(G) = —dpint(G)/dG determines
the set, and the corresponding distribution of scaling the probability density of gap&. The gaps are ob-

exponents. A system with extended states and atained numerically using the transfer matNk(E, n)
continuous spectrum has fractal dimension one, while that we define below. We write Eq. (1) as,
wn+l

a random system in one dimension has a pure point

spectrum with fractal dimension zero [11]. A singular ( ) =M(E, n) ( ) 7

continuous spectrum has a fractal dimension between \ ¥

zero and one. Our numerical results show that the \yhere

local disorder reduces the fractal dimension, and the

tendency for clustering is reduced. This effect can be M (g, ) = (E — 2)co92nno +v) _1) ]
understood as a consequence of the fractal structure 1 0

of the unperturbed spectrum, that produces localized The jrrational numbet is approximated by succes-
states in a self-similar way. The layout of this Letter sjve rational convergent to the continued fraction ex-
is as follows, in Section 2 we define the problem pansion ofs. Foro = P/Q, the Harper potential has
and the various statistical measures that we consider.period 0. In such a case, we analyze the matrix prod-
In Section 3 we give a possible explanation for the yct of only one period,

observed results, and in Section 4 the conclusions are
given.

Vn
wn -1

0-1

Mo(E.n)= [ [ Ma(E,n)
n=0

2. Spectral propertiesof the Harper model with

an impurity

that corresponds to the unit cell of the supercrystal.
Due to the periodicity of this supercrystal, the Bloch
theorem shows that the allowed values of the energies
are those which satisfyr Mo (E, n)| < 2, from which

one obtains the spectrum of the system. In this Letter,
we consider that is the golden meaiiv/5 — 1)/2,

and thus the rational approximants are given by the
ratio of successive Fibonacci numbers. Fig. 1 shows
the statistics of a chain with the approximant=
375/610, which corresponds to 610 sites in the unit
cell of the supercrystal, withh = 1. In the same
figure, we illustrate the effect of one impurity at the
middle of the chain, with different values ef As ¢
raises, the curve starts to change its behavior, since the
inverse power law is not longer valid at all parts of
the spectrum. For the chain without impuritié%,; ~
G2 and p(G) ~ G~1°, and thus the statistical
distribution of gaps follows an inverse power law
of the type P(s) ~ s~ when A = 1. As impurities

are added, the probability of small gaps decreases.
Locally, this effect can be thought as a reduction in
the exponenp. The decreasing probability of small

In this Letter, we will consider the problem of a
substitutional impurity inside a Harper chain,

EY, =2).co92ron 4+ v)y,

+ Wn—&-l + Y1+ €8n,lwnv (1)

wherevy, is the wave-function of energg at siten,
and v = 0. The impurity is on sitd of the chain,
with self-energye. We can treat the impurity as a
perturbation of the original chain, in the sense that the
Hamiltonian can be subdivided as,

H=Ho+€H,, (2

where Hp is the Hamiltonian of the Harper model,
while H;; is the local perturbation at site given
by H; ; = éuéji. If ¢ =0, we recover the Harper
equation. In this unperturbed equation, whenis
irrational, the spectrum is continuous for< 1, pure

points fora > 1 and singular continuous when= 1
[2,9].
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Fig. 1. Integrated distribution of gaps as a function of the gap Fig. 2. Distribution of scaling exponentg(«) for the pure Harper
sizes. The solid line corresponds to the Harper equation without model (solid line) and the same model with an impurity witi: 2.
an impurity. With thin dots, dashed lines and dots the respective

statistics of chains witlh = 1.5, 5 and 10 are shown.

This function has a limit whehgoes to infinity, which

) ) o o is either zero or infinity, unless andg are chosen
spacings with respect to the original chain, indicates iy an appropriate way [19] such thdi(g, 7) = 1.
a reduction in the clustering of levels, since the Thjs condition determines a functiatig). The fractal
conditional probability f(x)) of finding a level in  gimension for a set of points with the scaling is

[x,x + dx], if there is a level atr, goes as [16]  optained by a Legendre transformation of the partition
w(x) = (B — Dx~L. If B is reduced from B, this function,

conditional probability is diminished. This means that
the spectrum tends to recover the Poisson case, Whichf(a) _
corresponds to independent level positions sipce

tends to be constant. where a = dt(q)/dq. The maximum value of this
Another tool for studying the spectrum, is the mul-  curve is the Hausdorff dimensiod {) and gives the
tifractal analysis, which allows to determine the scal- fractal dimensioni; of the spectrum [18]. In Fig. 2
ing properties of a set. In a pure fractal, as, for exam- we plot f(«) for the Harper model with and without
ple, in the two-thirds Cantor set, there is only one scal- an impurity fore = 2 andx = 1. For the unperturbed
ing exponent. A multifractal has more than one scaling case, the curve is similar to the one obtained by
exponent (that we denote by, and the distribution of  Tang et al. [20], and{ is equal to (6 as observed
these exponents is a very useful tool to determine the previously [20]. When the impurity is added, is
fractal dimension, the maximum and minimum expo- .46 fore = 2. This means that the spectrum is more
nents and the information dimension [18] of the set. point-like than in the Harper case. For a periodic chain,
To obtain this distribution, we use the tools of multi-  this effect is not observed (since the bandwidth of the
fractal analysis. First we denote the bandwidth of the unique band remains nearly equal when the impurity
ith band of the spectrum bX E;. Each band contains s added), and the same can be said in the case of
the same measure or density of statgd (Q), where a pure point spectrumi¢ is non-negative). Observe
N(Q) is the number of bands for a given lengthof that the maximum exponent present in the perturbed
the chain. A partition function (¢) is defined by [19], system is lower than in the pure Harper system. The
opposite is true for the minimum exponent: disorder
NO /1 N9/ 1\~ shifts the exponent to lower values. As a result, one
I'o(q,t)= Z (N—) ( ) can conclude that the bands reduce their bandwidths
— (Q) AE;
i at all the scales.

—T(C]) +0[q,
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3. Apparition of localized statesinside the spectral
gaps

Since the spectral statistics and the distribution of
scaling exponents are related to the localization of the
wave-functions, the changes observed are related with
the localization of states. This is illustrated in Fig. 3,
where the inverse participation ratio (IPR), defined as,

g—1
IPR=" " [y|*
n=1

is shown for a chain of 1597 sites with = 1.0.
Observe that we choose the IPR for determining
localization in favor of the Lyapunov coefficients, due
to the inherent problems in detecting localization with
such method, as showed by the author in a previous
work [21]. A bigger IPR means more localization, and
in the figure it can be seen that in the chain with an
impurity there are many states that are much more
localized than in the unperturbed chain.

We can understand this effect as follows: in a
chain where all the self-energies are equal, an impurity
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Fig. 3. Enlarged view of the lowest part of the IPR for a Harper chain
of 1597 sitesp = 1.0 ande = 15. In squares (circles), the IPR of
the Harper equation without (with) an impurity. Eigenstates with a
bigger IPR are more localized.

1/e. An impurity mode appears at the intersection
of both functions. Notice that the Green function
is self-similar as a consequence of the self-similar

produces a localized state outside the band. This factisstructure of the spectrum and the corresponding wave-

a consequence of the Rayleigh condition that satisfies
an impurity mode for any system [22],

4

whereGo(E, 1,1) is the Green function of the unper-
turbed chain at the perturbed sitedefined as,

Go(E,1,1) ZZM

E+4+in—E,
and E, is an eigenvalue of the non-perturbed Hamil-
tonian Hp, andn is a small imaginary number.
The Rayleigh equation can only be satisfied when
Go(E,1,1) has no imaginary part, which corresponds

1
GO(E,Z,Z) = g,

®)

functions [24]. The scaling of the Rayleigh condition,
is more clearly seen if we assume tliaj(E, [, 1) has

a certain scaling in the sense that after a change of
scales in the energy, the Green function is scaled as,

GoGE,1,1)=8"BGy(E,1,1),

wherey (E) is an scaling exponent. Observe thaf)
depends orE, since the spectrum is a multi-fractal,
with a certain distribution of scaling exponents. Thus,
if in a certain scale the Rayleigh condition is valid for
an energyE.., for an energy given b, =877 EJE,

the condition is also satisfied since,

Go(87EIE,,1,1) = (577 EN FIGo(E,, 1,1) = :EL

to energies that are spectral gaps [22]. In the present

case,Go(E,1,1) is the Green function of the Harper
model evaluated in the impurity site. However, for
the singular continuous spectrum, the distribution
of gaps is self-similar [23], thus, if we produce a
localized state inside a gap at a certain scale, we
will produce other localized states at different scales.
This effect is illustrated in Fig. 7 where the real part
of the Green function of the unperturbed chain is
shown. The horizontal line corresponds to the line

The same argument can be applied again at different
scales, and many impurity modes would appear at the
energiesE, ,, = 8" EJ) E., wherem is an integer.

As usual, impurity modes are formed at the expense
of the original spectrum, since the local density of
states at siter of the perturbed systemp{(E)) is
related with the unperturbed densipP(E)) by [22],

Im Go(E, n,1)Go(E, 1, n)
E)=p2(E) —e—
pn(E) = p, (E) € 1= cGo(E.L.])
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Fig. 4. Enlarged section of the integrated density of states of the
Harper equation (solid line) and the same with an impurigy 15
(dots) for a chain with 1597 sites.

Using this fact, and by observing that the total number
of states remains constant, one can conclude that
the width of each band is reduced, as observed in
the previous section from the distribution of scaling

exponents. In general, the reduction of the bandwidth -

is related with the fact that the states are more
localized, since the bandwidth depends on the overlap
of the wave-function at the end of the unit cell
considered [21].

In a finite lattice, with a fixed boundary condition,
the effect consists in a displacement of the eigenvalues
toward the gaps. As an example, in Fig. 4 a small
portion of the integrated density of states of a Harper
chain (obtained from diagonalization) is compared
with a perturbed chain with an impurity= 15. As it

A 309 (2003) 470-476
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Fig. 5. Allowed bands as a function afof the Harper chain for an
approximant of 310 sites.
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Fig. 6. Allowed bands as a function dfof the Harper chain with an

can be seen, there is a displacement of the eigenvaluedmpurity € = 10 at the middle of the chain.

at all the scales.

The same result can be observed using the transferimpurity were made in a previous work for a differ-

matrix formalism. In Figs. 5 and 6, we show the
allowed bands as a function of the parameteAs
it can be seen, there is a reduction in the bandwidth,
which is achieved by a fragmentation of the bands.
Notice that the arguments given in this Letter for
the self-similar generation of impurity states depend
only in the self-similar nature of the Green function.
Thus, one can expect this conclusion to be general
for other quasiperiodic potentials. For example, sim-
ilar observations of a localization transition due to an

ent quasiperiodic system: the Fibonacci chain [25].
Furthermore, in that paper it was discussed how the
fixed boundary conditions produce effects at all scales,
since each fixed end of a chain can be seen as an
impurity, and also some resonant eigenstates were
found [25]. Similar effects have been also observed
in the study of the statistical properties of resonances
in open quasiperiodic systems [26,27], where there is
a strong analogy to the present work. In Refs. [26,
27], the quasiperiodic systems were opened by intro-
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o8 ' ' ‘ ‘ ‘ bution of scaling exponents. These changes are due to
the apparition of localized impurity modes all over the
gaps, which are distributed in a self-similar way. Other

06 1 7 quasiperiodic systems follow this behavior, and thus it
seems plausible to be a general feature of self-similar

= spectrums.
ot |
)
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