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Abstract

The Landauer-Büttiker conductivity of arbitrary uniaxial spatially dependent
strain in an armchair graphene nanoribbon is studied. Due to the uniaxial
character of the strain, the corresponding transfer matrix can be reduced to
a product of 2 × 2 matrices. Then the conductivity and the Fano factor can
be calculated from this product. As an example of the technique, sinusoidal
space dependent strain fields are studied using two different strain wavelengths.
For the bigger wavelength the conductivity is reduced when compared with the
unstrained case, although both conductivities are almost the same in shape.
Whereas, for the smaller wavelength case, the conductivity is strongly modified.
In spite of this, for energies close to the Dirac point energy, the conductivity
and the Fano factor are quite similar to their unstrained counterpart for the two
strain wavelengths here studied.

1. Introduction

Graphene, the first truly two dimensional (2D) material experimentally
growth [1, 2], has very interesting and fascinating transport properties [3, 4].
In particular, when a deformation field is applied to it, novel effects arise
[5, 6, 7, 8, 9]. For instance, one can mention the well-known gap opening in
a graphene nanoribbon when an uniaxial and uniform strain field is applied to
it [10]. This fact opened a new field of research known as straintronics, which
aims to fine tune the electronical and optical properties by the application of
mechanical deformations [11]. Following this direction, many theoretical works
studying the effect of mechanical deformations in the transport properties of
graphene have been made [12, 13, 14, 15]. For example, the transport prop-
erties of graphene nanoribbons connected to metallic leads have been studied
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using a tight-binding approach [16, 17, 18, 19], as well as using ab initio calcula-
tions [20, 21, 22]. These kind of studies have been done for both the unstrained
and strained cases [23, 24].

For the unstrained case, perhaps the most relevant discovery is the role
played by the topology of the ribbon, that is, the form of the ribbon’s edges. In
fact, it has been shown that, in the limit of large width-to-length ratio and low
energy, armchair-terminated graphene nanoribbons (AGNs) have a finite con-
ductivity at the Dirac point, whereas zigzag terminated graphene nanoribbons
(ZGNs) have a vanishing conductivity at the same point [18]. Another impor-
tant fact is the presence of an asymmetry in the conductivity of AGNs. This
phenomenon is related to an electron-hole asymmetry and to the use of metallic
leads [17]. It is important to say that such asymmetry is not seen in the case
of ZGNs since the edges of a ZGN protect the electron-hole symmetry [17]. On
the other hand, for the case of uniform strained AGNs, it was found that the
conductivity can be suppressed with respect to the pristine case if the strain
amplitudes are larger than a threshold [23], needless to say that the asymmetry
seen in the unstrained case still appears in the strained case. In the case of an
uniform strained ZGN, it has been found that the conductivity has two sharp
peaks around the van Hove singularities. Note that the van Hove singularities
are not longer at energy E = ±t0 (t0 being the hopping parameter for pristine
graphene) as in graphene, but they are shifted from their original positions due
to the strain field, see [10, 8] for more details. This fact can be understood by
an effective decoupling of the ZGN into weakly coupled dimmers [11, 8].

Even though the cases of uniform strained ZGNs and AGNs have attracted
a lot of attention and are well understood [25, 26, 23, 24, 27], to our best knowl-
edge, the effects of non-uniform strain fields in the transport properties still
deserve research. Therefore, in this paper, we study the effects of non-uniform
uniaxial strain fields in the transport properties of armchair graphene nanorib-
bons. To this end, we follow the formalism developed in reference [18], which
is based on the transfer method approach using a tight-binding Hamiltonian.
Then we generalize their method to an uniaxial space-dependent strained AGN.
As will be seen later on, our method works for any kind of uniaxial strain field
applied along the armchair direction of the graphene ribbon. When applied to
the particular case of a periodic strain, the results show important changes of
the conductivity, however, for low energies (this is, energies near the Dirac cone
energy), the conductivity is almost unaffected by the strain field.

The article is organized as follows. In section 2 we introduce the tight-
binding Hamiltonian used to describe the electronic properties of an uniaxial
strained armchair-terminated graphene nanoribbon (AGN) connected to two
metallic leads, which are considered to be semi-infinite square lattices. Then, in
section 3 we generalize the transfer matrix method developed in reference [18]
to study the transport properties of an AGN under any kind of uniaxial strain
field applied along the armchair direction of the graphene ribbon. Section 4 is
devoted to the application of our method to study the transport properties of
an AGN under uniaxial spatially periodic strain. Some conclusions are given in
section 5. Finally, in appendices A, B, and C some calculations regarding the
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Figure 1: Schematic representation of an armchair graphene nanoribbon connected to elec-
trodes at interfaces L (left) and R (right). The wavy line on top of the nanoribbon indicates a
strain applied in the x direction. For a sinusoidal strain field, the modulation has wavelength
σ−1. As a result, the distances of carbon atoms are affected, although owing to the uniaxial
nature of the strain, columns of atoms are displaced the same.

transfer matrix method here developed are presented.

2. Uniaxial strained armchair-terminated graphene ribbon

In this section we introduce the model to be used for describing the electronic
properties of a strained AGN. We start with an AGN joined to two metallic leads
as indicated in Fig. 1. It is important to mention that the metallic leads will be
represented by semi-infinite square lattices joined to the AGN at the interface by
a hopping parameter given by tI . Then we apply an uniaxial spatially periodic
strain field along the armchair direction of the considered ribbon (here on, we
will denote the armchair direction as the x-direction, see Fig. 1). We suppose,
as a first approximation, that the leads are unaffected by the strain field. Due
to the presence of the strain field the atoms are shifted from their original
positions in pristine graphene. The new positions of the carbon atoms are given
by r′i,j = ri,j + u(xi, yj), where ri,j = (xi, yj) are the unstrained coordinates of
the atoms (see Fig. 1) and u(xi, yj) is the displacement-deformation vector or, in
other words, the strain field. The label i = 1, 2, ..., N (j = 1, 2, ...,M) indicates
the site’s position of the carbon atoms along the x-direction (y-direction), see
Fig. 1. For an uniaxial strain field along the x-direction, in general, there is a
deformation along the y-direction, which is determined by the Poisson ratio with
value ν = 0.165 for graphene [23]. Here we will simplify the calculus by suposing
that the strain in the y-direction can be neglected, in such a way that symmetry
is preserved along the y-axis, i.e., we will assume that u(xi, yj) ≈ (u(xi), 0).
Notice however that such field can be obtained by choosing a suitable external
strain field.

On the other hand, as we proved in a previous work, the electronic properties
of an uniaxial strained AGN are well described, in the low energy limit, by the
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following nearest-neighbor tight-binding Hamiltonian [11],

Ĥ = −
∑
ri,j

tr′i,j+δ′i,nc
†
r′i,j
cr′i,j+δ′i,n + ε0

∑
r′i,j

c†r′i,j
cr′i,j (1)

where r′i,j runs over all sites of the strained lattice of the AGN, ε0 is the onsite
energy corresponding to sites of the deformed lattice. In other words, ε0 is
the chemical potential and can be adjusted by an effective gate voltage applied

directly to the graphene ribbon [19]. The operator c†r′i,j

(
cr′i,j+δ′i,n

)
creates

(annihilates) an electron in a carbon atom at the position r′i,j
(
r′i,j + δ′i,n

)
in

the strained AGN. Finally, δ′i,n (with n = 1, 2, 3) are the vectors that point to
the three nearest neighbors of a carbon atom at the site r′i,j in the strained
lattice. For unstrained graphene, δ′i,n = δn with,

δ1 = (−1)i+1
(
1,
√

3
)
a/2

δ2 = (−1)i+1
(
1,−
√

3
)
a/2

δ3 = (−1)i+1 (−1, 0) a,

(2)

where a = 0.145 nm is the interatomic distance in pristine graphene. The
hopping parameters in a strained AGN depend upon the position of the carbon
atoms since the strain field induces changes in the orbitals’ overlap. For an
uniaxial strain field, the hopping parameters, in the small strain’s amplitude
limit (this is for strain’s amplitudes much lower than the lattice constant of
pristine graphene), are given by [11],

tr′i,j+δ′i,n = tG exp
[
−β
(
−1 + |δ′i,n|/a

)]
, (3)

where β ≈ 3.37 is the Grüneisen parameter. tG ≈ 2.7eV is the hopping integral
for pristine graphene. For the sake of simplicity, we will measure all distances
in unit of a, this is equivalent to take a = 1. The quantity |δ′i,n| is the distance
between carbon atoms in pristine AGN and its strained counterpart. For the
small strain’s amplitude limit, we have [11],

δ′i,n = |δn| · [u(r + δn)− u(r)] . (4)

3. Transfer matrices and transmission coefficient

This section is devoted to develop the transfer matrix method that will be
used to study the transport properties of a strained AGN. We have basically
generalized the method obtained in reference [18]. Following reference [18], we
start by stating the Schrödinger equation to be solved,

ĤΨ(E) = EΨ(E), (5)

where Ĥ is the Hamiltonian defined in Eq. (1) that describes the electronic
properties of a strained AGN. Ψ(E) is the wave function of the system at a
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given energy E. In the Landauer-Büttiker formalism the wave function of the
system can be represented as,

Ψ(E) =
∑
r′i,j

αi,j |ψi,j〉, (6)

where the complex coefficients αi,j can be determined using the matrix trans-
fer method. Then, if EF is the Fermi energy of the electrodes, which is set
by their occupation nc, there must be M right-traveling and M left-traveling
waves (channels) in each electrode. Each of these channels is characterized by
a transverse wave-number ksy = πs

M+1 with s = 1, . . . ,M and by a longitudinal
wave-number ksx related to ksy by the dispersion relation of the leads, this is, by
the dispersion relation of a semi-infinite square lattice,

EF = −2tS(cos ksx + cos ksy). (7)

On the other hand, it is useful to write the Schrödinger equation in terms of
the wave function Eq. (6). To do that we substitute the wave function Eq. (6)
into Eq. (5). After some manipulations, one gets,

−
∑
τ,γ

tr′i,j+δ′i,nαi+τ,j+δ = (E − ε0)αi,j , (8)

where τ and γ specify the nearest-neighboring sites of r′i,j . Observe that for
uniaxial strain applied along the armchair direction, the translation symmetry
along the y-direction (or, in other words, the zigzag direction) is not broken,
therefore we have tr′i,j+δ′i,n = tr′i,l+δ′i,n for all j, l = 1, . . . ,M and |δ′i,1| = |δ′i,2|.
Using the previous fact and Eq. (3) one obtains that tr′i,j+δ′i,1 = tr′i,j+δ′i,2 . It
follows that for each column i there are only two different values of the hopping
parameters which join different columns, this fact allows us to define ti as the
hopping integral between a site in the column i and its nearest neighbor in the
column i + 1, as shown in Fig. 1. Until now we have followed the method
developed in Ref. [18]. From here on, we proceed to generalize their method for
the case of an AGN under an uniaxial strain field applied along the x-direction.
For that end we start by observing that for non-uniform strain there are four
different cases for Eq. (8), namely,

(E − ε0)αi,j =


−[ti(αi+1,j + αi+1,j−1) + ti−1αi−1,j ]
−[tiαi+1,j + ti−1(αi−1,j + αi−1,j+1)]
−[ti(αi+1,j + αi+1,j+1) + ti−1αi−1,j ]
−[tiαi+1,j + ti−1(αi−1,j + αi−1,j−1)],

(9)

where each row of the previous expression is applied to i ≡ 0, 1, 2, 3( mod 4),
starting from top to bottom. For example, for the first four columns of graphene

5



(see Fig. 1):

(E − ε0)α1,j = −[t1(α2,j + α2,j−1) + t̃0α0,j ]

(E − ε0)α2,j = −[t2α3,j + t1(α1,j + α1,j+1)]

(E − ε0)α3,j = −[t3(α4,j + α4,j+1) + t2α2,j ]

(E − ε0)α4,j = −[t4α5,j + t3(α3,j + α3,j−1)].

(10)

The next step is to express the M coefficients αi,j for a given i as the vector

~αi =


αi,1
...

αi,M

 . (11)

Now we define the 2M × 2M transfer matrix P̂i, which connects ~αi with its
neighboring columns, as follows, ~αi−1

~αi

 = P̂i

 ~αi

~αi+1

 . (12)

Observe that there must be four different kinds of transfer matrices P̂i be-
cause we have four inequivalent atoms per each row of the AGN. It follows that
the system can be seen as made of blocks of four columns, where each block
changes in the x-direction. For a system with N columns (this is, N atoms
along the x-direction per row), we will have N/4 blocks. We will numerate
each of these blocks using the label q(r), such that q(r) = 4(r − 1) + 1 with
r = 1, 2, 3, . . . , N/4. By numerating the columns in this way, we are able to
define four different transfer matrices, thus reducing the problem of finding N
transfer matrices to just find four, as was done in reference [18], but for a general
uniaxial strained AGN. We define the transfer matrix that connects the column
at the site q(r) with its counterpart at the site q(r) + 1 as Ar. In a similar way,
we have Br (which connects the column at q(r) + 1 with the one at q(r) + 2),
Cr (which connects the column at q(r) + 2 with the one at q(r) + 3), and Dr

(which connects the column at q(r) + 3 with the one at q(r) + 4). As detailed
in appendix A, such matrices are given by,

Ar =

 − (E−ε0)
tq(r)−1

IM×M −
tq(r)
tq(r)−1

X

IM×M 0

 (13)

Br =

 − (E−ε0)
tq(r)

Yt −
tq(r)+1

tq(r)
Yt

IM×M 0

 (14)
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Cr =

 − (E−ε0)
tq(r)+1

IM×M −
tq(r)+2

tq(r)+1
Xt

IM×M 0

 (15)

Dr =

 − (E−ε0)
tq(r)+2

Y −
tq(r)+3

tq(r)+2
Y

IM×M 0

 (16)

where IM×M is the M ×M identity matrix. X is a M ×M upper bidiagonal
matrix with non-zero elements equal to one and Y = X−1.

Then the total transfer matrix of our system P̂ defined as, ~αL0

~αL1

 = P̂

 ~αRN

~αRN+1

 , (17)

is given by,

P̂ =

 t̃2IM×M 0

0 IM×M

×
N/4∏
r=1

ArBrCrDr

×
 IM×M 0

0 t̃1IM×M

 ,

(18)

where t̃2 = tSt1/t
2
I and t̃1 = t2I/(tStN−1). In addition, we can obtain explicitly

the total product of ArBrCrDr for each block r in terms of X and Y, as is
done in appendix B; this is useful since that allows us to reduce the problem to
a system of bilinear equations.

Now suppose that we have M right-traveling waves and M left-traveling
waves for a given energy with unitary amplitude, in the right and left leads,
respectively. If this is the case, the right-traveling wave in the s-th channel will
be scattered into the s′-th channel leading to the following wave functions at
the edges of the interface between the ribbon and the leads,

αLij =
∑
s′(δs′se

iks
′

x xi + rs′se
−iks

′
x xi) sin(ks

′

y yj)

αRij =
∑
s′ ts′se

iks
′

x xi sin(ks
′

y yj),

(19)

where rs′s and ts′s are the reflection and transmission coefficients from the s-th
to the s′-th channel respectively, and δs′s is the Kronecker delta. L (R) stands
for the left (right) lead. We can greatly simplify the expression of the wave
functions at the edges of the AGN if we rewrite them in terms of the matrices
∆̂ (with size 2M ×M), R̂ (with size 2M ×M) and T̂ (with size 2M × 1), which
are defined as,

∆̂ =

(
ζ̂ 0

0 ζ̂

)(
ξ̂(x0)

ξ̂(x1)

)
, (20)
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R̂ =

(
ζ̂ 0

0 ζ̂

)(
ξ̂(x0)∗

ξ̂(x1)∗

)
, (21)

T̂ =

(
ζ̂ 0

0 ζ̂

)(
ξ̂(xN )

ξ̂(xN+1)

)
, (22)

with

ζ̂ =

 sin(k1yy1) . . . sin(kMy y1)
...

...
...

sin(k1yyM ) . . . sin(kMy yM )

 , (23)

and

ξ̂(xi) =


ek

1
xxi 0 . . . 0

0 ek
2
xxi . . . 0

...
...

. . .
...

0 0 . . . ek
M
x xi

 . (24)

By using Eqs. (21), (22), and the vector notation stablished in Eq. (11), it
follows that,  ~αL0

~αL1

 = R̂r̂s + ∆̂δ̂s, (25)

and  ~αRN

~αRN+1

 = T̂ t̂s, (26)

where

r̂s =


r1,s
...
rM−1,s
rM,s

 ; δ̂s =



δ1,s
...
δs,s
...
δM,s

 ; t̂s =


t1,s
...
tM−1,s
tM,s

 . (27)

Using all the previous result, Ec. (17) is reduced to,

∆̂δ̂s = P̂ T̂ t̂s − R̂r̂s. (28)

It can be proven, as is done in appendices B and C, that the whole calculation
is thus reduced to solve a set of two linear equations for each channel. The set
of equations to be solved is, −1 gs

−e−iksx hs

 rss

tss

 =

 1

eik
s
x

 (29)
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with  gs

hs

 =

(N/4)+1∏
r=0

ς̂r

 eiNk
s
x

ei(N+1)ksx

 , (30)

and ς̂r being a 2×2 matrix defined in appendix C. Notice that in fact, the trace

stability of
∏(N/4)+1
r=0 ς̂r contains information about the localization of the wave

functions and about the density of states of the nanoribbon [28, 29, 30, 31].
Finally, using the results obtained in appendices A, B and C, we obtain that
the reflectance, rss, of our system is given by,

|rss| =
∣∣∣∣ 1− (gs/hs)e

iksx

1− (gs/hs)e−ik
s
x

∣∣∣∣ . (31)

Since the channels do not couple among them, the transmittance is readily found
from |tss|2 = 1−|rss|2. From the previous result, one can obtain the conductivity
(G) and the Fano factor (F ), which in the Landauer-Büttiker formalism are
given by [18],

G =
2e2

h

M∑
s

|tss|2, (32)

and

F =

∑
s |tss|2

(
1− |tss|2

)∑
s |tss|2

. (33)

4. Application to periodic uniaxial strain

In this section we apply the previous results to an uniaxial strained AGN.
In particular, we consider the case of an uniaxial spatially periodic strain field,
namely, we consider that the position of the atoms in the graphene ribbon are
shifted from their original position in pristine graphene by a displacement vector
given by,

u(xi) = λ cos(2πσxi), (34)

where σ−1 is the wavelength and λ is the amplitude of the strain field. xj is the
x component of the position of the j-th carbon atom in an unstrained AGN.
For a strain field as the one in Ec. (34), it can be proved that the hopping
parameters, in the small amplitude limit, are given by,

ti = t0 exp {λ[cos(2πσxi+1)− cos(2πσxi]}. (35)

Since we are dealing with periodic oscillations, the commensurability between
the graphene lattice parameter and strain wavelength leads to a superlattice. If
both parameters are incommensurate, then a quasicrystal is obtained. However,
from here on, we will only consider the case of superlattices.

Now that we have introduced the strain field to be studied, we proceed to
obtain the transport properties of the strained AGN for different values of the
strain’s wavelength and amplitude, here denoted by σ−1 and λ, respectively. For
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Figure 2: conductivity of a strained AGN as a function of E − ε0 for pristine graphene σ = 0
(blue color), and a periodic sinusoidal strain with σ = 5/7 (red color), and σ = (3∗89)/(4∗144)
(green color). All the curves were obtained for E = 0, λ = 0.04, M = 1000, and N = 100.

the sake of simplicity, we will fix the strain’s amplitude and study the transport
properties of our system for two values of σ (inverse strain’s wavelength), which
are σ = 5/7 ≈ 0.71 and σ = (3∗89)/(4∗144) ≈ 0.46. The latter case was chosen
to be three quarters of the ratio of two subsequent Fibonacci numbers, which
are rational approximates to the irrational golden mean

[(√
5− 1

)
/2
]
.

The case σ = 5/7 corresponds to a system with fourteen different hopping
parameters, this is, the system can be seen as a superlattice made from repeating
a super cell having fourteen non-equivalent atoms. The case σ = (3∗89)/(4∗144)
is an approximation of the quasiperiodic case, using a super cell of 144 sites.
In Fig. 2 we show the conductivity of our system for three different strain’s
wavelength values, i) pristine graphene (blue lines), ii) strained graphene with
σ = 5/7 (red lines), and strained graphene with σ = (3 ∗ 89)/(4 ∗ 144) (green
lines). All the plots were made using N = 100, M = 1000, and, for the strained
cases, λ = 0.04 for Fig. 2, whereas N = 1000, M = 10000, and λ = 0.08 were
used for Figs. 3 and 4. In addition, we have considered the case of half filling for
the leads, in other words, we have set the Fermi energy of the electrodes to be
E = 0. The first important observation is that our results reproduce exactly the
results found in ref. [18], including the cases of uniform strain (not all presented
here).

Many interesting features are observed in Fig. 2, for example, there is an
asymmetry with respect to E−ε0 = 0 in the conductivity for all the cases. This
fact is related to the hole-electron asymmetry induced by the metallic electrodes
in the AGN case [17]. Also, for σ = (3 ∗ 89)/(4 ∗ 144) we observe that the
conductivity is greatly decreased when compared to the pristine case, although
it has the same overall behavior. This kind of behavior is quite similar to the
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Figure 3: Low energy conductivity of a strained AGN, as a function of E − ε0 for different
values of the strain’s wavelength (σ). In all cases we have used E = 0, λ = 0.08, M = 10000,
and N = 1000.

one observed for the case in which the AGN is uniformly strained [23, 24], as
we expect since for σ = (3 ∗ 89)/(4 ∗ 144) the strain wavelength is σ−1 ≈ 2.16a,
which is big enough to greatly suppress the effects of the non-uniform strain
field. Finally, in Fig. 2) we present in red solid lines the case σ = 5/7 (in other
words, a wavelength given by σ−1 = 1.4a). Note how the conductivity presents
peaks as E− ε0 varies. These peaks are a consequence of the difference between
the strain wavelength and the periodicity of the unstrained AGN, which leads
to dispersion effects [11, 32].

Even though there are differences in the conductivities shown in Fig. 2,
they seem to be quite similar around the zero of E − ε0, which indicates that
these particular strain fields have no great impact on the transport properties
of the AGN at low energies. To confirm this statement, in Figs. 3 and 4 we plot
the conductivity and the Fano factor for a much larger AGN in the low energy
regime. From the conductivity, in the low energy regime, Fig. 3, we can see
that the behavior is basically the same in the three cases displayed therein. For
σ = (3 ∗ 89)/(4 ∗ 144), the effects of the strain field are to shift the oscillations
of the conductivity as E − ε0 varies and to increase a little the slope of the
conductivity. On the other hand, for σ = 5/7, we also observe a small increase
of the conductivity’s slope and for energies around ±270[meV] the emergence of
some fluctuations that are larger than the ones observed in the case of a pristine
AGN (see Fig. 3, solid red lines). When it comes to the Fano factor, which is
displayed in Fig. 4, we observe almost the same features that we find for the
conductivity.
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Figure 4: Fano factor of a strained AGN, as a function of E − ε0 for different values of the
strain’s wavelength (σ). In all cases we have used E = 0, λ = 0.08, M = 10000, and N = 1000.

5. CONCLUDING REMARKS

In this work we have developed a transfer matrix method that allows to
obtain the transport properties of an AGN under any kind of uniaxial strain
applied along the armchair direction of the ribbon. We have done this by gen-
eralizing the method found in the reference [18]. As an application, we have
studied the case of a spatially periodic strain field, a sinusoidal strain field to
be exact. The conductivity and the Fano factor were obtained for two different
strain’s wavelength, this was done for a neutral AGN, or, in other words, we
considered that the Fermi energy of the leads was zero (E = 0). We found that
for a strain field with wavelength σ−1 = 2.15a, for most of the conduction chan-
nels, the conductivity is greatly reduced when compared with the pristine case,
although the overall shape of the conductivity is quite similar to its pristine
counterpart. For the modulated strain with a smaller supercell (or, in other
words, a smaller strain wavelength given by σ−1 = 1.4a), we found that the
conductivity oscillates as E − ε0 varies. This can be understood as a dispersion
effect induced by the strain field and the possibility of pseudo-Landau levels
[33, 34]. On the other hand, even though the conductivities here studied are
very different in the whole spectrum, we found that their behavior near the
Dirac point energy is almost the same for all the strain fields that we have dis-
cussed. This fact was confirmed by obtaining the conductivity and the Fano
factor near the neutrality point. Therein, the effect of the strain field is almost
negligible, in other words, we just observed a vary small variation on the slope of
the conductivity of a strained AGN compared with a pristine AGN. Although
this result seems to be quite unexpected, in fact it can be explained by the
strong topological protection near the Dirac cones [35, 8].
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Appendix A.

In this appendix we derive Eqs. (13), (14), (15), and (16). We start by
studying each case out of the four possible for Eq. (9).

Case 1. For this case we have i = 4r− 3, where r = 1, ..., N/4, which leads
to the following equation,

α4r−4,j =
E − ε0
−t4r−4

αi,j −
t4r−3
t4r−4

(α4r−2,j + α4r−2,j−1). (A.1)

It is convenient to write the previous equation in a matrix form. To that end,
we define a M ×M lower-bidiagonal matrix with nonzero elements equal to 1,
namely,

X =



1 0 0 0 . . . 0

1 1 0 0 . . . 0

0 1 1 0 . . . 0

0 0 1 1 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 1



. (A.2)

Then, it is straightforward to show that Eq. (A.3) can be written as, ~α4r−4

~α4r−3

 = Ar

 ~α4r−3

~α4r−2

 (A.3)

where

Ar =

 E−ε0
−t4r−4

IM×M −t4r−3

t4r−4
X

IM×M 0

 . (A.4)

Case 2. Here we have i = 4r − 2, with r = 1, ..., (N/4) − 2. For this case
we obtain,

α4r−1,j =
E − ε0
−t4r−2

α4r−2,j −
t4r−3
t4r−2

(α4r−3,j + α4r−3,j+1). (A.5)
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Once again, we can rewrite the previous equation in a matrix way, ~α4r−2

~α4r−2

 =

 0 IM×M

−t4r−3

t4r−2
XT E−ε0

−t4r−2
IM×M

 ~α4r−3

~α4r−2

 (A.6)

where XT is the transpose matrix of X. Then one can easily obtain the column
vector of the right side of Eq. (A.6), ~α4r−3

~α4r−2

 = Br

 ~α4r−3

~α4r−1

 . (A.7)

where

Br =

 E−ε0
−t4r−3

YT −t4r−2

t4r−3
YT

IM×M 0

 . (A.8)

Case 3. For i = 4r − 1, with r = 1, ..., N/4, we obtain the next equation,

α4r−2,j =
E − ε0
−t4r−2

αi,j −
t4r−1
t4r−2

(α4r,j + α4r,j+1). (A.9)

The previous equation can be rewrite as, ~α4r−2

~α4r−1

 = Cr

 ~α4r−1

~α4r

 (A.10)

where

Cr =

 E−ε0
−t4r−2

IM×M −t4r−1

t4r−2
XT

IM×M 0

 . (A.11)

Case 4. For i = 4r, with r = 1, ..., N/4, we obtain the following result,

α4r+1,j =
E − ε0
−t4r

α4r,j −
t4r−1
t4r

(α4r−1,j + α4r−1,j−1). (A.12)

As before, if we rewrite the previous equation in a matrix form, we get, ~α4r

~α4r+1

 =

 0 IM×M

−t4r−1

t4r
X E−ε0

−t4r IM×M

 ~α4r−1

~α4r

 . (A.13)

Note that the Eq. (A.13) is quit similar to Eq. (A.6), therefore, one can proceed
as before to find that,  ~αi−1

~αi

 = Dr

 ~αi

~αi+1

 (A.14)

with

Dr =

 E−ε0
−ti−1

Y −ti
ti−1

Y

IM×M 0

 . (A.15)
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Appendix B.

In this appendix we provide the explicit evaluation of the product ArBrCrDr.
Using the definitions of the matrices Ar, Br, Cr, and Dr given in the previous
appendix and after some algebraic manipulations, one gets,

ArBrCrDr =

 ϑ(r,1)Y
TY− ϑ(r,2)IM×M + ϑ(r,3)XXT ϑ(r,4)Y

TY− ϑ(r,5)IM×M

ϑ(r,6)Y
TY + ϑ(r,7)IM×M ϑ(r,8)Y

TY


(B.1)

with

ϑ(r,1) =
(E − ε0)4 − (E − ε0)2t2q(r)+1

tq(r)−1tq(r)tq(r)+1tq(r)+2
(B.2)

ϑ(r,2) =
(E − ε0)2

(
t2q(r)+2 + t2q(r)

)
tq(r)−1tq(r)+1

(B.3)

ϑ(r,3) =
tq(r)tq(r)+2

tq(r)−1tq(r)tq(r)+1tq(r)+2
(B.4)

ϑ(r,4) =
(E − ε0)3(tq(r)+3)− (E − ε0)t2q(r)+1tq(r)+3

tq(r)−1tq(r)tq(r)+1tq(r)+2
(B.5)

ϑ(r,5) =
(E − ε0)tq(r)tq(r)+3

tq(r)−1tq(r)+1tq(r)+2
(B.6)

ϑ(r,6) =
−(E − ε0)3 + (E − ε0)t2q(r)+1

tq(r)tq(r)+1tq(r)+2
(B.7)

ϑ(r,7) =
(E − ε0)tq(r)+2

tq(r)tq(r)+1
(B.8)

ϑ(r,8) =
−(E − ε0)2tq(r)+3 + t2q(r)+1tq(r)+3

tq(r)tq(r)+1tq(r)+2
(B.9)

where we have used that q(r) = 4r − 3, with r = 1, ..., N/4.

Appendix C.

In this appendix we derive Eqs. (29) and (30). We start by considering Eq.
(28), which connects the wave functions of the lead-nanoribbon junctions,(
ζ̂ 0

0 ζ̂

)(
ξ̂(x0)

ξ̂(x1)

)
= P̂

(
ζ̂ 0

0 ζ̂

)(
ξ̂(xN )

ξ̂(xN+1)

)
t̂s−

(
ζ̂ 0

0 ζ̂

)(
ξ̂(x0)∗

ξ̂(x1)∗

)
r̂s,

(C.1)
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such an equation can be rewritten, by using the inverse of ζ̂, as,(
ξ̂(x0)

ξ̂(x1)

)
=

[(
ζ̂−1 0

0 ζ̂−1

)
P̂

(
ζ̂ 0

0 ζ̂

)](
ξ̂(xN )

ξ̂(xN+1)

)
t̂s−

(
ξ̂(x0)∗

ξ̂(x1)∗

)
r̂s.

(C.2)

We next observe that the term in square brackets is just an unitary transforma-

tion of the matrix P̂ to a new one P̂
′
. Using the definition of P̂ given by Eq.

(17), it follows that,

P̂
′

=

 t̃2IM×M 0

0 IM×M

N/4∏
r=1

(
Aq(r)Bq(r)Cq(r)Dq(r)

)′ t̃1IM×M 0

0 IM×M


(C.3)

where the product of matrices is written using the unitary transformation,

(Aq(r)Bq(r)Cq(r)Dq(r))
′ =

(
ζ̂ 0

0 ζ̂

)−1
(Aq(r)Bq(r)Cq(r)Dq(r))

(
ζ̂ 0

0 ζ̂

)
(C.4)

By using Eq. (B.1) and after some algebraic manipulations, one gets,

(Aq(r)Bq(r)Cq(r)Dq(r))
′ = ϑq(r),1ζ̂

−1YtYζ̂ − ϑq(r),2IM×M + ϑq(r),3ζ̂
−1XXtζ̂ ϑq(r),4ζ̂

−1YtYζ̂ − ϑq(r),5IM×M

ϑq(r),6ζ̂
−1YtYζ̂ + ϑq(r),7IM×M ϑq(r),8ζ̂

−1YtYζ̂−1


(C.5)

Note that, from the definition of X, Eq. (A.2), we obtain that,

XXT =



1 1 0 0 . . . 0

1 2 1 0 . . . 0

0 1 2 1 . . . 0

0 0 1 2 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 2



(C.6)

The previous matrix, XXT , is very similar to the Hamiltonian related to a linear
chain of M sites with hopping integrals equal to 1 and self-energy equals to 2,
except at the first site. On the other hand, matrix ζ̂ can be seen as the matrix
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with eigen functions of a chain with Hamiltonian XXT , therefore, we have that,

ζ̂−1XXtζ̂ =



1 + 2 cos(k1y) . . . 0

0 2 + 2 cos(k2y) . . . 0

...
...

. . .
...

0 0 . . . 2 + 2 cos(kMy )


(C.7)

and, similarly,

ζ̂−1YtYζ̂ =



1/[1 + 2 cos(k1y)] . . . 0

0 1/[2 + 2 cos(k2y)] . . . 0

...
...

. . .
...

0 0 . . . 1/[2 + 2 cos(kMy )]


(C.8)

Using the previous results to analyze Eq. (C.5), one finds that the transverse
modes in the AGN are unmixed by the scattering processes, remaining inde-
pendent and retaining the free-particle dispersion relation ε̃s = −2− 2 cos(ksy).
Thus, from Eq. (C.5), for r = 1, 2..., N/4, we define a new 2× 2 matrix ς̂r as,

ς̂r =

 −ϑ(r,1)ε̃−1s − ϑ(r,2) − ϑ(r,3)ε̃s −ϑ(r,4)ε̃−1s − ϑ(r,5)

−ϑ(r,6)ε̃−1s + ϑ(r,7) −ϑ(r,8)ε̃−1s

 (C.9)

Now Eq.(C.2) can also be written in terms of 2× 2 matrices as follows,(
ξ(x0)
ξ(x1)

)
=

 t̃2 0

0 1

N/4∏
r=1

ς̂r

 t̃1 0

0 1

( ξ(xN )
ξ(xN+1)

)
tss−

(
ξ(x0)∗

ξ(x1)∗

)
rss

(C.10)

For the sake of simplicity, we define a new ς̂r for r = 0,

ς̂0 =

 t̃2 0

0 1

 (C.11)

and for r = (N/4) + 1,

ς̂(N/4)+1 =

 t̃1 0

0 1

 (C.12)
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By using the definitions of ς̂0 and ς̂(N/4)+1, a simplified version of Eq. (C.10)
can be obtained,(

ξ(x0)
ξ(x1)

)
=

(N/4)+1∏
r=0

ς̂r

(
ξ(xN )
ξ(xN+1)

)
tss−

(
ξ(x0)∗

ξ(x1)∗

)
rss (C.13)

This is a system of two simultaneous linear equations for the unknown variables
rss and tss. Using the definition for ξN and ξN+1 in the previous expressions,
and defining a new vector that contains the product of matrices,

 gs

hs

 =
∏(N/4)+1
r=0 ς̂r

 eiNk
s
x

ei(N+1)ksx

 (C.14)

from where it follows that, −1 gs

−e−iksx hs

 rss

tss

 =

 1

eik
s
x

 (C.15)

and  rss

tss

 =

 −1 gs

−e−iksx hs

−1 1

eik
s
x

 (C.16)
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[14] H. Garćıa-Cervantes, L. M. Gaggero-Sager, O. Sotolongo-Costa, G. G. Nau-
mis, and I. Rodrguez-Vargas. Angle-dependent bandgap engineering in
gated graphene superlattices. AIP Advances, 6(3):035309, 2016.
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